at v2.6.22 42 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5#include <linux/capability.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/gfp.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/prio_tree.h> 14#include <linux/fs.h> 15#include <linux/mutex.h> 16#include <linux/debug_locks.h> 17#include <linux/backing-dev.h> 18#include <linux/mm_types.h> 19 20struct mempolicy; 21struct anon_vma; 22struct user_struct; 23 24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25extern unsigned long max_mapnr; 26#endif 27 28extern unsigned long num_physpages; 29extern void * high_memory; 30extern unsigned long vmalloc_earlyreserve; 31extern int page_cluster; 32 33#ifdef CONFIG_SYSCTL 34extern int sysctl_legacy_va_layout; 35#else 36#define sysctl_legacy_va_layout 0 37#endif 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* 46 * Linux kernel virtual memory manager primitives. 47 * The idea being to have a "virtual" mm in the same way 48 * we have a virtual fs - giving a cleaner interface to the 49 * mm details, and allowing different kinds of memory mappings 50 * (from shared memory to executable loading to arbitrary 51 * mmap() functions). 52 */ 53 54/* 55 * This struct defines a memory VMM memory area. There is one of these 56 * per VM-area/task. A VM area is any part of the process virtual memory 57 * space that has a special rule for the page-fault handlers (ie a shared 58 * library, the executable area etc). 59 */ 60struct vm_area_struct { 61 struct mm_struct * vm_mm; /* The address space we belong to. */ 62 unsigned long vm_start; /* Our start address within vm_mm. */ 63 unsigned long vm_end; /* The first byte after our end address 64 within vm_mm. */ 65 66 /* linked list of VM areas per task, sorted by address */ 67 struct vm_area_struct *vm_next; 68 69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 70 unsigned long vm_flags; /* Flags, listed below. */ 71 72 struct rb_node vm_rb; 73 74 /* 75 * For areas with an address space and backing store, 76 * linkage into the address_space->i_mmap prio tree, or 77 * linkage to the list of like vmas hanging off its node, or 78 * linkage of vma in the address_space->i_mmap_nonlinear list. 79 */ 80 union { 81 struct { 82 struct list_head list; 83 void *parent; /* aligns with prio_tree_node parent */ 84 struct vm_area_struct *head; 85 } vm_set; 86 87 struct raw_prio_tree_node prio_tree_node; 88 } shared; 89 90 /* 91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 92 * list, after a COW of one of the file pages. A MAP_SHARED vma 93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 94 * or brk vma (with NULL file) can only be in an anon_vma list. 95 */ 96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 98 99 /* Function pointers to deal with this struct. */ 100 struct vm_operations_struct * vm_ops; 101 102 /* Information about our backing store: */ 103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 104 units, *not* PAGE_CACHE_SIZE */ 105 struct file * vm_file; /* File we map to (can be NULL). */ 106 void * vm_private_data; /* was vm_pte (shared mem) */ 107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 108 109#ifndef CONFIG_MMU 110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 111#endif 112#ifdef CONFIG_NUMA 113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 114#endif 115}; 116 117extern struct kmem_cache *vm_area_cachep; 118 119/* 120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 121 * disabled, then there's a single shared list of VMAs maintained by the 122 * system, and mm's subscribe to these individually 123 */ 124struct vm_list_struct { 125 struct vm_list_struct *next; 126 struct vm_area_struct *vma; 127}; 128 129#ifndef CONFIG_MMU 130extern struct rb_root nommu_vma_tree; 131extern struct rw_semaphore nommu_vma_sem; 132 133extern unsigned int kobjsize(const void *objp); 134#endif 135 136/* 137 * vm_flags.. 138 */ 139#define VM_READ 0x00000001 /* currently active flags */ 140#define VM_WRITE 0x00000002 141#define VM_EXEC 0x00000004 142#define VM_SHARED 0x00000008 143 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 146#define VM_MAYWRITE 0x00000020 147#define VM_MAYEXEC 0x00000040 148#define VM_MAYSHARE 0x00000080 149 150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 151#define VM_GROWSUP 0x00000200 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 154 155#define VM_EXECUTABLE 0x00001000 156#define VM_LOCKED 0x00002000 157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 158 159 /* Used by sys_madvise() */ 160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 162 163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 171#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 172 173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 175#endif 176 177#ifdef CONFIG_STACK_GROWSUP 178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 179#else 180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 181#endif 182 183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 188 189/* 190 * mapping from the currently active vm_flags protection bits (the 191 * low four bits) to a page protection mask.. 192 */ 193extern pgprot_t protection_map[16]; 194 195 196/* 197 * These are the virtual MM functions - opening of an area, closing and 198 * unmapping it (needed to keep files on disk up-to-date etc), pointer 199 * to the functions called when a no-page or a wp-page exception occurs. 