at v2.6.23-rc2 398 lines 10 kB view raw
1/* 2 * General Purpose functions for the global management of the 3 * Communication Processor Module. 4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) 5 * 6 * In addition to the individual control of the communication 7 * channels, there are a few functions that globally affect the 8 * communication processor. 9 * 10 * Buffer descriptors must be allocated from the dual ported memory 11 * space. The allocator for that is here. When the communication 12 * process is reset, we reclaim the memory available. There is 13 * currently no deallocator for this memory. 14 * The amount of space available is platform dependent. On the 15 * MBX, the EPPC software loads additional microcode into the 16 * communication processor, and uses some of the DP ram for this 17 * purpose. Current, the first 512 bytes and the last 256 bytes of 18 * memory are used. Right now I am conservative and only use the 19 * memory that can never be used for microcode. If there are 20 * applications that require more DP ram, we can expand the boundaries 21 * but then we have to be careful of any downloaded microcode. 22 */ 23#include <linux/errno.h> 24#include <linux/sched.h> 25#include <linux/kernel.h> 26#include <linux/dma-mapping.h> 27#include <linux/param.h> 28#include <linux/string.h> 29#include <linux/mm.h> 30#include <linux/interrupt.h> 31#include <linux/irq.h> 32#include <linux/module.h> 33#include <asm/mpc8xx.h> 34#include <asm/page.h> 35#include <asm/pgtable.h> 36#include <asm/8xx_immap.h> 37#include <asm/commproc.h> 38#include <asm/io.h> 39#include <asm/tlbflush.h> 40#include <asm/rheap.h> 41#include <asm/prom.h> 42 43#include <asm/fs_pd.h> 44 45#define CPM_MAP_SIZE (0x4000) 46 47static void m8xx_cpm_dpinit(void); 48static uint host_buffer; /* One page of host buffer */ 49static uint host_end; /* end + 1 */ 50cpm8xx_t *cpmp; /* Pointer to comm processor space */ 51cpic8xx_t *cpic_reg; 52 53static struct device_node *cpm_pic_node; 54static struct irq_host *cpm_pic_host; 55 56static void cpm_mask_irq(unsigned int irq) 57{ 58 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 59 60 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 61} 62 63static void cpm_unmask_irq(unsigned int irq) 64{ 65 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 66 67 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 68} 69 70static void cpm_end_irq(unsigned int irq) 71{ 72 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 73 74 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); 75} 76 77static struct irq_chip cpm_pic = { 78 .typename = " CPM PIC ", 79 .mask = cpm_mask_irq, 80 .unmask = cpm_unmask_irq, 81 .eoi = cpm_end_irq, 82}; 83 84int cpm_get_irq(void) 85{ 86 int cpm_vec; 87 88 /* Get the vector by setting the ACK bit and then reading 89 * the register. 90 */ 91 out_be16(&cpic_reg->cpic_civr, 1); 92 cpm_vec = in_be16(&cpic_reg->cpic_civr); 93 cpm_vec >>= 11; 94 95 return irq_linear_revmap(cpm_pic_host, cpm_vec); 96} 97 98static int cpm_pic_host_match(struct irq_host *h, struct device_node *node) 99{ 100 return cpm_pic_node == node; 101} 102 103static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, 104 irq_hw_number_t hw) 105{ 106 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); 107 108 get_irq_desc(virq)->status |= IRQ_LEVEL; 109 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); 110 return 0; 111} 112 113/* The CPM can generate the error interrupt when there is a race condition 114 * between generating and masking interrupts. All we have to do is ACK it 115 * and return. This is a no-op function so we don't need any special 116 * tests in the interrupt handler. 