at v2.6.22 58 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67}; 68 69/* host-side wrapper for one interface setting's parsed descriptors */ 70struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81}; 82 83enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88}; 89 90/** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @usb_dev: if an interface is bound to the USB major, this will point 111 * to the sysfs representation for that device. 112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 113 * allowed unless the counter is 0. 114 * 115 * USB device drivers attach to interfaces on a physical device. Each 116 * interface encapsulates a single high level function, such as feeding 117 * an audio stream to a speaker or reporting a change in a volume control. 118 * Many USB devices only have one interface. The protocol used to talk to 119 * an interface's endpoints can be defined in a usb "class" specification, 120 * or by a product's vendor. The (default) control endpoint is part of 121 * every interface, but is never listed among the interface's descriptors. 122 * 123 * The driver that is bound to the interface can use standard driver model 124 * calls such as dev_get_drvdata() on the dev member of this structure. 125 * 126 * Each interface may have alternate settings. The initial configuration 127 * of a device sets altsetting 0, but the device driver can change 128 * that setting using usb_set_interface(). Alternate settings are often 129 * used to control the use of periodic endpoints, such as by having 130 * different endpoints use different amounts of reserved USB bandwidth. 131 * All standards-conformant USB devices that use isochronous endpoints 132 * will use them in non-default settings. 133 * 134 * The USB specification says that alternate setting numbers must run from 135 * 0 to one less than the total number of alternate settings. But some 136 * devices manage to mess this up, and the structures aren't necessarily 137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 138 * look up an alternate setting in the altsetting array based on its number. 139 */ 140struct usb_interface { 141 /* array of alternate settings for this interface, 142 * stored in no particular order */ 143 struct usb_host_interface *altsetting; 144 145 struct usb_host_interface *cur_altsetting; /* the currently 146 * active alternate setting */ 147 unsigned num_altsetting; /* number of alternate settings */ 148 149 int minor; /* minor number this interface is 150 * bound to */ 151 enum usb_interface_condition condition; /* state of binding */ 152 unsigned is_active:1; /* the interface is not suspended */ 153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 154 155 struct device dev; /* interface specific device info */ 156 struct device *usb_dev; /* pointer to the usb class's device, if any */ 157 int pm_usage_cnt; /* usage counter for autosuspend */ 158}; 159#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 160#define interface_to_usbdev(intf) \ 161 container_of(intf->dev.parent, struct usb_device, dev) 162 163static inline void *usb_get_intfdata (struct usb_interface *intf) 164{ 165 return dev_get_drvdata (&intf->dev); 166} 167 168static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 169{ 170 dev_set_drvdata(&intf->dev, data); 171} 172 173struct usb_interface *usb_get_intf(struct usb_interface *intf); 174void usb_put_intf(struct usb_interface *intf); 175 176/* this maximum is arbitrary */ 177#define USB_MAXINTERFACES 32 178 179/** 180 * struct usb_interface_cache - long-term representation of a device interface 181 * @num_altsetting: number of altsettings defined. 182 * @ref: reference counter. 183 * @altsetting: variable-length array of interface structures, one for 184 * each alternate setting that may be selected. Each one includes a 185 * set of endpoint configurations. They will be in no particular order. 186 * 187 * These structures persist for the lifetime of a usb_device, unlike 188 * struct usb_interface (which persists only as long as its configuration 189 * is installed). The altsetting arrays can be accessed through these 190 * structures at any time, permitting comparison of configurations and 191 * providing support for the /proc/bus/usb/devices pseudo-file. 192 */ 193struct usb_interface_cache { 194 unsigned num_altsetting; /* number of alternate settings */ 195 struct kref ref; /* reference counter */ 196 197 /* variable-length array of alternate settings for this interface, 198 * stored in no particular order */ 199 struct usb_host_interface altsetting[0]; 200}; 201#define ref_to_usb_interface_cache(r) \ 202 container_of(r, struct usb_interface_cache, ref) 203#define altsetting_to_usb_interface_cache(a) \ 204 container_of(a, struct usb_interface_cache, altsetting[0]) 205 206/** 207 * struct usb_host_config - representation of a device's configuration 208 * @desc: the device's configuration descriptor. 209 * @string: pointer to the cached version of the iConfiguration string, if 210 * present for this configuration. 211 * @interface: array of pointers to usb_interface structures, one for each 212 * interface in the configuration. The number of interfaces is stored 213 * in desc.bNumInterfaces. These pointers are valid only while the 214 * the configuration is active. 215 * @intf_cache: array of pointers to usb_interface_cache structures, one 216 * for each interface in the configuration. These structures exist 217 * for the entire life of the device. 218 * @extra: pointer to buffer containing all extra descriptors associated 219 * with this configuration (those preceding the first interface 220 * descriptor). 221 * @extralen: length of the extra descriptors buffer. 222 * 223 * USB devices may have multiple configurations, but only one can be active 224 * at any time. Each encapsulates a different operational environment; 225 * for example, a dual-speed device would have separate configurations for 226 * full-speed and high-speed operation. The number of configurations 227 * available is stored in the device descriptor as bNumConfigurations. 228 * 229 * A configuration can contain multiple interfaces. Each corresponds to 230 * a different function of the USB device, and all are available whenever 231 * the configuration is active. The USB standard says that interfaces 232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 233 * of devices get this wrong. In addition, the interface array is not 234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 235 * look up an interface entry based on its number. 236 * 237 * Device drivers should not attempt to activate configurations. The choice 238 * of which configuration to install is a policy decision based on such 239 * considerations as available power, functionality provided, and the user's 240 * desires (expressed through userspace tools). However, drivers can call 241 * usb_reset_configuration() to reinitialize the current configuration and 242 * all its interfaces. 