at v2.6.22 2941 lines 99 kB view raw
1#ifndef _SPARC64_HYPERVISOR_H 2#define _SPARC64_HYPERVISOR_H 3 4/* Sun4v hypervisor interfaces and defines. 5 * 6 * Hypervisor calls are made via traps to software traps number 0x80 7 * and above. Registers %o0 to %o5 serve as argument, status, and 8 * return value registers. 9 * 10 * There are two kinds of these traps. First there are the normal 11 * "fast traps" which use software trap 0x80 and encode the function 12 * to invoke by number in register %o5. Argument and return value 13 * handling is as follows: 14 * 15 * ----------------------------------------------- 16 * | %o5 | function number | undefined | 17 * | %o0 | argument 0 | return status | 18 * | %o1 | argument 1 | return value 1 | 19 * | %o2 | argument 2 | return value 2 | 20 * | %o3 | argument 3 | return value 3 | 21 * | %o4 | argument 4 | return value 4 | 22 * ----------------------------------------------- 23 * 24 * The second type are "hyper-fast traps" which encode the function 25 * number in the software trap number itself. So these use trap 26 * numbers > 0x80. The register usage for hyper-fast traps is as 27 * follows: 28 * 29 * ----------------------------------------------- 30 * | %o0 | argument 0 | return status | 31 * | %o1 | argument 1 | return value 1 | 32 * | %o2 | argument 2 | return value 2 | 33 * | %o3 | argument 3 | return value 3 | 34 * | %o4 | argument 4 | return value 4 | 35 * ----------------------------------------------- 36 * 37 * Registers providing explicit arguments to the hypervisor calls 38 * are volatile across the call. Upon return their values are 39 * undefined unless explicitly specified as containing a particular 40 * return value by the specific call. The return status is always 41 * returned in register %o0, zero indicates a successful execution of 42 * the hypervisor call and other values indicate an error status as 43 * defined below. So, for example, if a hyper-fast trap takes 44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across 45 * the call and %o3, %o4, and %o5 would be preserved. 46 * 47 * If the hypervisor trap is invalid, or the fast trap function number 48 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits 49 * of the argument and return values are significant. 50 */ 51 52/* Trap numbers. */ 53#define HV_FAST_TRAP 0x80 54#define HV_MMU_MAP_ADDR_TRAP 0x83 55#define HV_MMU_UNMAP_ADDR_TRAP 0x84 56#define HV_TTRACE_ADDENTRY_TRAP 0x85 57#define HV_CORE_TRAP 0xff 58 59/* Error codes. */ 60#define HV_EOK 0 /* Successful return */ 61#define HV_ENOCPU 1 /* Invalid CPU id */ 62#define HV_ENORADDR 2 /* Invalid real address */ 63#define HV_ENOINTR 3 /* Invalid interrupt id */ 64#define HV_EBADPGSZ 4 /* Invalid pagesize encoding */ 65#define HV_EBADTSB 5 /* Invalid TSB description */ 66#define HV_EINVAL 6 /* Invalid argument */ 67#define HV_EBADTRAP 7 /* Invalid function number */ 68#define HV_EBADALIGN 8 /* Invalid address alignment */ 69#define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */ 70#define HV_ENOACCESS 10 /* No access to resource */ 71#define HV_EIO 11 /* I/O error */ 72#define HV_ECPUERROR 12 /* CPU in error state */ 73#define HV_ENOTSUPPORTED 13 /* Function not supported */ 74#define HV_ENOMAP 14 /* No mapping found */ 75#define HV_ETOOMANY 15 /* Too many items specified */ 76#define HV_ECHANNEL 16 /* Invalid LDC channel */ 77#define HV_EBUSY 17 /* Resource busy */ 78 79/* mach_exit() 80 * TRAP: HV_FAST_TRAP 81 * FUNCTION: HV_FAST_MACH_EXIT 82 * ARG0: exit code 83 * ERRORS: This service does not return. 84 * 85 * Stop all CPUs in the virtual domain and place them into the stopped 86 * state. The 64-bit exit code may be passed to a service entity as 87 * the domain's exit status. On systems without a service entity, the 88 * domain will undergo a reset, and the boot firmware will be 89 * reloaded. 90 * 91 * This function will never return to the guest that invokes it. 92 * 93 * Note: By convention an exit code of zero denotes a successful exit by 94 * the guest code. A non-zero exit code denotes a guest specific 95 * error indication. 96 * 97 */ 98#define HV_FAST_MACH_EXIT 0x00 99 100#ifndef __ASSEMBLY__ 101extern void sun4v_mach_exit(unsigned long exit_core); 102#endif 103 104/* Domain services. */ 105 106/* mach_desc() 107 * TRAP: HV_FAST_TRAP 108 * FUNCTION: HV_FAST_MACH_DESC 109 * ARG0: buffer 110 * ARG1: length 111 * RET0: status 112 * RET1: length 113 * ERRORS: HV_EBADALIGN Buffer is badly aligned 114 * HV_ENORADDR Buffer is to an illegal real address. 115 * HV_EINVAL Buffer length is too small for complete 116 * machine description. 117 * 118 * Copy the most current machine description into the buffer indicated 119 * by the real address in ARG0. The buffer provided must be 16 byte 120 * aligned. Upon success or HV_EINVAL, this service returns the 121 * actual size of the machine description in the RET1 return value. 122 * 123 * Note: A method of determining the appropriate buffer size for the 124 * machine description is to first call this service with a buffer 125 * length of 0 bytes. 126 */ 127#define HV_FAST_MACH_DESC 0x01 128 129#ifndef __ASSEMBLY__ 130extern unsigned long sun4v_mach_desc(unsigned long buffer_pa, 131 unsigned long buf_len, 132 unsigned long *real_buf_len); 133#endif 134 135/* mach_sir() 136 * TRAP: HV_FAST_TRAP 137 * FUNCTION: HV_FAST_MACH_SIR 138 * ERRORS: This service does not return. 