at v2.6.22 25 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifdef __KERNEL__ 5#ifndef __ASSEMBLY__ 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/cache.h> 11#include <linux/threads.h> 12#include <linux/numa.h> 13#include <linux/init.h> 14#include <linux/seqlock.h> 15#include <linux/nodemask.h> 16#include <asm/atomic.h> 17#include <asm/page.h> 18 19/* Free memory management - zoned buddy allocator. */ 20#ifndef CONFIG_FORCE_MAX_ZONEORDER 21#define MAX_ORDER 11 22#else 23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 24#endif 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 26 27struct free_area { 28 struct list_head free_list; 29 unsigned long nr_free; 30}; 31 32struct pglist_data; 33 34/* 35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 36 * So add a wild amount of padding here to ensure that they fall into separate 37 * cachelines. There are very few zone structures in the machine, so space 38 * consumption is not a concern here. 39 */ 40#if defined(CONFIG_SMP) 41struct zone_padding { 42 char x[0]; 43} ____cacheline_internodealigned_in_smp; 44#define ZONE_PADDING(name) struct zone_padding name; 45#else 46#define ZONE_PADDING(name) 47#endif 48 49enum zone_stat_item { 50 /* First 128 byte cacheline (assuming 64 bit words) */ 51 NR_FREE_PAGES, 52 NR_INACTIVE, 53 NR_ACTIVE, 54 NR_ANON_PAGES, /* Mapped anonymous pages */ 55 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 56 only modified from process context */ 57 NR_FILE_PAGES, 58 NR_FILE_DIRTY, 59 NR_WRITEBACK, 60 /* Second 128 byte cacheline */ 61 NR_SLAB_RECLAIMABLE, 62 NR_SLAB_UNRECLAIMABLE, 63 NR_PAGETABLE, /* used for pagetables */ 64 NR_UNSTABLE_NFS, /* NFS unstable pages */ 65 NR_BOUNCE, 66 NR_VMSCAN_WRITE, 67#ifdef CONFIG_NUMA 68 NUMA_HIT, /* allocated in intended node */ 69 NUMA_MISS, /* allocated in non intended node */ 70 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 71 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 72 NUMA_LOCAL, /* allocation from local node */ 73 NUMA_OTHER, /* allocation from other node */ 74#endif 75 NR_VM_ZONE_STAT_ITEMS }; 76 77struct per_cpu_pages { 78 int count; /* number of pages in the list */ 79 int high; /* high watermark, emptying needed */ 80 int batch; /* chunk size for buddy add/remove */ 81 struct list_head list; /* the list of pages */ 82}; 83 84struct per_cpu_pageset { 85 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 86#ifdef CONFIG_NUMA 87 s8 expire; 88#endif 89#ifdef CONFIG_SMP 90 s8 stat_threshold; 91 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 92#endif 93} ____cacheline_aligned_in_smp; 94 95#ifdef CONFIG_NUMA 96#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 97#else 98#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 99#endif 100 101enum zone_type { 102#ifdef CONFIG_ZONE_DMA 103 /* 104 * ZONE_DMA is used when there are devices that are not able 105 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 106 * carve out the portion of memory that is needed for these devices. 107 * The range is arch specific. 108 * 109 * Some examples 110 * 111 * Architecture Limit 112 * --------------------------- 113 * parisc, ia64, sparc <4G 114 * s390 <2G 115 * arm26 <48M 116 * arm Various 117 * alpha Unlimited or 0-16MB. 118 * 119 * i386, x86_64 and multiple other arches 120 * <16M. 121 */ 122 ZONE_DMA, 123#endif 124#ifdef CONFIG_ZONE_DMA32 125 /* 126 * x86_64 needs two ZONE_DMAs because it supports devices that are 127 * only able to do DMA to the lower 16M but also 32 bit devices that 128 * can only do DMA areas below 4G. 129 */ 130 ZONE_DMA32, 131#endif 132 /* 133 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 134 * performed on pages in ZONE_NORMAL if the DMA devices support 135 * transfers to all addressable memory. 136 */ 137 ZONE_NORMAL, 138#ifdef CONFIG_HIGHMEM 139 /* 140 * A memory area that is only addressable by the kernel through 141 * mapping portions into its own address space. This is for example 142 * used by i386 to allow the kernel to address the memory beyond 143 * 900MB. The kernel will set up special mappings (page 144 * table entries on i386) for each page that the kernel needs to 145 * access. 