200 */ 201struct vm_operations_struct { 202 void (*open)(struct vm_area_struct * area); 203 void (*close)(struct vm_area_struct * area); 204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 207 208 /* notification that a previously read-only page is about to become 209 * writable, if an error is returned it will cause a SIGBUS */ 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 211#ifdef CONFIG_NUMA 212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 214 unsigned long addr); 215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 216 const nodemask_t *to, unsigned long flags); 217#endif 218}; 219 220struct mmu_gather; 221struct inode; 222 223#define page_private(page) ((page)->private) 224#define set_page_private(page, v) ((page)->private = (v)) 225 226/* 227 * FIXME: take this include out, include page-flags.h in 228 * files which need it (119 of them) 229 */ 230#include <linux/page-flags.h> 231 232#ifdef CONFIG_DEBUG_VM 233#define VM_BUG_ON(cond) BUG_ON(cond) 234#else 235#define VM_BUG_ON(condition) do { } while(0) 236#endif 237 238/* 239 * Methods to modify the page usage count. 240 * 241 * What counts for a page usage: 242 * - cache mapping (page->mapping) 243 * - private data (page->private) 244 * - page mapped in a task's page tables, each mapping 245 * is counted separately 246 * 247 * Also, many kernel routines increase the page count before a critical 248 * routine so they can be sure the page doesn't go away from under them. 249 */ 250 251/* 252 * Drop a ref, return true if the refcount fell to zero (the page has no users) 253 */ 254static inline int put_page_testzero(struct page *page) 255{ 256 VM_BUG_ON(atomic_read(&page->_count) == 0); 257 return atomic_dec_and_test(&page->_count); 258} 259 260/* 261 * Try to grab a ref unless the page has a refcount of zero, return false if 262 * that is the case. 263 */ 264static inline int get_page_unless_zero(struct page *page) 265{ 266 VM_BUG_ON(PageCompound(page)); 267 return atomic_inc_not_zero(&page->_count); 268} 269 270static inline struct page *compound_head(struct page *page) 271{ 272 if (unlikely(PageTail(page))) 273 return page->first_page; 274 return page; 275} 276 277static inline int page_count(struct page *page) 278{ 279 return atomic_read(&compound_head(page)->_count); 280} 281 282static inline void get_page(struct page *page) 283{ 284 page = compound_head(page); 285 VM_BUG_ON(atomic_read(&page->_count) == 0); 286 atomic_inc(&page->_count); 287} 288 289static inline struct page *virt_to_head_page(const void *x) 290{ 291 struct page *page = virt_to_page(x); 292 return compound_head(page); 293} 294 295/* 296 * Setup the page count before being freed into the page allocator for 297 * the first time (boot or memory hotplug) 298 */ 299static inline void init_page_count(struct page *page) 300{ 301 atomic_set(&page->_count, 1); 302} 303 304void put_page(struct page *page); 305void put_pages_list(struct list_head *pages); 306 307void split_page(struct page *page, unsigned int order); 308 309/* 310 * Compound pages have a destructor function. Provide a 311 * prototype for that function and accessor functions. 312 * These are _only_ valid on the head of a PG_compound page. 313 */ 314typedef void compound_page_dtor(struct page *); 315 316static inline void set_compound_page_dtor(struct page *page, 317 compound_page_dtor *dtor) 318{ 319 page[1].lru.next = (void *)dtor; 320} 321 322static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 323{ 324 return (compound_page_dtor *)page[1].lru.next; 325} 326 327static inline int compound_order(struct page *page) 328{ 329 if (!PageHead(page)) 330 return 0; 331 return (unsigned long)page[1].lru.prev; 332} 333 334static inline void set_compound_order(struct page *page, unsigned long order) 335{ 336 page[1].lru.prev = (void *)order; 337} 338 339/* 340 * Multiple processes may "see" the same page. E.g. for untouched 341 * mappings of /dev/null, all processes see the same page full of 342 * zeroes, and text pages of executables and shared libraries have 343 * only one copy in memory, at most, normally. 344 * 345 * For the non-reserved pages, page_count(page) denotes a reference count. 346 * page_count() == 0 means the page is free. page->lru is then used for 347 * freelist management in the buddy allocator. 348 * page_count() > 0 means the page has been allocated. 349 * 350 * Pages are allocated by the slab allocator in order to provide memory 351 * to kmalloc and kmem_cache_alloc. In this case, the management of the 352 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 353 * unless a particular usage is carefully commented. (the responsibility of 354 * freeing the kmalloc memory is the caller's, of course). 355 * 356 * A page may be used by anyone else who does a __get_free_page(). 