117 */ 118static irqreturn_t cpm_error_interrupt(int irq, void *dev) 119{ 120 return IRQ_HANDLED; 121} 122 123static struct irqaction cpm_error_irqaction = { 124 .handler = cpm_error_interrupt, 125 .mask = CPU_MASK_NONE, 126 .name = "error", 127}; 128 129static struct irq_host_ops cpm_pic_host_ops = { 130 .match = cpm_pic_host_match, 131 .map = cpm_pic_host_map, 132}; 133 134unsigned int cpm_pic_init(void) 135{ 136 struct device_node *np = NULL; 137 struct resource res; 138 unsigned int sirq = NO_IRQ, hwirq, eirq; 139 int ret; 140 141 pr_debug("cpm_pic_init\n"); 142 143 np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); 144 if (np == NULL) { 145 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); 146 return sirq; 147 } 148 ret = of_address_to_resource(np, 0, &res); 149 if (ret) 150 goto end; 151 152 cpic_reg = (void *)ioremap(res.start, res.end - res.start + 1); 153 if (cpic_reg == NULL) 154 goto end; 155 156 sirq = irq_of_parse_and_map(np, 0); 157 if (sirq == NO_IRQ) 158 goto end; 159 160 /* Initialize the CPM interrupt controller. */ 161 hwirq = (unsigned int)irq_map[sirq].hwirq; 162 out_be32(&cpic_reg->cpic_cicr, 163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | 164 ((hwirq/2) << 13) | CICR_HP_MASK); 165 166 out_be32(&cpic_reg->cpic_cimr, 0); 167 168 cpm_pic_node = of_node_get(np); 169 170 cpm_pic_host = irq_alloc_host(IRQ_HOST_MAP_LINEAR, 64, &cpm_pic_host_ops, 64); 171 if (cpm_pic_host == NULL) { 172 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); 173 sirq = NO_IRQ; 174 goto end; 175 } 176 of_node_put(np); 177 178 /* Install our own error handler. */ 179 np = of_find_node_by_type(NULL, "cpm"); 180 if (np == NULL) { 181 printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); 182 goto end; 183 } 184 eirq= irq_of_parse_and_map(np, 0); 185 if (eirq == NO_IRQ) 186 goto end; 187 188 if (setup_irq(eirq, &cpm_error_irqaction)) 189 printk(KERN_ERR "Could not allocate CPM error IRQ!"); 190 191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN); 192 193end: 194 of_node_put(np); 195 return sirq; 196} 197 198void cpm_reset(void) 199{ 200 cpm8xx_t *commproc; 201 sysconf8xx_t *siu_conf; 202 203 commproc = (cpm8xx_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE); 204 205#ifdef CONFIG_UCODE_PATCH 206 /* Perform a reset. 207 */ 208 out_be16(&commproc->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); 209 210 /* Wait for it. 211 */ 212 while (in_be16(&commproc->cp_cpcr) & CPM_CR_FLG); 213 214 cpm_load_patch(commproc); 215#endif 216 217 /* Set SDMA Bus Request priority 5. 218 * On 860T, this also enables FEC priority 6. I am not sure 219 * this is what we realy want for some applications, but the 220 * manual recommends it. 221 * Bit 25, FAM can also be set to use FEC aggressive mode (860T). 222 */ 223 siu_conf = (sysconf8xx_t*)immr_map(im_siu_conf); 224 out_be32(&siu_conf->sc_sdcr, 1); 225 immr_unmap(siu_conf); 226 227 /* Reclaim the DP memory for our use. */ 228 m8xx_cpm_dpinit(); 229 230 /* Tell everyone where the comm processor resides. 231 */ 232 cpmp = commproc; 233} 234 235/* We used to do this earlier, but have to postpone as long as possible 236 * to ensure the kernel VM is now running. 237 */ 238static void 239alloc_host_memory(void) 240{ 241 dma_addr_t physaddr; 242 243 /* Set the host page for allocation. 244 */ 245 host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr, 246 GFP_KERNEL); 247 host_end = host_buffer + PAGE_SIZE; 248} 249 250/* We also own one page of host buffer space for the allocation of 251 * UART "fifos" and the like. 252 */ 253uint 254m8xx_cpm_hostalloc(uint size) 255{ 256 uint retloc; 257 258 if (host_buffer == 0) 259 alloc_host_memory(); 260 261 if ((host_buffer + size) >= host_end) 262 return(0); 263 264 retloc = host_buffer; 265 host_buffer += size; 266 267 return(retloc); 268} 269 270/* Set a baud rate generator. This needs lots of work. There are 271 * four BRGs, any of which can be wired to any channel. 