146 */ 147 ZONE_HIGHMEM, 148#endif 149 MAX_NR_ZONES 150}; 151 152/* 153 * When a memory allocation must conform to specific limitations (such 154 * as being suitable for DMA) the caller will pass in hints to the 155 * allocator in the gfp_mask, in the zone modifier bits. These bits 156 * are used to select a priority ordered list of memory zones which 157 * match the requested limits. See gfp_zone() in include/linux/gfp.h 158 */ 159 160/* 161 * Count the active zones. Note that the use of defined(X) outside 162 * #if and family is not necessarily defined so ensure we cannot use 163 * it later. Use __ZONE_COUNT to work out how many shift bits we need. 164 */ 165#define __ZONE_COUNT ( \ 166 defined(CONFIG_ZONE_DMA) \ 167 + defined(CONFIG_ZONE_DMA32) \ 168 + 1 \ 169 + defined(CONFIG_HIGHMEM) \ 170) 171#if __ZONE_COUNT < 2 172#define ZONES_SHIFT 0 173#elif __ZONE_COUNT <= 2 174#define ZONES_SHIFT 1 175#elif __ZONE_COUNT <= 4 176#define ZONES_SHIFT 2 177#else 178#error ZONES_SHIFT -- too many zones configured adjust calculation 179#endif 180#undef __ZONE_COUNT 181 182struct zone { 183 /* Fields commonly accessed by the page allocator */ 184 unsigned long pages_min, pages_low, pages_high; 185 /* 186 * We don't know if the memory that we're going to allocate will be freeable 187 * or/and it will be released eventually, so to avoid totally wasting several 188 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 189 * to run OOM on the lower zones despite there's tons of freeable ram 190 * on the higher zones). This array is recalculated at runtime if the 191 * sysctl_lowmem_reserve_ratio sysctl changes. 192 */ 193 unsigned long lowmem_reserve[MAX_NR_ZONES]; 194 195#ifdef CONFIG_NUMA 196 int node; 197 /* 198 * zone reclaim becomes active if more unmapped pages exist. 199 */ 200 unsigned long min_unmapped_pages; 201 unsigned long min_slab_pages; 202 struct per_cpu_pageset *pageset[NR_CPUS]; 203#else 204 struct per_cpu_pageset pageset[NR_CPUS]; 205#endif 206 /* 207 * free areas of different sizes 208 */ 209 spinlock_t lock; 210#ifdef CONFIG_MEMORY_HOTPLUG 211 /* see spanned/present_pages for more description */ 212 seqlock_t span_seqlock; 213#endif 214 struct free_area free_area[MAX_ORDER]; 215 216 217 ZONE_PADDING(_pad1_) 218 219 /* Fields commonly accessed by the page reclaim scanner */ 220 spinlock_t lru_lock; 221 struct list_head active_list; 222 struct list_head inactive_list; 223 unsigned long nr_scan_active; 224 unsigned long nr_scan_inactive; 225 unsigned long pages_scanned; /* since last reclaim */ 226 int all_unreclaimable; /* All pages pinned */ 227 228 /* A count of how many reclaimers are scanning this zone */ 229 atomic_t reclaim_in_progress; 230 231 /* Zone statistics */ 232 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 233 234 /* 235 * prev_priority holds the scanning priority for this zone. It is 236 * defined as the scanning priority at which we achieved our reclaim 237 * target at the previous try_to_free_pages() or balance_pgdat() 238 * invokation. 239 * 240 * We use prev_priority as a measure of how much stress page reclaim is 241 * under - it drives the swappiness decision: whether to unmap mapped 242 * pages. 243 * 244 * Access to both this field is quite racy even on uniprocessor. But 245 * it is expected to average out OK. 246 */ 247 int prev_priority; 248 249 250 ZONE_PADDING(_pad2_) 251 /* Rarely used or read-mostly fields */ 252 253 /* 254 * wait_table -- the array holding the hash table 255 * wait_table_hash_nr_entries -- the size of the hash table array 256 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 257 * 258 * The purpose of all these is to keep track of the people 259 * waiting for a page to become available and make them 260 * runnable again when possible. The trouble is that this 261 * consumes a lot of space, especially when so few things 262 * wait on pages at a given time. So instead of using 263 * per-page waitqueues, we use a waitqueue hash table. 264 * 265 * The bucket discipline is to sleep on the same queue when 266 * colliding and wake all in that wait queue when removing. 267 * When something wakes, it must check to be sure its page is 268 * truly available, a la thundering herd. The cost of a 269 * collision is great, but given the expected load of the 270 * table, they should be so rare as to be outweighed by the 271 * benefits from the saved space. 