357 * In this case, page_count still tracks the references, and should only 358 * be used through the normal accessor functions. The top bits of page->flags 359 * and page->virtual store page management information, but all other fields 360 * are unused and could be used privately, carefully. The management of this 361 * page is the responsibility of the one who allocated it, and those who have 362 * subsequently been given references to it. 363 * 364 * The other pages (we may call them "pagecache pages") are completely 365 * managed by the Linux memory manager: I/O, buffers, swapping etc. 366 * The following discussion applies only to them. 367 * 368 * A pagecache page contains an opaque `private' member, which belongs to the 369 * page's address_space. Usually, this is the address of a circular list of 370 * the page's disk buffers. PG_private must be set to tell the VM to call 371 * into the filesystem to release these pages. 372 * 373 * A page may belong to an inode's memory mapping. In this case, page->mapping 374 * is the pointer to the inode, and page->index is the file offset of the page, 375 * in units of PAGE_CACHE_SIZE. 376 * 377 * If pagecache pages are not associated with an inode, they are said to be 378 * anonymous pages. These may become associated with the swapcache, and in that 379 * case PG_swapcache is set, and page->private is an offset into the swapcache. 380 * 381 * In either case (swapcache or inode backed), the pagecache itself holds one 382 * reference to the page. Setting PG_private should also increment the 383 * refcount. The each user mapping also has a reference to the page. 384 * 385 * The pagecache pages are stored in a per-mapping radix tree, which is 386 * rooted at mapping->page_tree, and indexed by offset. 387 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 388 * lists, we instead now tag pages as dirty/writeback in the radix tree. 389 * 390 * All pagecache pages may be subject to I/O: 391 * - inode pages may need to be read from disk, 392 * - inode pages which have been modified and are MAP_SHARED may need 393 * to be written back to the inode on disk, 394 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 395 * modified may need to be swapped out to swap space and (later) to be read 396 * back into memory. 397 */ 398 399/* 400 * The zone field is never updated after free_area_init_core() 401 * sets it, so none of the operations on it need to be atomic. 402 */ 403 404 405/* 406 * page->flags layout: 407 * 408 * There are three possibilities for how page->flags get 409 * laid out. The first is for the normal case, without 410 * sparsemem. The second is for sparsemem when there is 411 * plenty of space for node and section. The last is when 412 * we have run out of space and have to fall back to an 413 * alternate (slower) way of determining the node. 414 * 415 * No sparsemem: | NODE | ZONE | ... | FLAGS | 416 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 417 * no space for node: | SECTION | ZONE | ... | FLAGS | 418 */ 419#ifdef CONFIG_SPARSEMEM 420#define SECTIONS_WIDTH SECTIONS_SHIFT 421#else 422#define SECTIONS_WIDTH 0 423#endif 424 425#define ZONES_WIDTH ZONES_SHIFT 426 427#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 428#define NODES_WIDTH NODES_SHIFT 429#else 430#define NODES_WIDTH 0 431#endif 432 433/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 434#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 435#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 436#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 437 438/* 439 * We are going to use the flags for the page to node mapping if its in 440 * there. This includes the case where there is no node, so it is implicit. 441 */ 442#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 443#define NODE_NOT_IN_PAGE_FLAGS 444#endif 445 446#ifndef PFN_SECTION_SHIFT 447#define PFN_SECTION_SHIFT 0 448#endif 449 450/* 451 * Define the bit shifts to access each section. For non-existant 452 * sections we define the shift as 0; that plus a 0 mask ensures 453 * the compiler will optimise away reference to them. 454 */ 455#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 456#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 457#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 458 459/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 460#ifdef NODE_NOT_IN_PAGEFLAGS 461#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 462#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 463 SECTIONS_PGOFF : ZONES_PGOFF) 464#else 465#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 466#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 467 NODES_PGOFF : ZONES_PGOFF) 468#endif 469 470#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 471 472#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 473#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 474#endif 475 476#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 477#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 478#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 479#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 480 481static inline enum zone_type page_zonenum(struct page *page) 482{ 483 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 484} 485 486/* 487 * The identification function is only used by the buddy allocator for 488 * determining if two pages could be buddies. We are not really 489 * identifying a zone since we could be using a the section number 490 * id if we have not node id available in page flags. 