243 */ 244struct usb_host_config { 245 struct usb_config_descriptor desc; 246 247 char *string; /* iConfiguration string, if present */ 248 /* the interfaces associated with this configuration, 249 * stored in no particular order */ 250 struct usb_interface *interface[USB_MAXINTERFACES]; 251 252 /* Interface information available even when this is not the 253 * active configuration */ 254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 255 256 unsigned char *extra; /* Extra descriptors */ 257 int extralen; 258}; 259 260int __usb_get_extra_descriptor(char *buffer, unsigned size, 261 unsigned char type, void **ptr); 262#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 264 type,(void**)ptr) 265 266/* ----------------------------------------------------------------------- */ 267 268/* USB device number allocation bitmap */ 269struct usb_devmap { 270 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 271}; 272 273/* 274 * Allocated per bus (tree of devices) we have: 275 */ 276struct usb_bus { 277 struct device *controller; /* host/master side hardware */ 278 int busnum; /* Bus number (in order of reg) */ 279 char *bus_name; /* stable id (PCI slot_name etc) */ 280 u8 uses_dma; /* Does the host controller use DMA? */ 281 u8 otg_port; /* 0, or number of OTG/HNP port */ 282 unsigned is_b_host:1; /* true during some HNP roleswitches */ 283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 284 285 int devnum_next; /* Next open device number in 286 * round-robin allocation */ 287 288 struct usb_devmap devmap; /* device address allocation map */ 289 struct usb_device *root_hub; /* Root hub */ 290 struct list_head bus_list; /* list of busses */ 291 292 int bandwidth_allocated; /* on this bus: how much of the time 293 * reserved for periodic (intr/iso) 294 * requests is used, on average? 295 * Units: microseconds/frame. 296 * Limits: Full/low speed reserve 90%, 297 * while high speed reserves 80%. 298 */ 299 int bandwidth_int_reqs; /* number of Interrupt requests */ 300 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 301 302#ifdef CONFIG_USB_DEVICEFS 303 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 304#endif 305 struct class_device *class_dev; /* class device for this bus */ 306 307#if defined(CONFIG_USB_MON) 308 struct mon_bus *mon_bus; /* non-null when associated */ 309 int monitored; /* non-zero when monitored */ 310#endif 311}; 312 313/* ----------------------------------------------------------------------- */ 314 315/* This is arbitrary. 316 * From USB 2.0 spec Table 11-13, offset 7, a hub can 317 * have up to 255 ports. The most yet reported is 10. 318 * 319 * Current Wireless USB host hardware (Intel i1480 for example) allows 320 * up to 22 devices to connect. Upcoming hardware might raise that 321 * limit. Because the arrays need to add a bit for hub status data, we 322 * do 31, so plus one evens out to four bytes. 323 */ 324#define USB_MAXCHILDREN (31) 325 326struct usb_tt; 327 328/* 329 * struct usb_device - kernel's representation of a USB device 330 * 331 * FIXME: Write the kerneldoc! 332 * 333 * Usbcore drivers should not set usbdev->state directly. Instead use 334 * usb_set_device_state(). 335 */ 336struct usb_device { 337 int devnum; /* Address on USB bus */ 338 char devpath [16]; /* Use in messages: /port/port/... */ 339 enum usb_device_state state; /* configured, not attached, etc */ 340 enum usb_device_speed speed; /* high/full/low (or error) */ 341 342 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 343 int ttport; /* device port on that tt hub */ 344 345 unsigned int toggle[2]; /* one bit for each endpoint 346 * ([0] = IN, [1] = OUT) */ 347 348 struct usb_device *parent; /* our hub, unless we're the root */ 349 struct usb_bus *bus; /* Bus we're part of */ 350 struct usb_host_endpoint ep0; 351 352 struct device dev; /* Generic device interface */ 353 354 struct usb_device_descriptor descriptor;/* Descriptor */ 355 struct usb_host_config *config; /* All of the configs */ 356 357 struct usb_host_config *actconfig;/* the active configuration */ 358 struct usb_host_endpoint *ep_in[16]; 359 struct usb_host_endpoint *ep_out[16]; 360 361 char **rawdescriptors; /* Raw descriptors for each config */ 362 363 unsigned short bus_mA; /* Current available from the bus */ 364 u8 portnum; /* Parent port number (origin 1) */ 365 u8 level; /* Number of USB hub ancestors */ 366 367 unsigned discon_suspended:1; /* Disconnected while suspended */ 368 unsigned have_langid:1; /* whether string_langid is valid */ 369 int string_langid; /* language ID for strings */ 370 371 /* static strings from the device */ 372 char *product; /* iProduct string, if present */ 373 char *manufacturer; /* iManufacturer string, if present */ 374 char *serial; /* iSerialNumber string, if present */ 375 376 struct list_head filelist; 377#ifdef CONFIG_USB_DEVICE_CLASS 378 struct device *usb_classdev; 379#endif 380#ifdef CONFIG_USB_DEVICEFS 381 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 382#endif 383 /* 384 * Child devices - these can be either new devices 385 * (if this is a hub device), or different instances 386 * of this same device. 387 * 388 * Each instance needs its own set of data structures. 389 */ 390 391 int maxchild; /* Number of ports if hub */ 392 struct usb_device *children[USB_MAXCHILDREN]; 393 394 int pm_usage_cnt; /* usage counter for autosuspend */ 395 u32 quirks; /* quirks of the whole device */ 396 397#ifdef CONFIG_PM 398 struct delayed_work autosuspend; /* for delayed autosuspends */ 399 struct mutex pm_mutex; /* protects PM operations */ 400 401 unsigned long last_busy; /* time of last use */ 402 int autosuspend_delay; /* in jiffies */ 403 404 unsigned auto_pm:1; /* autosuspend/resume in progress */ 405 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 406 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 407 unsigned autoresume_disabled:1; /* disabled by the user */ 408#endif 409}; 410#define to_usb_device(d) container_of(d, struct usb_device, dev) 411 412extern struct usb_device *usb_get_dev(struct usb_device *dev); 413extern void usb_put_dev(struct usb_device *dev); 414 415/* USB device locking */ 416#define usb_lock_device(udev) down(&(udev)->dev.sem) 417#define usb_unlock_device(udev) up(&(udev)->dev.sem) 418#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 419extern int usb_lock_device_for_reset(struct usb_device *udev, 420 const struct usb_interface *iface); 421 422/* USB port reset for device reinitialization */ 423extern int usb_reset_device(struct usb_device *dev); 424extern int usb_reset_composite_device(struct usb_device *dev, 425 struct usb_interface *iface); 426 427extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 428 429/* USB autosuspend and autoresume */ 430#ifdef CONFIG_USB_SUSPEND 431extern int usb_autopm_set_interface(struct usb_interface *intf); 432extern int usb_autopm_get_interface(struct usb_interface *intf); 433extern void usb_autopm_put_interface(struct usb_interface *intf); 434 435static inline void usb_autopm_enable(struct usb_interface *intf) 436{ 437 intf->pm_usage_cnt = 0; 438 usb_autopm_set_interface(intf); 439} 440 441static inline void usb_autopm_disable(struct