139 * 140 * Perform a software initiated reset of the virtual machine domain. 141 * All CPUs are captured as soon as possible, all hardware devices are 142 * returned to the entry default state, and the domain is restarted at 143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one 144 * of the CPUs. The single CPU restarted is selected as determined by 145 * platform specific policy. Memory is preserved across this 146 * operation. 147 */ 148#define HV_FAST_MACH_SIR 0x02 149 150#ifndef __ASSEMBLY__ 151extern void sun4v_mach_sir(void); 152#endif 153 154/* mach_set_watchdog() 155 * TRAP: HV_FAST_TRAP 156 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG 157 * ARG0: timeout in milliseconds 158 * RET0: status 159 * RET1: time remaining in milliseconds 160 * 161 * A guest uses this API to set a watchdog timer. Once the gues has set 162 * the timer, it must call the timer service again either to disable or 163 * postpone the expiration. If the timer expires before being reset or 164 * disabled, then the hypervisor take a platform specific action leading 165 * to guest termination within a bounded time period. The platform action 166 * may include recovery actions such as reporting the expiration to a 167 * Service Processor, and/or automatically restarting the gues. 168 * 169 * The 'timeout' parameter is specified in milliseconds, however the 170 * implementated granularity is given by the 'watchdog-resolution' 171 * property in the 'platform' node of the guest's machine description. 172 * The largest allowed timeout value is specified by the 173 * 'watchdog-max-timeout' property of the 'platform' node. 174 * 175 * If the 'timeout' argument is not zero, the watchdog timer is set to 176 * expire after a minimum of 'timeout' milliseconds. 177 * 178 * If the 'timeout' argument is zero, the watchdog timer is disabled. 179 * 180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout' 181 * property, the hypervisor leaves the watchdog timer state unchanged, 182 * and returns a status of EINVAL. 183 * 184 * The 'time remaining' return value is valid regardless of whether the 185 * return status is EOK or EINVAL. A non-zero return value indicates the 186 * number of milliseconds that were remaining until the timer was to expire. 187 * If less than one millisecond remains, the return value is '1'. If the 188 * watchdog timer was disabled at the time of the call, the return value is 189 * zero. 190 * 191 * If the hypervisor cannot support the exact timeout value requested, but 192 * can support a larger timeout value, the hypervisor may round the actual 193 * timeout to a value larger than the requested timeout, consequently the 194 * 'time remaining' return value may be larger than the previously requested 195 * timeout value. 196 * 197 * Any guest OS debugger should be aware that the watchdog service may be in 198 * use. Consequently, it is recommended that the watchdog service is 199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then 200 * re-enabled upon returning to normal execution. The API has been designed 201 * with this in mind, and the 'time remaining' result of the disable call may 202 * be used directly as the timeout argument of the re-enable call. 203 */ 204#define HV_FAST_MACH_SET_WATCHDOG 0x05 205 206#ifndef __ASSEMBLY__ 207extern unsigned long sun4v_mach_set_watchdog(unsigned long timeout, 208 unsigned long *orig_timeout); 209#endif 210 211/* CPU services. 212 * 213 * CPUs represent devices that can execute software threads. A single 214 * chip that contains multiple cores or strands is represented as 215 * multiple CPUs with unique CPU identifiers. CPUs are exported to 216 * OBP via the machine description (and to the OS via the OBP device 217 * tree). CPUs are always in one of three states: stopped, running, 218 * or error. 219 * 220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a 221 * CPU within a logical domain. Operations that are to be performed 222 * on multiple CPUs specify them via a CPU list. A CPU list is an 223 * array in real memory, of which each 16-bit word is a CPU ID. CPU 224 * lists are passed through the API as two arguments. The first is 225 * the number of entries (16-bit words) in the CPU list, and the 226 * second is the (real address) pointer to the CPU ID list. 227 */ 228 229/* cpu_start() 230 * TRAP: HV_FAST_TRAP 231 * FUNCTION: HV_FAST_CPU_START 232 * ARG0: CPU ID 233 * ARG1: PC 234 * ARG2: RTBA 235 * ARG3: target ARG0 236 * RET0: status 237 * ERRORS: ENOCPU Invalid CPU ID 238 * EINVAL Target CPU ID is not in the stopped state 239 * ENORADDR Invalid PC or RTBA real address 240 * EBADALIGN Unaligned PC or unaligned RTBA 241 * EWOULDBLOCK Starting resources are not available 242 * 243 * Start CPU with given CPU ID with PC in %pc and with a real trap 244 * base address value of RTBA. The indicated CPU must be in the 245 * stopped state. The supplied RTBA must be aligned on a 256 byte 246 * boundary. On successful completion, the specified CPU will be in 247 * the running state and will be supplied with "target ARG0" in %o0 248 * and RTBA in %tba. 249 */ 250#define HV_FAST_CPU_START 0x10 251 252#ifndef __ASSEMBLY__ 253extern unsigned