272 * 273 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 274 * primary users of these fields, and in mm/page_alloc.c 275 * free_area_init_core() performs the initialization of them. 276 */ 277 wait_queue_head_t * wait_table; 278 unsigned long wait_table_hash_nr_entries; 279 unsigned long wait_table_bits; 280 281 /* 282 * Discontig memory support fields. 283 */ 284 struct pglist_data *zone_pgdat; 285 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 286 unsigned long zone_start_pfn; 287 288 /* 289 * zone_start_pfn, spanned_pages and present_pages are all 290 * protected by span_seqlock. It is a seqlock because it has 291 * to be read outside of zone->lock, and it is done in the main 292 * allocator path. But, it is written quite infrequently. 293 * 294 * The lock is declared along with zone->lock because it is 295 * frequently read in proximity to zone->lock. It's good to 296 * give them a chance of being in the same cacheline. 297 */ 298 unsigned long spanned_pages; /* total size, including holes */ 299 unsigned long present_pages; /* amount of memory (excluding holes) */ 300 301 /* 302 * rarely used fields: 303 */ 304 const char *name; 305} ____cacheline_internodealigned_in_smp; 306 307/* 308 * The "priority" of VM scanning is how much of the queues we will scan in one 309 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 310 * queues ("queue_length >> 12") during an aging round. 311 */ 312#define DEF_PRIORITY 12 313 314/* Maximum number of zones on a zonelist */ 315#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 316 317#ifdef CONFIG_NUMA 318/* 319 * We cache key information from each zonelist for smaller cache 320 * footprint when scanning for free pages in get_page_from_freelist(). 321 * 322 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 323 * up short of free memory since the last time (last_fullzone_zap) 324 * we zero'd fullzones. 325 * 2) The array z_to_n[] maps each zone in the zonelist to its node 326 * id, so that we can efficiently evaluate whether that node is 327 * set in the current tasks mems_allowed. 328 * 329 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 330 * indexed by a zones offset in the zonelist zones[] array. 331 * 332 * The get_page_from_freelist() routine does two scans. During the 333 * first scan, we skip zones whose corresponding bit in 'fullzones' 334 * is set or whose corresponding node in current->mems_allowed (which 335 * comes from cpusets) is not set. During the second scan, we bypass 336 * this zonelist_cache, to ensure we look methodically at each zone. 337 * 338 * Once per second, we zero out (zap) fullzones, forcing us to 339 * reconsider nodes that might have regained more free memory. 340 * The field last_full_zap is the time we last zapped fullzones. 341 * 342 * This mechanism reduces the amount of time we waste repeatedly 343 * reexaming zones for free memory when they just came up low on 344 * memory momentarilly ago. 345 * 346 * The zonelist_cache struct members logically belong in struct 347 * zonelist. However, the mempolicy zonelists constructed for 348 * MPOL_BIND are intentionally variable length (and usually much 349 * shorter). A general purpose mechanism for handling structs with 350 * multiple variable length members is more mechanism than we want 351 * here. We resort to some special case hackery instead. 352 * 353 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 354 * part because they are shorter), so we put the fixed length stuff 355 * at the front of the zonelist struct, ending in a variable length 356 * zones[], as is needed by MPOL_BIND. 357 * 358 * Then we put the optional zonelist cache on the end of the zonelist 359 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 360 * the fixed length portion at the front of the struct. This pointer 361 * both enables us to find the zonelist cache, and in the case of 362 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 363 * to know that the zonelist cache is not there. 364 * 365 * The end result is that struct zonelists come in two flavors: 366 * 1) The full, fixed length version, shown below, and 367 * 2) The custom zonelists for MPOL_BIND. 368 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 369 * 370 * Even though there may be multiple CPU cores on a node modifying 371 * fullzones or last_full_zap in the same zonelist_cache at the same 372 * time, we don't lock it. This is just hint data - if it is wrong now 373 * and then, the allocator will still function, perhaps a bit slower. 