usb_interface *intf) 442{ 443 intf->pm_usage_cnt = 1; 444 usb_autopm_set_interface(intf); 445} 446 447static inline void usb_mark_last_busy(struct usb_device *udev) 448{ 449 udev->last_busy = jiffies; 450} 451 452#else 453 454static inline int usb_autopm_set_interface(struct usb_interface *intf) 455{ return 0; } 456 457static inline int usb_autopm_get_interface(struct usb_interface *intf) 458{ return 0; } 459 460static inline void usb_autopm_put_interface(struct usb_interface *intf) 461{ } 462static inline void usb_autopm_enable(struct usb_interface *intf) 463{ } 464static inline void usb_autopm_disable(struct usb_interface *intf) 465{ } 466static inline void usb_mark_last_busy(struct usb_device *udev) 467{ } 468#endif 469 470/*-------------------------------------------------------------------------*/ 471 472/* for drivers using iso endpoints */ 473extern int usb_get_current_frame_number (struct usb_device *usb_dev); 474 475/* used these for multi-interface device registration */ 476extern int usb_driver_claim_interface(struct usb_driver *driver, 477 struct usb_interface *iface, void* priv); 478 479/** 480 * usb_interface_claimed - returns true iff an interface is claimed 481 * @iface: the interface being checked 482 * 483 * Returns true (nonzero) iff the interface is claimed, else false (zero). 484 * Callers must own the driver model's usb bus readlock. So driver 485 * probe() entries don't need extra locking, but other call contexts 486 * may need to explicitly claim that lock. 487 * 488 */ 489static inline int usb_interface_claimed(struct usb_interface *iface) { 490 return (iface->dev.driver != NULL); 491} 492 493extern void usb_driver_release_interface(struct usb_driver *driver, 494 struct usb_interface *iface); 495const struct usb_device_id *usb_match_id(struct usb_interface *interface, 496 const struct usb_device_id *id); 497extern int usb_match_one_id(struct usb_interface *interface, 498 const struct usb_device_id *id); 499 500extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 501 int minor); 502extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 503 unsigned ifnum); 504extern struct usb_host_interface *usb_altnum_to_altsetting( 505 const struct usb_interface *intf, unsigned int altnum); 506 507 508/** 509 * usb_make_path - returns stable device path in the usb tree 510 * @dev: the device whose path is being constructed 511 * @buf: where to put the string 512 * @size: how big is "buf"? 513 * 514 * Returns length of the string (> 0) or negative if size was too small. 515 * 516 * This identifier is intended to be "stable", reflecting physical paths in 517 * hardware such as physical bus addresses for host controllers or ports on 518 * USB hubs. That makes it stay the same until systems are physically 519 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 520 * controllers. Adding and removing devices, including virtual root hubs 521 * in host controller driver modules, does not change these path identifers; 522 * neither does rebooting or re-enumerating. These are more useful identifiers 523 * than changeable ("unstable") ones like bus numbers or device addresses. 524 * 525 * With a partial exception for devices connected to USB 2.0 root hubs, these 526 * identifiers are also predictable. So long as the device tree isn't changed, 527 * plugging any USB device into a given hub port always gives it the same path. 528 * Because of the use of "companion" controllers, devices connected to ports on 529 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 530 * high speed, and a different one if they are full or low speed. 531 */ 532static inline int usb_make_path (struct usb_device *dev, char *buf, 533 size_t size) 534{ 535 int actual; 536 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 537 dev->devpath); 538 return (actual >= (int)size) ? -1 : actual; 539} 540 541/*-------------------------------------------------------------------------*/ 542 543/** 544 * usb_endpoint_dir_in - check if the endpoint has IN direction 545 * @epd: endpoint to be checked 546 * 547 * Returns true if the endpoint is of type IN, otherwise it returns false. 548 */ 549static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 550{ 551 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 552} 553 554/** 555 * usb_endpoint_dir_out - check if the endpoint has OUT direction 556 * @epd: endpoint to be checked 557 * 558 * Returns true if the endpoint is of type OUT, otherwise it returns false. 559 */ 560static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 561{ 562 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 563} 564 565/** 566 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 567 * @epd: endpoint to be checked 568 * 569 * Returns true if the endpoint is of type bulk, otherwise it returns false. 570 */ 571static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 572{ 573 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 574 USB_ENDPOINT_XFER_BULK); 575} 576 577/** 578 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 579 * @epd: endpoint to be checked 580 * 581 * Returns true if the endpoint is of type control, otherwise it returns false. 582 */ 583static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 584{ 585 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 586 USB_ENDPOINT_XFER_CONTROL); 587} 588 589/** 590 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 591 * @epd: endpoint to be checked 592 * 593 * Returns true if the endpoint is of type interrupt, otherwise it returns 594 * false. 595 */ 596static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 597{ 598 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 599 USB_ENDPOINT_XFER_INT); 600} 601 602/** 603 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 604 * @epd: endpoint to be checked 605 * 606 * Returns true if the endpoint is of type isochronous, otherwise it returns 607 * false. 608 */ 609static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 610{ 611 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 612 USB_ENDPOINT_XFER_ISOC); 613} 614 615/** 616 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 617 * @epd: endpoint to be checked 618 * 619 * Returns true if the endpoint has bulk transfer type and IN direction, 620 * otherwise it returns false. 621 */ 622static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 623{ 624 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 625} 626 627/** 628 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 629 * @epd: endpoint to be checked 630 * 631 * Returns true if the endpoint has bulk transfer type and OUT direction, 632 * otherwise it returns false. 633 */ 634static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 635{ 636 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 637} 638 639/** 640 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 641 * @epd: endpoint to be checked 642 * 643 * Returns true if the endpoint has interrupt transfer type and IN direction, 644 * otherwise it returns false. 