long sun4v_cpu_start(unsigned long cpuid, 254 unsigned long pc, 255 unsigned long rtba, 256 unsigned long arg0); 257#endif 258 259/* cpu_stop() 260 * TRAP: HV_FAST_TRAP 261 * FUNCTION: HV_FAST_CPU_STOP 262 * ARG0: CPU ID 263 * RET0: status 264 * ERRORS: ENOCPU Invalid CPU ID 265 * EINVAL Target CPU ID is the current cpu 266 * EINVAL Target CPU ID is not in the running state 267 * EWOULDBLOCK Stopping resources are not available 268 * ENOTSUPPORTED Not supported on this platform 269 * 270 * The specified CPU is stopped. The indicated CPU must be in the 271 * running state. On completion, it will be in the stopped state. It 272 * is not legal to stop the current CPU. 273 * 274 * Note: As this service cannot be used to stop the current cpu, this service 275 * may not be used to stop the last running CPU in a domain. To stop 276 * and exit a running domain, a guest must use the mach_exit() service. 277 */ 278#define HV_FAST_CPU_STOP 0x11 279 280#ifndef __ASSEMBLY__ 281extern unsigned long sun4v_cpu_stop(unsigned long cpuid); 282#endif 283 284/* cpu_yield() 285 * TRAP: HV_FAST_TRAP 286 * FUNCTION: HV_FAST_CPU_YIELD 287 * RET0: status 288 * ERRORS: No possible error. 289 * 290 * Suspend execution on the current CPU. Execution will resume when 291 * an interrupt (device, %stick_compare, or cross-call) is targeted to 292 * the CPU. On some CPUs, this API may be used by the hypervisor to 293 * save power by disabling hardware strands. 294 */ 295#define HV_FAST_CPU_YIELD 0x12 296 297#ifndef __ASSEMBLY__ 298extern unsigned long sun4v_cpu_yield(void); 299#endif 300 301/* cpu_qconf() 302 * TRAP: HV_FAST_TRAP 303 * FUNCTION: HV_FAST_CPU_QCONF 304 * ARG0: queue 305 * ARG1: base real address 306 * ARG2: number of entries 307 * RET0: status 308 * ERRORS: ENORADDR Invalid base real address 309 * EINVAL Invalid queue or number of entries is less 310 * than 2 or too large. 311 * EBADALIGN Base real address is not correctly aligned 312 * for size. 313 * 314 * Configure the given queue to be placed at the given base real 315 * address, with the given number of entries. The number of entries 316 * must be a power of 2. The base real address must be aligned 317 * exactly to match the queue size. Each queue entry is 64 bytes 318 * long, so for example a 32 entry queue must be aligned on a 2048 319 * byte real address boundary. 320 * 321 * The specified queue is unconfigured if the number of entries is given 322 * as zero. 323 * 324 * For the current version of this API service, the argument queue is defined 325 * as follows: 326 * 327 * queue description 328 * ----- ------------------------- 329 * 0x3c cpu mondo queue 330 * 0x3d device mondo queue 331 * 0x3e resumable error queue 332 * 0x3f non-resumable error queue 333 * 334 * Note: The maximum number of entries for each queue for a specific cpu may 335 * be determined from the machine description. 336 */ 337#define HV_FAST_CPU_QCONF 0x14 338#define HV_CPU_QUEUE_CPU_MONDO 0x3c 339#define HV_CPU_QUEUE_DEVICE_MONDO 0x3d 340#define HV_CPU_QUEUE_RES_ERROR 0x3e 341#define HV_CPU_QUEUE_NONRES_ERROR 0x3f 342 343#ifndef __ASSEMBLY__ 344extern unsigned long sun4v_cpu_qconf(unsigned long type, 345 unsigned long queue_paddr, 346 unsigned long num_queue_entries); 347#endif 348 349/* cpu_qinfo() 350 * TRAP: HV_FAST_TRAP 351 * FUNCTION: HV_FAST_CPU_QINFO 352 * ARG0: queue 353 * RET0: status 354 * RET1: base real address 355 * RET1: number of entries 356 * ERRORS: EINVAL Invalid queue 357 * 358 * Return the configuration info for the given queue. The base real 359 * address and number of entries of the defined queue are returned. 360 * The queue argument values are the same as for cpu_qconf() above. 361 * 362 * If the specified queue is a valid queue number, but no queue has 363 * been defined, the number of entries will be set to zero and the 364 * base real address returned is undefined. 365 */ 366#define HV_FAST_CPU_QINFO 0x15 367 368/* cpu_mondo_send() 369 * TRAP: HV_FAST_TRAP 370 * FUNCTION: HV_FAST_CPU_MONDO_SEND 371 * ARG0-1: CPU list 372 * ARG2: data real address 373 * RET0: status 374 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list 375 * is not 2-byte aligned. 376 * ENORADDR Invalid data mondo address, or invalid cpu list 377 * address. 378 * ENOCPU Invalid cpu in CPU list 379 * EWOULDBLOCK Some or all of the listed CPUs did not receive 380 * the mondo 381 * ECPUERROR One or more of the listed CPUs are in error 382 * state, use HV_FAST_CPU_STATE to see which ones 383 * EINVAL CPU list includes caller's CPU ID 384 * 385 * Send a mondo interrupt to the CPUs in the given CPU list with the 386 * 64-bytes at the given data real address. The data must be 64-byte 387 * aligned. The mondo data will be delivered to the cpu_mondo queues 388 * of the recipient CPUs. 389 * 390 * In all cases, error or not, the CPUs in the CPU list to which the 391 * mondo has been successfully delivered will be indicated by having 392 * their entry in CPU list updated with the value 0xffff. 393 */ 394#define HV_FAST_CPU_MONDO_SEND 0x42 395 396#ifndef __ASSEMBLY__ 397extern unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, unsigned long cpu_list_pa, unsigned long mondo_block_pa); 398#endif 399 400/* cpu_myid() 401 * TRAP: HV_FAST_TRAP 402 * FUNCTION: HV_FAST_CPU_MYID 403 * RET0: status 404 * RET1: CPU ID 405 * ERRORS: No errors defined. 