272 * The internal baud rate clock is the system clock divided by 16. 273 * This assumes the baudrate is 16x oversampled by the uart. 274 */ 275#define BRG_INT_CLK (get_brgfreq()) 276#define BRG_UART_CLK (BRG_INT_CLK/16) 277#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) 278 279void 280cpm_setbrg(uint brg, uint rate) 281{ 282 volatile uint *bp; 283 284 /* This is good enough to get SMCs running..... 285 */ 286 bp = (uint *)&cpmp->cp_brgc1; 287 bp += brg; 288 /* The BRG has a 12-bit counter. For really slow baud rates (or 289 * really fast processors), we may have to further divide by 16. 290 */ 291 if (((BRG_UART_CLK / rate) - 1) < 4096) 292 *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; 293 else 294 *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | 295 CPM_BRG_EN | CPM_BRG_DIV16; 296} 297 298/* 299 * dpalloc / dpfree bits. 300 */ 301static spinlock_t cpm_dpmem_lock; 302/* 303 * 16 blocks should be enough to satisfy all requests 304 * until the memory subsystem goes up... 305 */ 306static rh_block_t cpm_boot_dpmem_rh_block[16]; 307static rh_info_t cpm_dpmem_info; 308 309#define CPM_DPMEM_ALIGNMENT 8 310static u8* dpram_vbase; 311static uint dpram_pbase; 312 313void m8xx_cpm_dpinit(void) 314{ 315 spin_lock_init(&cpm_dpmem_lock); 316 317 dpram_vbase = immr_map_size(im_cpm.cp_dpmem, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE); 318 dpram_pbase = (uint)&((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem; 319 320 /* Initialize the info header */ 321 rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, 322 sizeof(cpm_boot_dpmem_rh_block) / 323 sizeof(cpm_boot_dpmem_rh_block[0]), 324 cpm_boot_dpmem_rh_block); 325 326 /* 327 * Attach the usable dpmem area. 328 * XXX: This is actually crap. CPM_DATAONLY_BASE and 329 * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies 330 * with the processor and the microcode patches applied / activated. 331 * But the following should be at least safe. 332 */ 333 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); 334} 335 336/* 337 * Allocate the requested size worth of DP memory. 338 * This function returns an offset into the DPRAM area. 339 * Use cpm_dpram_addr() to get the virtual address of the area. 340 */ 341unsigned long cpm_dpalloc(uint size, uint align) 342{ 343 unsigned long start; 344 unsigned long flags; 345 346 spin_lock_irqsave(&cpm_dpmem_lock, flags); 347 cpm_dpmem_info.alignment = align; 348 start = rh_alloc(&cpm_dpmem_info, size, "commproc"); 349 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 350 351 return (uint)start; 352} 353EXPORT_SYMBOL(cpm_dpalloc); 354 355int cpm_dpfree(unsigned long offset) 356{ 357 int ret; 358 unsigned long flags; 359 360 spin_lock_irqsave(&cpm_dpmem_lock, flags); 361 ret = rh_free(&cpm_dpmem_info, offset); 362 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 363 364 return ret; 365} 366EXPORT_SYMBOL(cpm_dpfree); 367 368unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align) 369{ 370 unsigned long start; 371 unsigned long flags; 372 373 spin_lock_irqsave(&cpm_dpmem_lock, flags); 374 cpm_dpmem_info.alignment = align; 375 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc"); 376 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 377 378 return start; 379} 380EXPORT_SYMBOL(cpm_dpalloc_fixed); 381 382void cpm_dpdump(void) 383{ 384 rh_dump(&cpm_dpmem_info); 385} 386EXPORT_SYMBOL(cpm_dpdump); 387 388void *cpm_dpram_addr(unsigned long offset) 389{ 390 return (void *)(dpram_vbase + offset); 391} 392EXPORT_SYMBOL(cpm_dpram_addr); 393 394uint cpm_dpram_phys(u8* addr) 395{ 396 return (dpram_pbase + (uint)(addr - dpram_vbase)); 397} 398EXPORT_SYMBOL(cpm_dpram_addr);