645 */ 646static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 647{ 648 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 649} 650 651/** 652 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 653 * @epd: endpoint to be checked 654 * 655 * Returns true if the endpoint has interrupt transfer type and OUT direction, 656 * otherwise it returns false. 657 */ 658static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 659{ 660 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 661} 662 663/** 664 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 665 * @epd: endpoint to be checked 666 * 667 * Returns true if the endpoint has isochronous transfer type and IN direction, 668 * otherwise it returns false. 669 */ 670static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 671{ 672 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 673} 674 675/** 676 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 677 * @epd: endpoint to be checked 678 * 679 * Returns true if the endpoint has isochronous transfer type and OUT direction, 680 * otherwise it returns false. 681 */ 682static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 683{ 684 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 685} 686 687/*-------------------------------------------------------------------------*/ 688 689#define USB_DEVICE_ID_MATCH_DEVICE \ 690 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 691#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 692 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 693#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 694 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 695#define USB_DEVICE_ID_MATCH_DEV_INFO \ 696 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 697 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 698 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 699#define USB_DEVICE_ID_MATCH_INT_INFO \ 700 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 701 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 702 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 703 704/** 705 * USB_DEVICE - macro used to describe a specific usb device 706 * @vend: the 16 bit USB Vendor ID 707 * @prod: the 16 bit USB Product ID 708 * 709 * This macro is used to create a struct usb_device_id that matches a 710 * specific device. 711 */ 712#define USB_DEVICE(vend,prod) \ 713 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 714 .idProduct = (prod) 715/** 716 * USB_DEVICE_VER - macro used to describe a specific usb device with a 717 * version range 718 * @vend: the 16 bit USB Vendor ID 719 * @prod: the 16 bit USB Product ID 720 * @lo: the bcdDevice_lo value 721 * @hi: the bcdDevice_hi value 722 * 723 * This macro is used to create a struct usb_device_id that matches a 724 * specific device, with a version range. 725 */ 726#define USB_DEVICE_VER(vend,prod,lo,hi) \ 727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 728 .idVendor = (vend), .idProduct = (prod), \ 729 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 730 731/** 732 * USB_DEVICE_INFO - macro used to describe a class of usb devices 733 * @cl: bDeviceClass value 734 * @sc: bDeviceSubClass value 735 * @pr: bDeviceProtocol value 736 * 737 * This macro is used to create a struct usb_device_id that matches a 738 * specific class of devices. 739 */ 740#define USB_DEVICE_INFO(cl,sc,pr) \ 741 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 742 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 743 744/** 745 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 746 * @cl: bInterfaceClass value 747 * @sc: bInterfaceSubClass value 748 * @pr: bInterfaceProtocol value 749 * 750 * This macro is used to create a struct usb_device_id that matches a 751 * specific class of interfaces. 752 */ 753#define USB_INTERFACE_INFO(cl,sc,pr) \ 754 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 755 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 756 757/* ----------------------------------------------------------------------- */ 758 759/* Stuff for dynamic usb ids */ 760struct usb_dynids { 761 spinlock_t lock; 762 struct list_head list; 763}; 764 765struct usb_dynid { 766 struct list_head node; 767 struct usb_device_id id; 768}; 769 770extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 771 struct device_driver *driver, 772 const char *buf, size_t count); 773 774/** 775 * struct usbdrv_wrap - wrapper for driver-model structure 776 * @driver: The driver-model core driver structure. 777 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 778 */ 779struct usbdrv_wrap { 780 struct device_driver driver; 781 int for_devices; 782}; 783 784/** 785 * struct usb_driver - identifies USB interface driver to usbcore 786 * @name: The driver name should be unique among USB drivers, 787 * and should normally be the same as the module name. 788 * @probe: Called to see if the driver is willing to manage a particular 789 * interface on a device. If it is, probe returns zero and uses 790 * dev_set_drvdata() to associate driver-specific data with the 791 * interface. It may also use usb_set_interface() to specify the 792 * appropriate altsetting. If unwilling to manage the interface, 793 * return a negative errno value. 794 * @disconnect: Called when the interface is no longer accessible, usually 795 * because its device has been (or is being) disconnected or the 796 * driver module is being unloaded. 797 * @ioctl: Used for drivers that want to talk to userspace through 798 * the "usbfs" filesystem. This lets devices provide ways to 799 * expose information to user space regardless of where they 800 * do (or don't) show up otherwise in the filesystem. 801 * @suspend: Called when the device is going to be suspended by the system. 802 * @resume: Called when the device is being resumed by the system. 803 * @pre_reset: Called by usb_reset_composite_device() when the device 804 * is about to be reset. 805 * @post_reset: Called by usb_reset_composite_device() after the device 806 * has been reset. 807 * @id_table: USB drivers use ID table to support hotplugging. 808 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 809 * or your driver's probe function will never get called. 810 * @dynids: used internally to hold the list of dynamically added device 811 * ids for this driver. 812 * @drvwrap: Driver-model core structure wrapper. 813 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 814 * added to this driver by preventing the sysfs file from being created. 815 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 816 * for interfaces bound to this driver. 817 * 818 * USB interface drivers must provide a name, probe() and disconnect() 819 * methods, and an id_table. Other driver fields are optional. 820 * 821 * The id_table is used in hotplugging. It holds a set of descriptors, 822 * and specialized data may be associated with each entry. That table 823 * is used by both user and kernel mode hotplugging support. 