406 * 407 * Return the hypervisor ID handle for the current CPU. Use by a 408 * virtual CPU to discover it's own identity. 409 */ 410#define HV_FAST_CPU_MYID 0x16 411 412/* cpu_state() 413 * TRAP: HV_FAST_TRAP 414 * FUNCTION: HV_FAST_CPU_STATE 415 * ARG0: CPU ID 416 * RET0: status 417 * RET1: state 418 * ERRORS: ENOCPU Invalid CPU ID 419 * 420 * Retrieve the current state of the CPU with the given CPU ID. 421 */ 422#define HV_FAST_CPU_STATE 0x17 423#define HV_CPU_STATE_STOPPED 0x01 424#define HV_CPU_STATE_RUNNING 0x02 425#define HV_CPU_STATE_ERROR 0x03 426 427#ifndef __ASSEMBLY__ 428extern long sun4v_cpu_state(unsigned long cpuid); 429#endif 430 431/* cpu_set_rtba() 432 * TRAP: HV_FAST_TRAP 433 * FUNCTION: HV_FAST_CPU_SET_RTBA 434 * ARG0: RTBA 435 * RET0: status 436 * RET1: previous RTBA 437 * ERRORS: ENORADDR Invalid RTBA real address 438 * EBADALIGN RTBA is incorrectly aligned for a trap table 439 * 440 * Set the real trap base address of the local cpu to the given RTBA. 441 * The supplied RTBA must be aligned on a 256 byte boundary. Upon 442 * success the previous value of the RTBA is returned in RET1. 443 * 444 * Note: This service does not affect %tba 445 */ 446#define HV_FAST_CPU_SET_RTBA 0x18 447 448/* cpu_set_rtba() 449 * TRAP: HV_FAST_TRAP 450 * FUNCTION: HV_FAST_CPU_GET_RTBA 451 * RET0: status 452 * RET1: previous RTBA 453 * ERRORS: No possible error. 454 * 455 * Returns the current value of RTBA in RET1. 456 */ 457#define HV_FAST_CPU_GET_RTBA 0x19 458 459/* MMU services. 460 * 461 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls. 462 */ 463#ifndef __ASSEMBLY__ 464struct hv_tsb_descr { 465 unsigned short pgsz_idx; 466 unsigned short assoc; 467 unsigned int num_ttes; /* in TTEs */ 468 unsigned int ctx_idx; 469 unsigned int pgsz_mask; 470 unsigned long tsb_base; 471 unsigned long resv; 472}; 473#endif 474#define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00 475#define HV_TSB_DESCR_ASSOC_OFFSET 0x02 476#define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04 477#define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08 478#define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c 479#define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10 480#define HV_TSB_DESCR_RESV_OFFSET 0x18 481 482/* Page size bitmask. */ 483#define HV_PGSZ_MASK_8K (1 << 0) 484#define HV_PGSZ_MASK_64K (1 << 1) 485#define HV_PGSZ_MASK_512K (1 << 2) 486#define HV_PGSZ_MASK_4MB (1 << 3) 487#define HV_PGSZ_MASK_32MB (1 << 4) 488#define HV_PGSZ_MASK_256MB (1 << 5) 489#define HV_PGSZ_MASK_2GB (1 << 6) 490#define HV_PGSZ_MASK_16GB (1 << 7) 491 492/* Page size index. The value given in the TSB descriptor must correspond 493 * to the smallest page size specified in the pgsz_mask page size bitmask. 494 */ 495#define HV_PGSZ_IDX_8K 0 496#define HV_PGSZ_IDX_64K 1 497#define HV_PGSZ_IDX_512K 2 498#define HV_PGSZ_IDX_4MB 3 499#define HV_PGSZ_IDX_32MB 4 500#define HV_PGSZ_IDX_256MB 5 501#define HV_PGSZ_IDX_2GB 6 502#define HV_PGSZ_IDX_16GB 7 503 504/* MMU fault status area. 505 * 506 * MMU related faults have their status and fault address information 507 * placed into a memory region made available by privileged code. Each 508 * virtual processor must make a mmu_fault_area_conf() call to tell the 509 * hypervisor where that processor's fault status should be stored. 510 * 511 * The fault status block is a multiple of 64-bytes and must be aligned 512 * on a 64-byte boundary. 513 */ 514#ifndef __ASSEMBLY__ 515struct hv_fault_status { 516 unsigned long i_fault_type; 517 unsigned long i_fault_addr; 518 unsigned long i_fault_ctx; 519 unsigned long i_reserved[5]; 520 unsigned long d_fault_type; 521 unsigned long d_fault_addr; 522 unsigned long d_fault_ctx; 523 unsigned long d_reserved[5]; 524}; 525#endif 526#define HV_FAULT_I_TYPE_OFFSET 0x00 527#define HV_FAULT_I_ADDR_OFFSET 0x08 528#define HV_FAULT_I_CTX_OFFSET 0x10 529#define HV_FAULT_D_TYPE_OFFSET 0x40 530#define HV_FAULT_D_ADDR_OFFSET 0x48 531#define HV_FAULT_D_CTX_OFFSET 0x50 532 533#define HV_FAULT_TYPE_FAST_MISS 1 534#define HV_FAULT_TYPE_FAST_PROT 2 535#define HV_FAULT_TYPE_MMU_MISS 3 536#define HV_FAULT_TYPE_INV_RA 4 537#define HV_FAULT_TYPE_PRIV_VIOL 5 538#define HV_FAULT_TYPE_PROT_VIOL 6 539#define HV_FAULT_TYPE_NFO 7 540#define HV_FAULT_TYPE_NFO_SEFF 8 541#define HV_FAULT_TYPE_INV_VA 9 542#define HV_FAULT_TYPE_INV_ASI 10 543#define HV_FAULT_TYPE_NC_ATOMIC 11 544#define HV_FAULT_TYPE_PRIV_ACT 12 545#define HV_FAULT_TYPE_RESV1 13 546#define HV_FAULT_TYPE_UNALIGNED 14 547#define HV_FAULT_TYPE_INV_PGSZ 15 548/* Values 16 --> -2 are reserved. */ 549#define HV_FAULT_TYPE_MULTIPLE -1 550 551/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(), 552 * and mmu_{map,unmap}_perm_addr(). 