491 * We guarantee only that it will return the same value for two 492 * combinable pages in a zone. 493 */ 494static inline int page_zone_id(struct page *page) 495{ 496 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 497} 498 499static inline int zone_to_nid(struct zone *zone) 500{ 501#ifdef CONFIG_NUMA 502 return zone->node; 503#else 504 return 0; 505#endif 506} 507 508#ifdef NODE_NOT_IN_PAGE_FLAGS 509extern int page_to_nid(struct page *page); 510#else 511static inline int page_to_nid(struct page *page) 512{ 513 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 514} 515#endif 516 517static inline struct zone *page_zone(struct page *page) 518{ 519 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 520} 521 522static inline unsigned long page_to_section(struct page *page) 523{ 524 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 525} 526 527static inline void set_page_zone(struct page *page, enum zone_type zone) 528{ 529 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 530 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 531} 532 533static inline void set_page_node(struct page *page, unsigned long node) 534{ 535 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 536 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 537} 538 539static inline void set_page_section(struct page *page, unsigned long section) 540{ 541 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 542 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 543} 544 545static inline void set_page_links(struct page *page, enum zone_type zone, 546 unsigned long node, unsigned long pfn) 547{ 548 set_page_zone(page, zone); 549 set_page_node(page, node); 550 set_page_section(page, pfn_to_section_nr(pfn)); 551} 552 553/* 554 * Some inline functions in vmstat.h depend on page_zone() 555 */ 556#include <linux/vmstat.h> 557 558static __always_inline void *lowmem_page_address(struct page *page) 559{ 560 return __va(page_to_pfn(page) << PAGE_SHIFT); 561} 562 563#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 564#define HASHED_PAGE_VIRTUAL 565#endif 566 567#if defined(WANT_PAGE_VIRTUAL) 568#define page_address(page) ((page)->virtual) 569#define set_page_address(page, address) \ 570 do { \ 571 (page)->virtual = (address); \ 572 } while(0) 573#define page_address_init() do { } while(0) 574#endif 575 576#if defined(HASHED_PAGE_VIRTUAL) 577void *page_address(struct page *page); 578void set_page_address(struct page *page, void *virtual); 579void page_address_init(void); 580#endif 581 582#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 583#define page_address(page) lowmem_page_address(page) 584#define set_page_address(page, address) do { } while(0) 585#define page_address_init() do { } while(0) 586#endif 587 588/* 589 * On an anonymous page mapped into a user virtual memory area, 590 * page->mapping points to its anon_vma, not to a struct address_space; 591 * with the PAGE_MAPPING_ANON bit set to distinguish it. 592 * 593 * Please note that, confusingly, "page_mapping" refers to the inode 594 * address_space which maps the page from disk; whereas "page_mapped" 595 * refers to user virtual address space into which the page is mapped. 596 */ 597#define PAGE_MAPPING_ANON 1 598 599extern struct address_space swapper_space; 600static inline struct address_space *page_mapping(struct page *page) 601{ 602 struct address_space *mapping = page->mapping; 603 604 if (unlikely(PageSwapCache(page))) 605 mapping = &swapper_space; 606#ifdef CONFIG_SLUB 607 else if (unlikely(PageSlab(page))) 608 mapping = NULL; 609#endif 610 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 611 mapping = NULL; 612 return mapping; 613} 614 615static inline int PageAnon(struct page *page) 616{ 617 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 618} 619 620/* 621 * Return the pagecache index of the passed page. Regular pagecache pages 622 * use ->index whereas swapcache pages use ->private 623 */ 624static inline pgoff_t page_index(struct page *page) 625{ 626 if (unlikely(PageSwapCache(page))) 627 return page_private(page); 628 return page->index; 629} 630 631/* 632 * The atomic page->_mapcount, like _count, starts from -1: 633 * so that transitions both from it and to it can be tracked, 634 * using atomic_inc_and_test and atomic_add_negative(-1). 635 */ 636static inline void reset_page_mapcount(struct page *page) 637{ 638 atomic_set(&(page)->_mapcount, -1); 639} 640 641static inline int page_mapcount(struct page *page) 642{ 643 return atomic_read(&(page)->_mapcount) + 1; 644} 645 646/* 647 * Return true if this page is mapped into pagetables. 648 */ 649static inline int page_mapped(struct page *page) 650{ 651 return atomic_read(&(page)->_mapcount) >= 0; 652} 653 654/* 655 * Error return values for the *_nopage functions 656 */ 657#define NOPAGE_SIGBUS (NULL) 658#define NOPAGE_OOM ((struct page *) (-1)) 659#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */ 660 661/* 662 * Error return values for the *_nopfn functions 663 */ 664#define NOPFN_SIGBUS ((unsigned long) -1) 665#define NOPFN_OOM ((unsigned long) -2) 666#define NOPFN_REFAULT ((unsigned long) -3) 667 668/* 669 * Different kinds of faults, as returned by handle_mm_fault(). 