824 * 825 * The probe() and disconnect() methods are called in a context where 826 * they can sleep, but they should avoid abusing the privilege. Most 827 * work to connect to a device should be done when the device is opened, 828 * and undone at the last close. The disconnect code needs to address 829 * concurrency issues with respect to open() and close() methods, as 830 * well as forcing all pending I/O requests to complete (by unlinking 831 * them as necessary, and blocking until the unlinks complete). 832 */ 833struct usb_driver { 834 const char *name; 835 836 int (*probe) (struct usb_interface *intf, 837 const struct usb_device_id *id); 838 839 void (*disconnect) (struct usb_interface *intf); 840 841 int (*ioctl) (struct usb_interface *intf, unsigned int code, 842 void *buf); 843 844 int (*suspend) (struct usb_interface *intf, pm_message_t message); 845 int (*resume) (struct usb_interface *intf); 846 847 void (*pre_reset) (struct usb_interface *intf); 848 void (*post_reset) (struct usb_interface *intf); 849 850 const struct usb_device_id *id_table; 851 852 struct usb_dynids dynids; 853 struct usbdrv_wrap drvwrap; 854 unsigned int no_dynamic_id:1; 855 unsigned int supports_autosuspend:1; 856}; 857#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 858 859/** 860 * struct usb_device_driver - identifies USB device driver to usbcore 861 * @name: The driver name should be unique among USB drivers, 862 * and should normally be the same as the module name. 863 * @probe: Called to see if the driver is willing to manage a particular 864 * device. If it is, probe returns zero and uses dev_set_drvdata() 865 * to associate driver-specific data with the device. If unwilling 866 * to manage the device, return a negative errno value. 867 * @disconnect: Called when the device is no longer accessible, usually 868 * because it has been (or is being) disconnected or the driver's 869 * module is being unloaded. 870 * @suspend: Called when the device is going to be suspended by the system. 871 * @resume: Called when the device is being resumed by the system. 872 * @drvwrap: Driver-model core structure wrapper. 873 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 874 * for devices bound to this driver. 875 * 876 * USB drivers must provide all the fields listed above except drvwrap. 877 */ 878struct usb_device_driver { 879 const char *name; 880 881 int (*probe) (struct usb_device *udev); 882 void (*disconnect) (struct usb_device *udev); 883 884 int (*suspend) (struct usb_device *udev, pm_message_t message); 885 int (*resume) (struct usb_device *udev); 886 struct usbdrv_wrap drvwrap; 887 unsigned int supports_autosuspend:1; 888}; 889#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 890 drvwrap.driver) 891 892extern struct bus_type usb_bus_type; 893 894/** 895 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 896 * @name: the usb class device name for this driver. Will show up in sysfs. 897 * @fops: pointer to the struct file_operations of this driver. 898 * @minor_base: the start of the minor range for this driver. 899 * 900 * This structure is used for the usb_register_dev() and 901 * usb_unregister_dev() functions, to consolidate a number of the 902 * parameters used for them. 903 */ 904struct usb_class_driver { 905 char *name; 906 const struct file_operations *fops; 907 int minor_base; 908}; 909 910/* 911 * use these in module_init()/module_exit() 912 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 913 */ 914extern int usb_register_driver(struct usb_driver *, struct module *, 915 const char *); 916static inline int usb_register(struct usb_driver *driver) 917{ 918 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 919} 920extern void usb_deregister(struct usb_driver *); 921 922extern int usb_register_device_driver(struct usb_device_driver *, 923 struct module *); 924extern void usb_deregister_device_driver(struct usb_device_driver *); 925 926extern int usb_register_dev(struct usb_interface *intf, 927 struct usb_class_driver *class_driver); 928extern void usb_deregister_dev(struct usb_interface *intf, 929 struct usb_class_driver *class_driver); 930 931extern int usb_disabled(void); 932 933/* ----------------------------------------------------------------------- */ 934 935/* 936 * URB support, for asynchronous request completions 937 */ 938 939/* 940 * urb->transfer_flags: 941 */ 942#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 943#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 944 * ignored */ 945#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 946#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 947#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 948#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 949#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 950 * needed */ 951 952struct usb_iso_packet_descriptor { 953 unsigned int offset; 954 unsigned int length; /* expected length */ 955 unsigned int actual_length; 956 int status; 957}; 958 959struct urb; 960 961typedef void (*usb_complete_t)(struct urb *); 962 963/** 964 * struct urb - USB Request Block 965 * @urb_list: For use by current owner of the URB. 966 * @pipe: Holds endpoint number, direction, type, and more. 967 * Create these values with the eight macros available; 968 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 969 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 970 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 971 * numbers range from zero to fifteen. Note that "in" endpoint two 972 * is a different endpoint (and pipe) from "out" endpoint two. 973 * The current configuration controls the existence, type, and 974 * maximum packet size of any given endpoint. 975 * @dev: Identifies the USB device to perform the request. 976 * @status: This is read in non-iso completion functions to get the 977 * status of the particular request. ISO requests only use it 978 * to tell whether the URB was unlinked; detailed status for 979 * each frame is in the fields of the iso_frame-desc. 980 * @transfer_flags: A variety of flags may be used to affect how URB 981 * submission, unlinking, or operation are handled. Different 982 * kinds of URB can use different flags. 983 * @transfer_buffer: This identifies the buffer to (or from) which 984 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 985 * is set). This buffer must be suitable for DMA; allocate it with 986 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 987 * of this buffer will be modified. This buffer is used for the data 988 * stage of control transfers. 989 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 990 * the device driver is saying that it provided this DMA address, 991 * which the host controller driver should use in preference to the 992 * transfer_buffer. 993 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 994 * be broken up into chunks according to the current maximum packet 995 * size for the endpoint, which is a function of the configuration 996 * and is encoded in the pipe. When the length is zero, neither 997 * transfer_buffer nor transfer_dma is used. 998 * @actual_length: This is read in non-iso completion functions, and 999 * it tells how many bytes (out of transfer_buffer_length) were 1000 * transferred. It will normally be the same as requested, unless 1001 * either an error was reported or a short read was performed. 