374 */ 375 376 377struct zonelist_cache { 378 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 379 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 380 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 381}; 382#else 383struct zonelist_cache; 384#endif 385 386/* 387 * One allocation request operates on a zonelist. A zonelist 388 * is a list of zones, the first one is the 'goal' of the 389 * allocation, the other zones are fallback zones, in decreasing 390 * priority. 391 * 392 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 393 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 394 */ 395 396struct zonelist { 397 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 398 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited 399#ifdef CONFIG_NUMA 400 struct zonelist_cache zlcache; // optional ... 401#endif 402}; 403 404#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 405struct node_active_region { 406 unsigned long start_pfn; 407 unsigned long end_pfn; 408 int nid; 409}; 410#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 411 412#ifndef CONFIG_DISCONTIGMEM 413/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 414extern struct page *mem_map; 415#endif 416 417/* 418 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 419 * (mostly NUMA machines?) to denote a higher-level memory zone than the 420 * zone denotes. 421 * 422 * On NUMA machines, each NUMA node would have a pg_data_t to describe 423 * it's memory layout. 424 * 425 * Memory statistics and page replacement data structures are maintained on a 426 * per-zone basis. 427 */ 428struct bootmem_data; 429typedef struct pglist_data { 430 struct zone node_zones[MAX_NR_ZONES]; 431 struct zonelist node_zonelists[MAX_NR_ZONES]; 432 int nr_zones; 433#ifdef CONFIG_FLAT_NODE_MEM_MAP 434 struct page *node_mem_map; 435#endif 436 struct bootmem_data *bdata; 437#ifdef CONFIG_MEMORY_HOTPLUG 438 /* 439 * Must be held any time you expect node_start_pfn, node_present_pages 440 * or node_spanned_pages stay constant. Holding this will also 441 * guarantee that any pfn_valid() stays that way. 442 * 443 * Nests above zone->lock and zone->size_seqlock. 444 */ 445 spinlock_t node_size_lock; 446#endif 447 unsigned long node_start_pfn; 448 unsigned long node_present_pages; /* total number of physical pages */ 449 unsigned long node_spanned_pages; /* total size of physical page 450 range, including holes */ 451 int node_id; 452 wait_queue_head_t kswapd_wait; 453 struct task_struct *kswapd; 454 int kswapd_max_order; 455} pg_data_t; 456 457#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 458#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 459#ifdef CONFIG_FLAT_NODE_MEM_MAP 460#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 461#else 462#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 463#endif 464#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 465 466#include <linux/memory_hotplug.h> 467 468void get_zone_counts(unsigned long *active, unsigned long *inactive, 469 unsigned long *free); 470void build_all_zonelists(void); 471void wakeup_kswapd(struct zone *zone, int order); 472int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 473 int classzone_idx, int alloc_flags); 474enum memmap_context { 475 MEMMAP_EARLY, 476 MEMMAP_HOTPLUG, 477}; 478extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 479 unsigned long size, 480 enum memmap_context context); 481 482#ifdef CONFIG_HAVE_MEMORY_PRESENT 483void memory_present(int nid, unsigned long start, unsigned long end); 484#else 485static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 486#endif 487 488#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 489unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 490#endif 491 492/* 493 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 494 */ 495#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 496 497static inline int populated_zone(struct zone *zone) 498{ 499 return (!!zone->present_pages); 500} 501 502static inline int is_highmem_idx(enum zone_type idx) 503{ 504#ifdef CONFIG_HIGHMEM 505 return (idx == ZONE_HIGHMEM); 506#else 507 return 0; 508#endif 509} 510 511static inline int is_normal_idx(enum