670 * Used to decide whether a process gets delivered SIGBUS or 671 * just gets major/minor fault counters bumped up. 672 */ 673#define VM_FAULT_OOM 0x00 674#define VM_FAULT_SIGBUS 0x01 675#define VM_FAULT_MINOR 0x02 676#define VM_FAULT_MAJOR 0x03 677 678/* 679 * Special case for get_user_pages. 680 * Must be in a distinct bit from the above VM_FAULT_ flags. 681 */ 682#define VM_FAULT_WRITE 0x10 683 684#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 685 686extern void show_free_areas(void); 687 688#ifdef CONFIG_SHMEM 689int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 690struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 691 unsigned long addr); 692int shmem_lock(struct file *file, int lock, struct user_struct *user); 693#else 694static inline int shmem_lock(struct file *file, int lock, 695 struct user_struct *user) 696{ 697 return 0; 698} 699 700static inline int shmem_set_policy(struct vm_area_struct *vma, 701 struct mempolicy *new) 702{ 703 return 0; 704} 705 706static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 707 unsigned long addr) 708{ 709 return NULL; 710} 711#endif 712struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 713 714int shmem_zero_setup(struct vm_area_struct *); 715 716#ifndef CONFIG_MMU 717extern unsigned long shmem_get_unmapped_area(struct file *file, 718 unsigned long addr, 719 unsigned long len, 720 unsigned long pgoff, 721 unsigned long flags); 722#endif 723 724extern int can_do_mlock(void); 725extern int user_shm_lock(size_t, struct user_struct *); 726extern void user_shm_unlock(size_t, struct user_struct *); 727 728/* 729 * Parameter block passed down to zap_pte_range in exceptional cases. 730 */ 731struct zap_details { 732 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 733 struct address_space *check_mapping; /* Check page->mapping if set */ 734 pgoff_t first_index; /* Lowest page->index to unmap */ 735 pgoff_t last_index; /* Highest page->index to unmap */ 736 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 737 unsigned long truncate_count; /* Compare vm_truncate_count */ 738}; 739 740struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 741unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 742 unsigned long size, struct zap_details *); 743unsigned long unmap_vmas(struct mmu_gather **tlb, 744 struct vm_area_struct *start_vma, unsigned long start_addr, 745 unsigned long end_addr, unsigned long *nr_accounted, 746 struct zap_details *); 747void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 748 unsigned long end, unsigned long floor, unsigned long ceiling); 749void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 750 unsigned long floor, unsigned long ceiling); 751int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 752 struct vm_area_struct *vma); 753int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 754 unsigned long size, pgprot_t prot); 755void unmap_mapping_range(struct address_space *mapping, 756 loff_t const holebegin, loff_t const holelen, int even_cows); 757 758static inline void unmap_shared_mapping_range(struct address_space *mapping, 759 loff_t const holebegin, loff_t const holelen) 760{ 761 unmap_mapping_range(mapping, holebegin, holelen, 0); 762} 763 764extern int vmtruncate(struct inode * inode, loff_t offset); 765extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 766extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 767extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 768 769#ifdef CONFIG_MMU 770extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 771 unsigned long address, int write_access); 772 773static inline int handle_mm_fault(struct mm_struct *mm, 774 struct vm_area_struct *vma, unsigned long address, 775 int write_access) 776{ 777 return __handle_mm_fault(mm, vma, address, write_access) & 778 (~VM_FAULT_WRITE); 779} 780#else 781static inline int handle_mm_fault(struct mm_struct *mm, 782 struct vm_area_struct *vma, unsigned long address, 783 int write_access) 784{ 785 /* should never happen if there's no MMU */ 786 BUG(); 787 return VM_FAULT_SIGBUS; 788} 789#endif 790 791extern int make_pages_present(unsigned long addr, unsigned long end); 792extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 793void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 794 795int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 796 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 797void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 798 799extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 800extern void do_invalidatepage(struct page *page, unsigned long offset); 801 802int __set_page_dirty_nobuffers(struct page *page); 803int __set_page_dirty_no_writeback(struct page *page); 804int redirty_page_for_writepage(struct writeback_control *wbc, 805 struct page *page); 806int FASTCALL(set_page_dirty(struct page *page)); 807int set_page_dirty_lock(struct page *page); 808int clear_page_dirty_for_io(struct page *page); 809 810extern unsigned long do_mremap(unsigned long addr, 811 unsigned long old_len, unsigned long new_len, 812 unsigned long flags, unsigned long new_addr); 813 814/* 815 * Prototype to add a shrinker callback for ageable caches. 