1002 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1003 * short reads be reported as errors. 1004 * @setup_packet: Only used for control transfers, this points to eight bytes 1005 * of setup data. Control transfers always start by sending this data 1006 * to the device. Then transfer_buffer is read or written, if needed. 1007 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1008 * device driver has provided this DMA address for the setup packet. 1009 * The host controller driver should use this in preference to 1010 * setup_packet. 1011 * @start_frame: Returns the initial frame for isochronous transfers. 1012 * @number_of_packets: Lists the number of ISO transfer buffers. 1013 * @interval: Specifies the polling interval for interrupt or isochronous 1014 * transfers. The units are frames (milliseconds) for for full and low 1015 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1016 * @error_count: Returns the number of ISO transfers that reported errors. 1017 * @context: For use in completion functions. This normally points to 1018 * request-specific driver context. 1019 * @complete: Completion handler. This URB is passed as the parameter to the 1020 * completion function. The completion function may then do what 1021 * it likes with the URB, including resubmitting or freeing it. 1022 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1023 * collect the transfer status for each buffer. 1024 * 1025 * This structure identifies USB transfer requests. URBs must be allocated by 1026 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1027 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1028 * are submitted using usb_submit_urb(), and pending requests may be canceled 1029 * using usb_unlink_urb() or usb_kill_urb(). 1030 * 1031 * Data Transfer Buffers: 1032 * 1033 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1034 * taken from the general page pool. That is provided by transfer_buffer 1035 * (control requests also use setup_packet), and host controller drivers 1036 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1037 * mapping operations can be expensive on some platforms (perhaps using a dma 1038 * bounce buffer or talking to an IOMMU), 1039 * although they're cheap on commodity x86 and ppc hardware. 1040 * 1041 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1042 * which tell the host controller driver that no such mapping is needed since 1043 * the device driver is DMA-aware. For example, a device driver might 1044 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1045 * When these transfer flags are provided, host controller drivers will 1046 * attempt to use the dma addresses found in the transfer_dma and/or 1047 * setup_dma fields rather than determining a dma address themselves. (Note 1048 * that transfer_buffer and setup_packet must still be set because not all 1049 * host controllers use DMA, nor do virtual root hubs). 1050 * 1051 * Initialization: 1052 * 1053 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1054 * zero), and complete fields. All URBs must also initialize 1055 * transfer_buffer and transfer_buffer_length. They may provide the 1056 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1057 * to be treated as errors; that flag is invalid for write requests. 1058 * 1059 * Bulk URBs may 1060 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1061 * should always terminate with a short packet, even if it means adding an 1062 * extra zero length packet. 1063 * 1064 * Control URBs must provide a setup_packet. The setup_packet and 1065 * transfer_buffer may each be mapped for DMA or not, independently of 1066 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1067 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1068 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1069 * 1070 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1071 * or, for highspeed devices, 125 microsecond units) 1072 * to poll for transfers. After the URB has been submitted, the interval 1073 * field reflects how the transfer was actually scheduled. 1074 * The polling interval may be more frequent than requested. 1075 * For example, some controllers have a maximum interval of 32 milliseconds, 1076 * while others support intervals of up to 1024 milliseconds. 1077 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1078 * endpoints, as well as high speed interrupt endpoints, the encoding of 1079 * the transfer interval in the endpoint descriptor is logarithmic. 1080 * Device drivers must convert that value to linear units themselves.) 1081 * 1082 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1083 * the host controller to schedule the transfer as soon as bandwidth 1084 * utilization allows, and then set start_frame to reflect the actual frame 1085 * selected during submission. Otherwise drivers must specify the start_frame 1086 * and handle the case where the transfer can't begin then. However, drivers 1087 * won't know how bandwidth is currently allocated, and while they can 1088 * find the current frame using usb_get_current_frame_number () they can't 1089 * know the range for that frame number. (Ranges for frame counter values 1090 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1091 * 1092 * Isochronous URBs have a different data transfer model, in part because 1093 * the quality of service is only "best effort". Callers provide specially 1094 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1095 * at the end. Each such packet is an individual ISO transfer. Isochronous 1096 * URBs are normally queued, submitted by drivers to arrange that 1097 * transfers are at least double buffered, and then explicitly resubmitted 1098 * in completion handlers, so 1099 * that data (such as audio or video) streams at as constant a rate as the 1100 * host controller scheduler can support. 1101 * 1102 * Completion Callbacks: 1103 * 1104 * The completion callback is made in_interrupt(), and one of the first 1105 * things that a completion handler should do is check the status field. 1106 * The status field is provided for all URBs. It is used to report 1107 * unlinked URBs, and status for all non-ISO transfers. It should not 1108 * be examined before the URB is returned to the completion handler. 1109 * 1110 * The context field is normally used to link URBs back to the relevant 1111 * driver or request state. 1112 * 1113 * When the completion callback is invoked for non-isochronous URBs, the 1114 * actual_length field tells how many bytes were transferred. This field 1115 * is updated even when the URB terminated with an error or was unlinked. 1116 * 1117 * ISO transfer status is reported in the status and actual_length fields 1118 * of the iso_frame_desc array, and the number of errors is reported in 1119 * error_count. Completion callbacks for ISO transfers will normally 1120 * (re)submit URBs to ensure a constant transfer rate. 1121 * 1122 * Note that even fields marked "public" should not be touched by the driver 1123 * when the urb is owned by the hcd, that is, since the call to 1124 * usb_submit_urb() till the entry into the completion routine. 