zone_type idx) 512{ 513 return (idx == ZONE_NORMAL); 514} 515 516/** 517 * is_highmem - helper function to quickly check if a struct zone is a 518 * highmem zone or not. This is an attempt to keep references 519 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 520 * @zone - pointer to struct zone variable 521 */ 522static inline int is_highmem(struct zone *zone) 523{ 524#ifdef CONFIG_HIGHMEM 525 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 526#else 527 return 0; 528#endif 529} 530 531static inline int is_normal(struct zone *zone) 532{ 533 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 534} 535 536static inline int is_dma32(struct zone *zone) 537{ 538#ifdef CONFIG_ZONE_DMA32 539 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 540#else 541 return 0; 542#endif 543} 544 545static inline int is_dma(struct zone *zone) 546{ 547#ifdef CONFIG_ZONE_DMA 548 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 549#else 550 return 0; 551#endif 552} 553 554/* These two functions are used to setup the per zone pages min values */ 555struct ctl_table; 556struct file; 557int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 558 void __user *, size_t *, loff_t *); 559extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 560int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 561 void __user *, size_t *, loff_t *); 562int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 563 void __user *, size_t *, loff_t *); 564int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 565 struct file *, void __user *, size_t *, loff_t *); 566int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 567 struct file *, void __user *, size_t *, loff_t *); 568 569#include <linux/topology.h> 570/* Returns the number of the current Node. */ 571#ifndef numa_node_id 572#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 573#endif 574 575#ifndef CONFIG_NEED_MULTIPLE_NODES 576 577extern struct pglist_data contig_page_data; 578#define NODE_DATA(nid) (&contig_page_data) 579#define NODE_MEM_MAP(nid) mem_map 580#define MAX_NODES_SHIFT 1 581 582#else /* CONFIG_NEED_MULTIPLE_NODES */ 583 584#include <asm/mmzone.h> 585 586#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 587 588extern struct pglist_data *first_online_pgdat(void); 589extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 590extern struct zone *next_zone(struct zone *zone); 591 592/** 593 * for_each_pgdat - helper macro to iterate over all nodes 594 * @pgdat - pointer to a pg_data_t variable 595 */ 596#define for_each_online_pgdat(pgdat) \ 597 for (pgdat = first_online_pgdat(); \ 598 pgdat; \ 599 pgdat = next_online_pgdat(pgdat)) 600/** 601 * for_each_zone - helper macro to iterate over all memory zones 602 * @zone - pointer to struct zone variable 603 * 604 * The user only needs to declare the zone variable, for_each_zone 605 * fills it in. 606 */ 607#define for_each_zone(zone) \ 608 for (zone = (first_online_pgdat())->node_zones; \ 609 zone; \ 610 zone = next_zone(zone)) 611 612#ifdef CONFIG_SPARSEMEM 613#include <asm/sparsemem.h> 614#endif 615 616#if BITS_PER_LONG == 32 617/* 618 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 619 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 620 */ 621#define FLAGS_RESERVED 9 622 623#elif BITS_PER_LONG == 64 624/* 625 * with 64 bit flags field, there's plenty of room. 626 */ 627#define FLAGS_RESERVED 32 628 629#else 630 631#error BITS_PER_LONG not defined 632 633#endif 634 635#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 636 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 637#define early_pfn_to_nid(nid) (0UL) 638#endif 639 640#ifdef CONFIG_FLATMEM 641#define pfn_to_nid(pfn) (0) 642#endif 643 644#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 645#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 646 647#ifdef CONFIG_SPARSEMEM 648 649/* 650 * SECTION_SHIFT #bits space required to store a section # 651 * 652 * PA_SECTION_SHIFT physical address to/from section number 653 * PFN_SECTION_SHIFT pfn to/from section number 654 */ 655#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 656 657#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 658#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 659 660#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 661 662#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 663#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 664 665#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 666#error Allocator MAX_ORDER exceeds SECTION_SIZE 667#endif 668 669struct page; 670struct mem_section { 671 /* 672 * This is, logically, a pointer to an array of struct 673 * pages. However, it is stored with some other magic. 