816 * 817 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 818 * scan `nr_to_scan' objects, attempting to free them. 819 * 820 * The callback must return the number of objects which remain in the cache. 821 * 822 * The callback will be passed nr_to_scan == 0 when the VM is querying the 823 * cache size, so a fastpath for that case is appropriate. 824 */ 825typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 826 827/* 828 * Add an aging callback. The int is the number of 'seeks' it takes 829 * to recreate one of the objects that these functions age. 830 */ 831 832#define DEFAULT_SEEKS 2 833struct shrinker; 834extern struct shrinker *set_shrinker(int, shrinker_t); 835extern void remove_shrinker(struct shrinker *shrinker); 836 837/* 838 * Some shared mappigns will want the pages marked read-only 839 * to track write events. If so, we'll downgrade vm_page_prot 840 * to the private version (using protection_map[] without the 841 * VM_SHARED bit). 842 */ 843static inline int vma_wants_writenotify(struct vm_area_struct *vma) 844{ 845 unsigned int vm_flags = vma->vm_flags; 846 847 /* If it was private or non-writable, the write bit is already clear */ 848 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 849 return 0; 850 851 /* The backer wishes to know when pages are first written to? */ 852 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 853 return 1; 854 855 /* The open routine did something to the protections already? */ 856 if (pgprot_val(vma->vm_page_prot) != 857 pgprot_val(protection_map[vm_flags & 858 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) 859 return 0; 860 861 /* Specialty mapping? */ 862 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 863 return 0; 864 865 /* Can the mapping track the dirty pages? */ 866 return vma->vm_file && vma->vm_file->f_mapping && 867 mapping_cap_account_dirty(vma->vm_file->f_mapping); 868} 869 870extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 871 872#ifdef __PAGETABLE_PUD_FOLDED 873static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 874 unsigned long address) 875{ 876 return 0; 877} 878#else 879int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 880#endif 881 882#ifdef __PAGETABLE_PMD_FOLDED 883static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 884 unsigned long address) 885{ 886 return 0; 887} 888#else 889int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 890#endif 891 892int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 893int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 894 895/* 896 * The following ifdef needed to get the 4level-fixup.h header to work. 897 * Remove it when 4level-fixup.h has been removed. 898 */ 899#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 900static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 901{ 902 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 903 NULL: pud_offset(pgd, address); 904} 905 906static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 907{ 908 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 909 NULL: pmd_offset(pud, address); 910} 911#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 912 913#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 914/* 915 * We tuck a spinlock to guard each pagetable page into its struct page, 916 * at page->private, with BUILD_BUG_ON to make sure that this will not 917 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 918 * When freeing, reset page->mapping so free_pages_check won't complain. 919 */ 920#define __pte_lockptr(page) &((page)->ptl) 921#define pte_lock_init(_page) do { \ 922 spin_lock_init(__pte_lockptr(_page)); \ 923} while (0) 924#define pte_lock_deinit(page) ((page)->mapping = NULL) 925#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 926#else 927/* 928 * We use mm->page_table_lock to guard all pagetable pages of the mm. 929 */ 930#define pte_lock_init(page) do {} while (0) 931#define pte_lock_deinit(page) do {} while (0) 932#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 933#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 934 935#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 936({ \ 937 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 938 pte_t *__pte = pte_offset_map(pmd, address); \ 939 *(ptlp) = __ptl; \ 940 spin_lock(__ptl); \ 941 __pte; \ 942}) 943 944#define pte_unmap_unlock(pte, ptl) do { \ 945 spin_unlock(ptl); \ 946 pte_unmap(pte); \ 947} while (0) 948 949#define pte_alloc_map(mm, pmd, address) \ 950 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 951 NULL: pte_offset_map(pmd, address)) 952 953#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 954 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 955 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 956 957#define pte_alloc_kernel(pmd, address) \ 958 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 959 NULL: pte_offset_kernel(pmd, address)) 960 