1125 */ 1126struct urb 1127{ 1128 /* private: usb core and host controller only fields in the urb */ 1129 struct kref kref; /* reference count of the URB */ 1130 spinlock_t lock; /* lock for the URB */ 1131 void *hcpriv; /* private data for host controller */ 1132 atomic_t use_count; /* concurrent submissions counter */ 1133 u8 reject; /* submissions will fail */ 1134 1135 /* public: documented fields in the urb that can be used by drivers */ 1136 struct list_head urb_list; /* list head for use by the urb's 1137 * current owner */ 1138 struct usb_device *dev; /* (in) pointer to associated device */ 1139 unsigned int pipe; /* (in) pipe information */ 1140 int status; /* (return) non-ISO status */ 1141 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1142 void *transfer_buffer; /* (in) associated data buffer */ 1143 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1144 int transfer_buffer_length; /* (in) data buffer length */ 1145 int actual_length; /* (return) actual transfer length */ 1146 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1147 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1148 int start_frame; /* (modify) start frame (ISO) */ 1149 int number_of_packets; /* (in) number of ISO packets */ 1150 int interval; /* (modify) transfer interval 1151 * (INT/ISO) */ 1152 int error_count; /* (return) number of ISO errors */ 1153 void *context; /* (in) context for completion */ 1154 usb_complete_t complete; /* (in) completion routine */ 1155 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1156 /* (in) ISO ONLY */ 1157}; 1158 1159/* ----------------------------------------------------------------------- */ 1160 1161/** 1162 * usb_fill_control_urb - initializes a control urb 1163 * @urb: pointer to the urb to initialize. 1164 * @dev: pointer to the struct usb_device for this urb. 1165 * @pipe: the endpoint pipe 1166 * @setup_packet: pointer to the setup_packet buffer 1167 * @transfer_buffer: pointer to the transfer buffer 1168 * @buffer_length: length of the transfer buffer 1169 * @complete_fn: pointer to the usb_complete_t function 1170 * @context: what to set the urb context to. 1171 * 1172 * Initializes a control urb with the proper information needed to submit 1173 * it to a device. 1174 */ 1175static inline void usb_fill_control_urb (struct urb *urb, 1176 struct usb_device *dev, 1177 unsigned int pipe, 1178 unsigned char *setup_packet, 1179 void *transfer_buffer, 1180 int buffer_length, 1181 usb_complete_t complete_fn, 1182 void *context) 1183{ 1184 spin_lock_init(&urb->lock); 1185 urb->dev = dev; 1186 urb->pipe = pipe; 1187 urb->setup_packet = setup_packet; 1188 urb->transfer_buffer = transfer_buffer; 1189 urb->transfer_buffer_length = buffer_length; 1190 urb->complete = complete_fn; 1191 urb->context = context; 1192} 1193 1194/** 1195 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1196 * @urb: pointer to the urb to initialize. 1197 * @dev: pointer to the struct usb_device for this urb. 1198 * @pipe: the endpoint pipe 1199 * @transfer_buffer: pointer to the transfer buffer 1200 * @buffer_length: length of the transfer buffer 1201 * @complete_fn: pointer to the usb_complete_t function 1202 * @context: what to set the urb context to. 1203 * 1204 * Initializes a bulk urb with the proper information needed to submit it 1205 * to a device. 1206 */ 1207static inline void usb_fill_bulk_urb (struct urb *urb, 1208 struct usb_device *dev, 1209 unsigned int pipe, 1210 void *transfer_buffer, 1211 int buffer_length, 1212 usb_complete_t complete_fn, 1213 void *context) 1214{ 1215 spin_lock_init(&urb->lock); 1216 urb->dev = dev; 1217 urb->pipe = pipe; 1218 urb->transfer_buffer = transfer_buffer; 1219 urb->transfer_buffer_length = buffer_length; 1220 urb->complete = complete_fn; 1221 urb->context = context; 1222} 1223 1224/** 1225 * usb_fill_int_urb - macro to help initialize a interrupt urb 1226 * @urb: pointer to the urb to initialize. 1227 * @dev: pointer to the struct usb_device for this urb. 1228 * @pipe: the endpoint pipe 1229 * @transfer_buffer: pointer to the transfer buffer 1230 * @buffer_length: length of the transfer buffer 1231 * @complete_fn: pointer to the usb_complete_t function 1232 * @context: what to set the urb context to. 1233 * @interval: what to set the urb interval to, encoded like 1234 * the endpoint descriptor's bInterval value. 1235 * 1236 * Initializes a interrupt urb with the proper information needed to submit 1237 * it to a device. 1238 * Note that high speed interrupt endpoints use a logarithmic encoding of 1239 * the endpoint interval, and express polling intervals in microframes 1240 * (eight per millisecond) rather than in frames (one per millisecond). 1241 */ 1242static inline void usb_fill_int_urb (struct urb *urb, 1243 struct usb_device *dev, 1244 unsigned int pipe, 1245 void *transfer_buffer, 1246 int buffer_length, 1247 usb_complete_t complete_fn, 1248 void *context, 1249 int interval) 1250{ 1251 spin_lock_init(&urb->lock); 1252 urb->dev = dev; 1253 urb->pipe = pipe; 1254 urb->transfer_buffer = transfer_buffer; 1255 urb->transfer_buffer_length = buffer_length; 1256 urb->complete = complete_fn; 1257 urb->context = context; 1258 if (dev->speed == USB_SPEED_HIGH) 1259 urb->interval = 1 << (interval - 1); 1260 else 1261 urb->interval = interval; 1262 urb->start_frame = -1; 1263} 1264 1265extern void usb_init_urb(struct urb *urb); 1266extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1267extern void usb_free_urb(struct urb *urb); 1268#define usb_put_urb usb_free_urb 1269extern struct urb *usb_get_urb(struct urb *urb); 1270extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1271extern int usb_unlink_urb(struct urb *urb); 1272extern void usb_kill_urb(struct urb *urb); 1273 1274void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1275 gfp_t mem_flags, dma_addr_t *dma); 1276void usb_buffer_free (struct usb_device *dev, size_t size, 1277 void *addr, dma_addr_t dma); 1278 1279#if 0 1280struct urb *usb_buffer_map (struct urb *urb); 1281void usb_buffer_dmasync (struct urb *urb); 1282void usb_buffer_unmap (struct urb *urb); 1283#endif 1284 1285struct scatterlist; 1286int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1287 struct scatterlist *sg, int nents); 1288#if 0 1289void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1290 struct scatterlist *sg, int n_hw_ents); 1291#endif 1292void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1293 struct scatterlist *sg, int n_hw_ents); 1294 1295/*-------------------------------------------------------------------* 1296 * SYNCHRONOUS CALL SUPPORT * 1297 *-------------------------------------------------------------------*/ 1298 1299extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1300 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1301 void *data, __u16 size, int timeout); 1302extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1303 void *data, int len, int *actual_length, int timeout); 1304extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1305 void *data, int len, int *actual_length, 1306 int timeout); 1307 1308/* wrappers around usb_control_msg() for the most common standard requests */ 1309extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1310 unsigned char descindex, void *buf, int size); 1311extern int usb_get_status(struct usb_device *dev, 1312 int type, int target, void *data); 1313extern int usb_string(struct usb_device *dev, int index, 1314 char *buf, size_t size); 1315 1316/* wrappers that also update important state inside usbcore */ 1317extern int usb_clear_halt(struct usb_device *dev, int pipe); 1318extern int usb_reset_configuration(struct usb_device *dev); 1319extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1320 1321/* this request isn't really synchronous, but it belongs with the others */ 1322extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1323 1324/* 1325 * timeouts, in milliseconds, used for sending/receiving control messages 1326 * they typically complete within a few frames (msec) after they're issued 1327 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1328 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1329 */ 1330#define USB_CTRL_GET_TIMEOUT 5000 1331#define USB_CTRL_SET_TIMEOUT 5000 1332 1333 1334/** 1335 * struct usb_sg_request - support for scatter/gather I/O 1336 * @status: zero indicates success, else negative errno 1337 * @bytes: counts bytes transferred. 1338 * 1339 * These requests are initialized using usb_sg_init(), and then are used 1340 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1341 * members of the request object aren't for driver access. 1342 * 1343 * The status and bytecount values are valid only after usb_sg_wait() 1344 * returns. If the status is zero, then the bytecount matches the total 1345 * from the request. 1346 * 1347 * After an error completion, drivers may need to clear a halt condition 1348 * on the endpoint. 1349 */ 1350struct usb_sg_request { 1351 int status; 1352 size_t bytes; 1353 1354 /* 1355 * members below are private: to usbcore, 1356 * and are not provided for driver access! 1357 */ 1358 spinlock_t lock; 1359 1360 struct usb_device *dev; 1361 int pipe; 1362 struct scatterlist *sg; 1363 int nents; 1364 1365 int entries; 1366 struct urb **urbs; 1367 1368 int count; 1369 struct completion complete; 1370}; 1371 1372int usb_sg_init ( 1373 struct usb_sg_request *io, 1374 struct usb_device *dev, 1375 unsigned pipe, 1376 unsigned period, 1377 struct scatterlist *sg, 1378 int nents, 1379 size_t length, 1380 gfp_t mem_flags 1381); 1382void usb_sg_cancel (struct usb_sg_request *io); 1383void usb_sg_wait (struct usb_sg_request *io); 1384 1385 1386/* ----------------------------------------------------------------------- */ 1387 1388/* 1389 * For various legacy reasons, Linux has a small cookie that's paired with 1390 * a struct usb_device to identify an endpoint queue. Queue characteristics 1391 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1392 * an unsigned int encoded as: 1393 * 1394 * - direction: bit 7 (0 = Host-to-Device [Out], 1395 * 1 = Device-to-Host [In] ... 1396 * like endpoint bEndpointAddress) 1397 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1398 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1399 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1400 * 10 = control, 11 = bulk) 1401 * 1402 * Given the device address and endpoint descriptor, pipes are redundant. 1403 */ 1404 1405/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1406/* (yet ... they're the values used by usbfs) */ 1407#define PIPE_ISOCHRONOUS 0 1408#define PIPE_INTERRUPT 1 1409#define PIPE_CONTROL 2 1410#define PIPE_BULK 3 1411 1412#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1413#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1414 1415#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1416#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1417 1418#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1419#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1420#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1421#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1422#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1423 1424/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1425#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1426#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1427#define usb_settoggle(dev, ep, out, bit) \ 1428 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1429 ((bit) << (ep))) 1430 1431 1432static inline unsigned int __create_pipe(struct usb_device *dev, 1433 unsigned int endpoint) 1434{ 1435 return (dev->devnum << 8) | (endpoint << 15); 1436} 1437 1438/* Create various pipes... */ 1439#define usb_sndctrlpipe(dev,endpoint) \ 1440 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1441#define usb_rcvctrlpipe(dev,endpoint) \ 1442 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1443#define usb_sndisocpipe(dev,endpoint) \ 1444 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1445#define usb_rcvisocpipe(dev,endpoint) \ 1446 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1447#define usb_sndbulkpipe(dev,endpoint) \ 1448 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1449#define usb_rcvbulkpipe(dev,endpoint) \ 1450 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1451#define usb_sndintpipe(dev,endpoint) \ 1452 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1453#define usb_rcvintpipe(dev,endpoint) \ 1454 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1455 1456/*-------------------------------------------------------------------------*/ 1457 1458static inline __u16 1459usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1460{ 1461 struct usb_host_endpoint *ep; 1462 unsigned epnum = usb_pipeendpoint(pipe); 1463 1464 if (is_out) { 1465 WARN_ON(usb_pipein(pipe)); 1466 ep = udev->ep_out[epnum]; 1467 } else { 1468 WARN_ON(usb_pipeout(pipe)); 1469 ep = udev->ep_in[epnum]; 1470 } 1471 if (!ep) 1472 return 0; 1473 1474 /* NOTE: only 0x07ff bits are for packet size... */ 1475 return le16_to_cpu(ep->desc.wMaxPacketSize); 1476} 1477 1478/* ----------------------------------------------------------------------- */ 1479 1480/* Events from the usb core */ 1481#define USB_DEVICE_ADD 0x0001 1482#define USB_DEVICE_REMOVE 0x0002 1483#define USB_BUS_ADD 0x0003 1484#define USB_BUS_REMOVE 0x0004 1485extern void usb_register_notify(struct notifier_block *nb); 1486extern void usb_unregister_notify(struct notifier_block *nb); 1487 1488#ifdef DEBUG 1489#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1490 __FILE__ , ## arg) 1491#else 1492#define dbg(format, arg...) do {} while (0) 1493#endif 1494 1495#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1496 __FILE__ , ## arg) 1497#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1498 __FILE__ , ## arg) 1499#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1500 __FILE__ , ## arg) 1501 1502 1503#endif /* __KERNEL__ */ 1504 1505#endif