553 */ 554#define HV_MMU_DMMU 0x01 555#define HV_MMU_IMMU 0x02 556#define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU) 557 558/* mmu_map_addr() 559 * TRAP: HV_MMU_MAP_ADDR_TRAP 560 * ARG0: virtual address 561 * ARG1: mmu context 562 * ARG2: TTE 563 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 564 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 565 * EBADPGSZ Invalid page size value 566 * ENORADDR Invalid real address in TTE 567 * 568 * Create a non-permanent mapping using the given TTE, virtual 569 * address, and mmu context. The flags argument determines which 570 * (data, or instruction, or both) TLB the mapping gets loaded into. 571 * 572 * The behavior is undefined if the valid bit is clear in the TTE. 573 * 574 * Note: This API call is for privileged code to specify temporary translation 575 * mappings without the need to create and manage a TSB. 576 */ 577 578/* mmu_unmap_addr() 579 * TRAP: HV_MMU_UNMAP_ADDR_TRAP 580 * ARG0: virtual address 581 * ARG1: mmu context 582 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 583 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 584 * 585 * Demaps the given virtual address in the given mmu context on this 586 * CPU. This function is intended to be used to demap pages mapped 587 * with mmu_map_addr. This service is equivalent to invoking 588 * mmu_demap_page() with only the current CPU in the CPU list. The 589 * flags argument determines which (data, or instruction, or both) TLB 590 * the mapping gets unmapped from. 591 * 592 * Attempting to perform an unmap operation for a previously defined 593 * permanent mapping will have undefined results. 594 */ 595 596/* mmu_tsb_ctx0() 597 * TRAP: HV_FAST_TRAP 598 * FUNCTION: HV_FAST_MMU_TSB_CTX0 599 * ARG0: number of TSB descriptions 600 * ARG1: TSB descriptions pointer 601 * RET0: status 602 * ERRORS: ENORADDR Invalid TSB descriptions pointer or 603 * TSB base within a descriptor 604 * EBADALIGN TSB descriptions pointer is not aligned 605 * to an 8-byte boundary, or TSB base 606 * within a descriptor is not aligned for 607 * the given TSB size 608 * EBADPGSZ Invalid page size in a TSB descriptor 609 * EBADTSB Invalid associativity or size in a TSB 610 * descriptor 611 * EINVAL Invalid number of TSB descriptions, or 612 * invalid context index in a TSB 613 * descriptor, or index page size not 614 * equal to smallest page size in page 615 * size bitmask field. 616 * 617 * Configures the TSBs for the current CPU for virtual addresses with 618 * context zero. The TSB descriptions pointer is a pointer to an 619 * array of the given number of TSB descriptions. 620 * 621 * Note: The maximum number of TSBs available to a virtual CPU is given by the 622 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the 623 * machine description. 624 */ 625#define HV_FAST_MMU_TSB_CTX0 0x20 626 627#ifndef __ASSEMBLY__ 628extern unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions, 629 unsigned long tsb_desc_ra); 630#endif 631 632/* mmu_tsb_ctxnon0() 633 * TRAP: HV_FAST_TRAP 634 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0 635 * ARG0: number of TSB descriptions 636 * ARG1: TSB descriptions pointer 637 * RET0: status 638 * ERRORS: Same as for mmu_tsb_ctx0() above. 639 * 640 * Configures the TSBs for the current CPU for virtual addresses with 641 * non-zero contexts. The TSB descriptions pointer is a pointer to an 642 * array of the given number of TSB descriptions. 643 * 644 * Note: A maximum of 16 TSBs may be specified in the TSB description list. 645 */ 646#define HV_FAST_MMU_TSB_CTXNON0 0x21 647 648/* mmu_demap_page() 649 * TRAP: HV_FAST_TRAP 650 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE 651 * ARG0: reserved, must be zero 652 * ARG1: reserved, must be zero 653 * ARG2: virtual address 654 * ARG3: mmu context 655 * ARG4: flags (HV_MMU_{IMMU,DMMU}) 656 * RET0: status 657 * ERRORS: EINVAL Invalid virutal address, context, or 658 * flags value 659 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 660 * 661 * Demaps any page mapping of the given virtual address in the given 662 * mmu context for the current virtual CPU. Any virtually tagged 663 * caches are guaranteed to be kept consistent. The flags argument 664 * determines which TLB (instruction, or data, or both) participate in 665 * the operation. 666 * 667 * ARG0 and ARG1 are both reserved and must be set to zero. 668 */ 669#define HV_FAST_MMU_DEMAP_PAGE 0x22 670 671/* mmu_demap_ctx() 672 * TRAP: HV_FAST_TRAP 673 * FUNCTION: HV_FAST_MMU_DEMAP_CTX 674 * ARG0: reserved, must be zero 675 * ARG1: reserved, must be zero 676 * ARG2: mmu context 677 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 678 * RET0: status 679 * ERRORS: EINVAL Invalid context or flags value 680 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 681 * 682 * Demaps all non-permanent virtual page mappings previously specified 683 * for the given context for the current virtual CPU. Any virtual 684 * tagged caches are guaranteed to be kept consistent. The flags 685 * argument determines which TLB (instruction, or data, or both) 686 * participate in the operation. 687 * 688 * ARG0 and ARG1 are both reserved and must be set to zero. 689 */ 690#define HV_FAST_MMU_DEMAP_CTX 0x23 691 692/* mmu_demap_all() 693 * TRAP: HV_FAST_TRAP 694 * FUNCTION: HV_FAST_MMU_DEMAP_ALL 695 * ARG0: reserved, must be zero 696 * ARG1: reserved, must be zero 697 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 698 * RET0: status 699 * ERRORS: EINVAL Invalid flags value 700 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 701 * 702 * Demaps all non-permanent virtual page mappings previously specified 703 * for the current virtual CPU. Any virtual tagged caches are 704 * guaranteed to be kept consistent. The flags argument determines 705 * which TLB (instruction, or data, or both) participate in the 706 * operation. 