961extern void free_area_init(unsigned long * zones_size); 962extern void free_area_init_node(int nid, pg_data_t *pgdat, 963 unsigned long * zones_size, unsigned long zone_start_pfn, 964 unsigned long *zholes_size); 965#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 966/* 967 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 968 * zones, allocate the backing mem_map and account for memory holes in a more 969 * architecture independent manner. This is a substitute for creating the 970 * zone_sizes[] and zholes_size[] arrays and passing them to 971 * free_area_init_node() 972 * 973 * An architecture is expected to register range of page frames backed by 974 * physical memory with add_active_range() before calling 975 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 976 * usage, an architecture is expected to do something like 977 * 978 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 979 * max_highmem_pfn}; 980 * for_each_valid_physical_page_range() 981 * add_active_range(node_id, start_pfn, end_pfn) 982 * free_area_init_nodes(max_zone_pfns); 983 * 984 * If the architecture guarantees that there are no holes in the ranges 985 * registered with add_active_range(), free_bootmem_active_regions() 986 * will call free_bootmem_node() for each registered physical page range. 987 * Similarly sparse_memory_present_with_active_regions() calls 988 * memory_present() for each range when SPARSEMEM is enabled. 989 * 990 * See mm/page_alloc.c for more information on each function exposed by 991 * CONFIG_ARCH_POPULATES_NODE_MAP 992 */ 993extern void free_area_init_nodes(unsigned long *max_zone_pfn); 994extern void add_active_range(unsigned int nid, unsigned long start_pfn, 995 unsigned long end_pfn); 996extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 997 unsigned long new_end_pfn); 998extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 999 unsigned long end_pfn); 1000extern void remove_all_active_ranges(void); 1001extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1002 unsigned long end_pfn); 1003extern void get_pfn_range_for_nid(unsigned int nid, 1004 unsigned long *start_pfn, unsigned long *end_pfn); 1005extern unsigned long find_min_pfn_with_active_regions(void); 1006extern unsigned long find_max_pfn_with_active_regions(void); 1007extern void free_bootmem_with_active_regions(int nid, 1008 unsigned long max_low_pfn); 1009extern void sparse_memory_present_with_active_regions(int nid); 1010#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1011extern int early_pfn_to_nid(unsigned long pfn); 1012#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1013#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1014extern void set_dma_reserve(unsigned long new_dma_reserve); 1015extern void memmap_init_zone(unsigned long, int, unsigned long, 1016 unsigned long, enum memmap_context); 1017extern void setup_per_zone_pages_min(void); 1018extern void mem_init(void); 1019extern void show_mem(void); 1020extern void si_meminfo(struct sysinfo * val); 1021extern void si_meminfo_node(struct sysinfo *val, int nid); 1022 1023#ifdef CONFIG_NUMA 1024extern void setup_per_cpu_pageset(void); 1025#else 1026static inline void setup_per_cpu_pageset(void) {} 1027#endif 1028 1029/* prio_tree.c */ 1030void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1031void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1032void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1033struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1034 struct prio_tree_iter *iter); 1035 1036#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1037 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1038 (vma = vma_prio_tree_next(vma, iter)); ) 1039 1040static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1041 struct list_head *list) 1042{ 1043 vma->shared.vm_set.parent = NULL; 1044 list_add_tail(&vma->shared.vm_set.list, list); 1045} 1046 1047/* mmap.c */ 1048extern int __vm_enough_memory(long pages, int cap_sys_admin); 1049extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1050 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1051extern struct vm_area_struct *vma_merge(struct mm_struct *, 1052 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1053 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1054 struct mempolicy *); 1055extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1056extern int split_vma(struct mm_struct *, 1057 struct vm_area_struct *, unsigned long addr, int new_below); 1058extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1059extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1060 struct rb_node **, struct rb_node *); 1061extern void unlink_file_vma(struct vm_area_struct *); 1062extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1063 unsigned long addr, unsigned long len, pgoff_t pgoff); 1064extern void exit_mmap(struct mm_struct *); 1065extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1066extern int install_special_mapping(struct mm_struct *mm, 1067 unsigned long addr, unsigned long len, 1068 unsigned long flags, struct page **pages); 1069 1070extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1071 1072extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1073 unsigned long len, unsigned long prot, 1074 unsigned long flag, unsigned long pgoff); 1075 1076static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1077 unsigned long len, unsigned long prot, 1078 unsigned long flag, unsigned long offset) 1079{ 1080 unsigned long ret = -EINVAL; 1081 if ((offset + PAGE_ALIGN(len)) < offset) 1082 goto out; 1083 if (!