674 * (see sparse.c::sparse_init_one_section()) 675 * 676 * Additionally during early boot we encode node id of 677 * the location of the section here to guide allocation. 678 * (see sparse.c::memory_present()) 679 * 680 * Making it a UL at least makes someone do a cast 681 * before using it wrong. 682 */ 683 unsigned long section_mem_map; 684}; 685 686#ifdef CONFIG_SPARSEMEM_EXTREME 687#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 688#else 689#define SECTIONS_PER_ROOT 1 690#endif 691 692#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 693#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 694#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 695 696#ifdef CONFIG_SPARSEMEM_EXTREME 697extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 698#else 699extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 700#endif 701 702static inline struct mem_section *__nr_to_section(unsigned long nr) 703{ 704 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 705 return NULL; 706 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 707} 708extern int __section_nr(struct mem_section* ms); 709 710/* 711 * We use the lower bits of the mem_map pointer to store 712 * a little bit of information. There should be at least 713 * 3 bits here due to 32-bit alignment. 714 */ 715#define SECTION_MARKED_PRESENT (1UL<<0) 716#define SECTION_HAS_MEM_MAP (1UL<<1) 717#define SECTION_MAP_LAST_BIT (1UL<<2) 718#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 719#define SECTION_NID_SHIFT 2 720 721static inline struct page *__section_mem_map_addr(struct mem_section *section) 722{ 723 unsigned long map = section->section_mem_map; 724 map &= SECTION_MAP_MASK; 725 return (struct page *)map; 726} 727 728static inline int valid_section(struct mem_section *section) 729{ 730 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 731} 732 733static inline int section_has_mem_map(struct mem_section *section) 734{ 735 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 736} 737 738static inline int valid_section_nr(unsigned long nr) 739{ 740 return valid_section(__nr_to_section(nr)); 741} 742 743static inline struct mem_section *__pfn_to_section(unsigned long pfn) 744{ 745 return __nr_to_section(pfn_to_section_nr(pfn)); 746} 747 748static inline int pfn_valid(unsigned long pfn) 749{ 750 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 751 return 0; 752 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 753} 754 755/* 756 * These are _only_ used during initialisation, therefore they 757 * can use __initdata ... They could have names to indicate 758 * this restriction. 759 */ 760#ifdef CONFIG_NUMA 761#define pfn_to_nid(pfn) \ 762({ \ 763 unsigned long __pfn_to_nid_pfn = (pfn); \ 764 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 765}) 766#else 767#define pfn_to_nid(pfn) (0) 768#endif 769 770#define early_pfn_valid(pfn) pfn_valid(pfn) 771void sparse_init(void); 772#else 773#define sparse_init() do {} while (0) 774#define sparse_index_init(_sec, _nid) do {} while (0) 775#endif /* CONFIG_SPARSEMEM */ 776 777#ifdef CONFIG_NODES_SPAN_OTHER_NODES 778#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 779#else 780#define early_pfn_in_nid(pfn, nid) (1) 781#endif 782 783#ifndef early_pfn_valid 784#define early_pfn_valid(pfn) (1) 785#endif 786 787void memory_present(int nid, unsigned long start, unsigned long end); 788unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 789 790/* 791 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 792 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 793 * pfn_valid_within() should be used in this case; we optimise this away 794 * when we have no holes within a MAX_ORDER_NR_PAGES block. 795 */ 796#ifdef CONFIG_HOLES_IN_ZONE 797#define pfn_valid_within(pfn) pfn_valid(pfn) 798#else 799#define pfn_valid_within(pfn) (1) 800#endif 801 802#endif /* !__ASSEMBLY__ */ 803#endif /* __KERNEL__ */ 804#endif /* _LINUX_MMZONE_H */