707 * 708 * ARG0 and ARG1 are both reserved and must be set to zero. 709 */ 710#define HV_FAST_MMU_DEMAP_ALL 0x24 711 712/* mmu_map_perm_addr() 713 * TRAP: HV_FAST_TRAP 714 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR 715 * ARG0: virtual address 716 * ARG1: reserved, must be zero 717 * ARG2: TTE 718 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 719 * RET0: status 720 * ERRORS: EINVAL Invalid virutal address or flags value 721 * EBADPGSZ Invalid page size value 722 * ENORADDR Invalid real address in TTE 723 * ETOOMANY Too many mappings (max of 8 reached) 724 * 725 * Create a permanent mapping using the given TTE and virtual address 726 * for context 0 on the calling virtual CPU. A maximum of 8 such 727 * permanent mappings may be specified by privileged code. Mappings 728 * may be removed with mmu_unmap_perm_addr(). 729 * 730 * The behavior is undefined if a TTE with the valid bit clear is given. 731 * 732 * Note: This call is used to specify address space mappings for which 733 * privileged code does not expect to receive misses. For example, 734 * this mechanism can be used to map kernel nucleus code and data. 735 */ 736#define HV_FAST_MMU_MAP_PERM_ADDR 0x25 737 738#ifndef __ASSEMBLY__ 739extern unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr, 740 unsigned long set_to_zero, 741 unsigned long tte, 742 unsigned long flags); 743#endif 744 745/* mmu_fault_area_conf() 746 * TRAP: HV_FAST_TRAP 747 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF 748 * ARG0: real address 749 * RET0: status 750 * RET1: previous mmu fault area real address 751 * ERRORS: ENORADDR Invalid real address 752 * EBADALIGN Invalid alignment for fault area 753 * 754 * Configure the MMU fault status area for the calling CPU. A 64-byte 755 * aligned real address specifies where MMU fault status information 756 * is placed. The return value is the previously specified area, or 0 757 * for the first invocation. Specifying a fault area at real address 758 * 0 is not allowed. 759 */ 760#define HV_FAST_MMU_FAULT_AREA_CONF 0x26 761 762/* mmu_enable() 763 * TRAP: HV_FAST_TRAP 764 * FUNCTION: HV_FAST_MMU_ENABLE 765 * ARG0: enable flag 766 * ARG1: return target address 767 * RET0: status 768 * ERRORS: ENORADDR Invalid real address when disabling 769 * translation. 770 * EBADALIGN The return target address is not 771 * aligned to an instruction. 772 * EINVAL The enable flag request the current 773 * operating mode (e.g. disable if already 774 * disabled) 775 * 776 * Enable or disable virtual address translation for the calling CPU 777 * within the virtual machine domain. If the enable flag is zero, 778 * translation is disabled, any non-zero value will enable 779 * translation. 780 * 781 * When this function returns, the newly selected translation mode 782 * will be active. If the mmu is being enabled, then the return 783 * target address is a virtual address else it is a real address. 784 * 785 * Upon successful completion, control will be returned to the given 786 * return target address (ie. the cpu will jump to that address). On 787 * failure, the previous mmu mode remains and the trap simply returns 788 * as normal with the appropriate error code in RET0. 789 */ 790#define HV_FAST_MMU_ENABLE 0x27 791 792/* mmu_unmap_perm_addr() 793 * TRAP: HV_FAST_TRAP 794 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR 795 * ARG0: virtual address 796 * ARG1: reserved, must be zero 797 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 798 * RET0: status 799 * ERRORS: EINVAL Invalid virutal address or flags value 800 * ENOMAP Specified mapping was not found 801 * 802 * Demaps any permanent page mapping (established via 803 * mmu_map_perm_addr()) at the given virtual address for context 0 on 804 * the current virtual CPU. Any virtual tagged caches are guaranteed 805 * to be kept consistent. 806 */ 807#define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28 808 809/* mmu_tsb_ctx0_info() 810 * TRAP: HV_FAST_TRAP 811 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO 812 * ARG0: max TSBs 813 * ARG1: buffer pointer 814 * RET0: status 815 * RET1: number of TSBs 816 * ERRORS: EINVAL Supplied buffer is too small 817 * EBADALIGN The buffer pointer is badly aligned 818 * ENORADDR Invalid real address for buffer pointer 819 * 820 * Return the TSB configuration as previous defined by mmu_tsb_ctx0() 821 * into the provided buffer. The size of the buffer is given in ARG1 822 * in terms of the number of TSB description entries. 823 * 824 * Upon return, RET1 always contains the number of TSB descriptions 825 * previously configured. If zero TSBs were configured, EOK is 826 * returned with RET1 containing 0. 827 */ 828#define HV_FAST_MMU_TSB_CTX0_INFO 0x29 829 830/* mmu_tsb_ctxnon0_info() 831 * TRAP: HV_FAST_TRAP 832 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO 833 * ARG0: max TSBs 834 * ARG1: buffer pointer 835 * RET0: status 836 * RET1: number of TSBs 837 * ERRORS: EINVAL Supplied buffer is too small 838 * EBADALIGN The buffer pointer is badly aligned 839 * ENORADDR Invalid real address for buffer pointer 840 * 841 * Return the TSB configuration as previous defined by 842 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer 843 * is given in ARG1 in terms of the number of TSB description entries. 