(offset & ~PAGE_MASK)) 1084 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1085out: 1086 return ret; 1087} 1088 1089extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1090 1091extern unsigned long do_brk(unsigned long, unsigned long); 1092 1093/* filemap.c */ 1094extern unsigned long page_unuse(struct page *); 1095extern void truncate_inode_pages(struct address_space *, loff_t); 1096extern void truncate_inode_pages_range(struct address_space *, 1097 loff_t lstart, loff_t lend); 1098 1099/* generic vm_area_ops exported for stackable file systems */ 1100extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 1101extern int filemap_populate(struct vm_area_struct *, unsigned long, 1102 unsigned long, pgprot_t, unsigned long, int); 1103 1104/* mm/page-writeback.c */ 1105int write_one_page(struct page *page, int wait); 1106 1107/* readahead.c */ 1108#define VM_MAX_READAHEAD 128 /* kbytes */ 1109#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1110#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 1111 * turning readahead off */ 1112 1113int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1114 pgoff_t offset, unsigned long nr_to_read); 1115int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1116 pgoff_t offset, unsigned long nr_to_read); 1117unsigned long page_cache_readahead(struct address_space *mapping, 1118 struct file_ra_state *ra, 1119 struct file *filp, 1120 pgoff_t offset, 1121 unsigned long size); 1122void handle_ra_miss(struct address_space *mapping, 1123 struct file_ra_state *ra, pgoff_t offset); 1124unsigned long max_sane_readahead(unsigned long nr); 1125 1126/* Do stack extension */ 1127extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1128#ifdef CONFIG_IA64 1129extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1130#endif 1131 1132/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1133extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1134extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1135 struct vm_area_struct **pprev); 1136 1137/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1138 NULL if none. Assume start_addr < end_addr. */ 1139static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1140{ 1141 struct vm_area_struct * vma = find_vma(mm,start_addr); 1142 1143 if (vma && end_addr <= vma->vm_start) 1144 vma = NULL; 1145 return vma; 1146} 1147 1148static inline unsigned long vma_pages(struct vm_area_struct *vma) 1149{ 1150 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1151} 1152 1153pgprot_t vm_get_page_prot(unsigned long vm_flags); 1154struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1155struct page *vmalloc_to_page(void *addr); 1156unsigned long vmalloc_to_pfn(void *addr); 1157int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1158 unsigned long pfn, unsigned long size, pgprot_t); 1159int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1160int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1161 unsigned long pfn); 1162 1163struct page *follow_page(struct vm_area_struct *, unsigned long address, 1164 unsigned int foll_flags); 1165#define FOLL_WRITE 0x01 /* check pte is writable */ 1166#define FOLL_TOUCH 0x02 /* mark page accessed */ 1167#define FOLL_GET 0x04 /* do get_page on page */ 1168#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1169 1170typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1171 void *data); 1172extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1173 unsigned long size, pte_fn_t fn, void *data); 1174 1175#ifdef CONFIG_PROC_FS 1176void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1177#else 1178static inline void vm_stat_account(struct mm_struct *mm, 1179 unsigned long flags, struct file *file, long pages) 1180{ 1181} 1182#endif /* CONFIG_PROC_FS */ 1183 1184#ifndef CONFIG_DEBUG_PAGEALLOC 1185static inline void 1186kernel_map_pages(struct page *page, int numpages, int enable) {} 1187#endif 1188 1189extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1190#ifdef __HAVE_ARCH_GATE_AREA 1191int in_gate_area_no_task(unsigned long addr); 1192int in_gate_area(struct task_struct *task, unsigned long addr); 1193#else 1194int in_gate_area_no_task(unsigned long addr); 1195#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1196#endif /* __HAVE_ARCH_GATE_AREA */ 1197 1198int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1199 void __user *, size_t *, loff_t *); 1200unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1201 unsigned long lru_pages); 1202void drop_pagecache(void); 1203void drop_slab(void); 1204 1205#ifndef CONFIG_MMU 1206#define randomize_va_space 0 1207#else 1208extern int randomize_va_space; 1209#endif 1210 1211__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); 1212 1213#endif /* __KERNEL__ */ 1214#endif /* _LINUX_MM_H */