844 * 845 * Upon return, RET1 always contains the number of TSB descriptions 846 * previously configured. If zero TSBs were configured, EOK is 847 * returned with RET1 containing 0. 848 */ 849#define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a 850 851/* mmu_fault_area_info() 852 * TRAP: HV_FAST_TRAP 853 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO 854 * RET0: status 855 * RET1: fault area real address 856 * ERRORS: No errors defined. 857 * 858 * Return the currently defined MMU fault status area for the current 859 * CPU. The real address of the fault status area is returned in 860 * RET1, or 0 is returned in RET1 if no fault status area is defined. 861 * 862 * Note: mmu_fault_area_conf() may be called with the return value (RET1) 863 * from this service if there is a need to save and restore the fault 864 * area for a cpu. 865 */ 866#define HV_FAST_MMU_FAULT_AREA_INFO 0x2b 867 868/* Cache and Memory services. */ 869 870/* mem_scrub() 871 * TRAP: HV_FAST_TRAP 872 * FUNCTION: HV_FAST_MEM_SCRUB 873 * ARG0: real address 874 * ARG1: length 875 * RET0: status 876 * RET1: length scrubbed 877 * ERRORS: ENORADDR Invalid real address 878 * EBADALIGN Start address or length are not correctly 879 * aligned 880 * EINVAL Length is zero 881 * 882 * Zero the memory contents in the range real address to real address 883 * plus length minus 1. Also, valid ECC will be generated for that 884 * memory address range. Scrubbing is started at the given real 885 * address, but may not scrub the entire given length. The actual 886 * length scrubbed will be returned in RET1. 887 * 888 * The real address and length must be aligned on an 8K boundary, or 889 * contain the start address and length from a sun4v error report. 890 * 891 * Note: There are two uses for this function. The first use is to block clear 892 * and initialize memory and the second is to scrub an u ncorrectable 893 * error reported via a resumable or non-resumable trap. The second 894 * use requires the arguments to be equal to the real address and length 895 * provided in a sun4v memory error report. 896 */ 897#define HV_FAST_MEM_SCRUB 0x31 898 899/* mem_sync() 900 * TRAP: HV_FAST_TRAP 901 * FUNCTION: HV_FAST_MEM_SYNC 902 * ARG0: real address 903 * ARG1: length 904 * RET0: status 905 * RET1: length synced 906 * ERRORS: ENORADDR Invalid real address 907 * EBADALIGN Start address or length are not correctly 908 * aligned 909 * EINVAL Length is zero 910 * 911 * Force the next access within the real address to real address plus 912 * length minus 1 to be fetches from main system memory. Less than 913 * the given length may be synced, the actual amount synced is 914 * returned in RET1. The real address and length must be aligned on 915 * an 8K boundary. 916 */ 917#define HV_FAST_MEM_SYNC 0x32 918 919/* Time of day services. 920 * 921 * The hypervisor maintains the time of day on a per-domain basis. 922 * Changing the time of day in one domain does not affect the time of 923 * day on any other domain. 924 * 925 * Time is described by a single unsigned 64-bit word which is the 926 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1, 927 * 1970). 928 */ 929 930/* tod_get() 931 * TRAP: HV_FAST_TRAP 932 * FUNCTION: HV_FAST_TOD_GET 933 * RET0: status 934 * RET1: TOD 935 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 936 * ENOTSUPPORTED If TOD not supported on this platform 937 * 938 * Return the current time of day. May block if TOD access is 939 * temporarily not possible. 940 */ 941#define HV_FAST_TOD_GET 0x50 942 943#ifndef __ASSEMBLY__ 944extern unsigned long sun4v_tod_get(unsigned long *time); 945#endif 946 947/* tod_set() 948 * TRAP: HV_FAST_TRAP 949 * FUNCTION: HV_FAST_TOD_SET 950 * ARG0: TOD 951 * RET0: status 952 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 953 * ENOTSUPPORTED If TOD not supported on this platform 954 * 955 * The current time of day is set to the value specified in ARG0. May 956 * block if TOD access is temporarily not possible. 957 */ 958#define HV_FAST_TOD_SET 0x51 959 960#ifndef __ASSEMBLY__ 961extern unsigned long sun4v_tod_set(unsigned long time); 962#endif 963 964/* Console services */ 965 966/* con_getchar() 967 * TRAP: HV_FAST_TRAP 968 * FUNCTION: HV_FAST_CONS_GETCHAR 969 * RET0: status 970 * RET1: character 971 * ERRORS: EWOULDBLOCK No character available. 972 * 973 * Returns a character from the console device. If no character is 974 * available then an EWOULDBLOCK error is returned. If a character is 975 * available, then the returned status is EOK and the character value 976 * is in RET1. 977 * 978 * A virtual BREAK is represented by the 64-bit value -1. 979 * 980 * A virtual HUP signal is represented by the 64-bit value -2. 981 */ 982#define HV_FAST_CONS_GETCHAR 0x60 983 984/* con_putchar() 985 * TRAP: HV_FAST_TRAP 986 * FUNCTION: HV_FAST_CONS_PUTCHAR 987 * ARG0: character 988 * RET0: status 989 * ERRORS: EINVAL Illegal character 990 * EWOULDBLOCK Output buffer currently full, would block 991 * 992 * Send a character to the console device. Only character values 993 * between 0 and 255 may be used. Values outside this range are 994 * invalid except for the 64-bit value -1 which is used to send a 995 * virtual BREAK. 996 */ 997#define HV_FAST_CONS_PUTCHAR 0x61 998 999/* con_read() 1000 * TRAP: HV_FAST_TRAP 1001 * FUNCTION: HV_FAST_CONS_READ 1002 * ARG0: buffer real address 1003 * ARG1: buffer size in bytes 1004 * RET0: status 1005 * RET1: bytes read or BREAK or HUP 1006 * ERRORS: EWOULDBLOCK No character available. 1007 * 1008 * Reads characters into a buffer from the console device. If no 1009 * character is available then an EWOULDBLOCK error is returned. 1010 * If a character is available, then the returned status is EOK 1011 * and the number of bytes read into the given buffer is provided 1012 * in RET1. 1013 * 1014 * A virtual BREAK is represented by the 64-bit RET1 value -1. 1015 * 1016 * A virtual HUP signal is represented by the 64-bit RET1 value -2. 1017 * 1018 * If BREAK or HUP are indicated, no bytes were read into buffer. 1019 */ 1020#define HV_FAST_CONS_READ 0x62 1021 1022/* con_write() 1023 * TRAP: HV_FAST_TRAP 1024 * FUNCTION: HV_FAST_CONS_WRITE 1025 * ARG0: buffer real address 1026 * ARG1: buffer size in bytes 1027 * RET0: status 1028 * RET1: bytes written 1029 * ERRORS: EWOULDBLOCK Output buffer currently full, would block 1030 * 1031 * Send a characters in buffer to the console device. Breaks must be 1032 * sent using con_putchar(). 1033 */ 1034#define HV_FAST_CONS_WRITE 0x63 1035 1036#ifndef __ASSEMBLY__ 1037extern long sun4v_con_getchar(long *status); 1038extern long sun4v_con_putchar(long c); 1039extern long sun4v_con_read(unsigned long buffer, 1040 unsigned long size, 1041 unsigned long *bytes_read); 1042extern unsigned long sun4v_con_write(unsigned long buffer, 1043 unsigned long size, 1044 unsigned long *bytes_written); 1045#endif 1046 1047/* mach_set_soft_state() 1048 * TRAP: HV_FAST_TRAP 1049 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE 1050 * ARG0: software state 1051 * ARG1: software state description pointer 1052 * RET0: status 1053 * ERRORS: EINVAL software state not valid or software state 1054 * description is not NULL terminated 1055 * ENORADDR software state description pointer is not a 1056 * valid real address 1057 * EBADALIGNED software state description is not correctly 1058 * aligned 1059 * 1060 * This allows the guest to report it's soft state to the hypervisor. There 1061 * are two primary components to this state. The first part states whether 1062 * the guest software is running or not. The second containts optional 1063 * details specific to the software. 1064 * 1065 * The software state argument is defined below in HV_SOFT_STATE_*, and 1066 * indicates whether the guest is operating normally or in a transitional 1067 * state. 1068 * 1069 * The software state description argument is a real address of a data buffer 1070 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL 1071 * terminated 7-bit ASCII string of up to 31 characters not including the 1072 * NULL termination. 1073 */ 1074#define HV_FAST_MACH_SET_SOFT_STATE 0x70 1075#define HV_SOFT_STATE_NORMAL 0x01 1076#define HV_SOFT_STATE_TRANSITION 0x02 1077 1078#ifndef __ASSEMBLY__ 1079extern unsigned long sun4v_mach_set_soft_state(unsigned long soft_state, 1080 unsigned long msg_string_ra); 1081#endif 1082 1083/* mach_get_soft_state() 1084 * TRAP: HV_FAST_TRAP 1085 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE 1086 * ARG0: software state description pointer 1087 * RET0: status 1088 * RET1: software state 1089 * ERRORS: ENORADDR software state description pointer is not a 1090 * valid real address 1091 * EBADALIGNED software state description is not correctly 1092 * aligned 1093 * 1094 * Retrieve the current value of the guest's software state. The rules 1095 * for the software state pointer are the same as for mach_set_soft_state() 1096 * above. 1097 */ 1098#define HV_FAST_MACH_GET_SOFT_STATE 0x71 1099 1100/* svc_send() 1101 * TRAP: HV_FAST_TRAP 1102 * FUNCTION: HV_FAST_SVC_SEND 1103 * ARG0: service ID 1104 * ARG1: buffer real address 1105 * ARG2: buffer size 1106 * RET0: STATUS 1107 * RET1: sent_bytes 1108 * 1109 * Be careful, all output registers are clobbered by this operation, 1110 * so for example it is not possible to save away a value in %o4 1111 * across the trap. 1112 */ 1113#define HV_FAST_SVC_SEND 0x80 1114 1115/* svc_recv() 1116 * TRAP: HV_FAST_TRAP 1117 * FUNCTION: HV_FAST_SVC_RECV 1118 * ARG0: service ID 1119 * ARG1: buffer real address 1120 * ARG2: buffer size 1121 * RET0: STATUS 1122 * RET1: recv_bytes 1123 * 1124 * Be careful, all output registers are clobbered by this operation, 1125 * so for example it is not possible to save away a value in %o4 1126 * across the trap. 1127 */ 1128#define HV_FAST_SVC_RECV 0x81 1129 1130/* svc_getstatus() 1131 * TRAP: HV_FAST_TRAP 1132 * FUNCTION: HV_FAST_SVC_GETSTATUS 1133 * ARG0: service ID 1134 * RET0: STATUS 1135 * RET1: status bits 1136 */ 1137#define HV_FAST_SVC_GETSTATUS 0x82 1138 1139/* svc_setstatus() 1140 * TRAP: HV_FAST_TRAP 1141 * FUNCTION: HV_FAST_SVC_SETSTATUS 1142 * ARG0: service ID 1143 * ARG1: bits to set 1144 * RET0: STATUS 1145 */ 1146#define HV_FAST_SVC_SETSTATUS 0x83 1147 1148/* svc_clrstatus() 1149 * TRAP: HV_FAST_TRAP 1150 * FUNCTION: HV_FAST_SVC_CLRSTATUS 1151 * ARG0: service ID 1152 * ARG1: bits to clear 1153 * RET0: STATUS 1154 */ 1155#define HV_FAST_SVC_CLRSTATUS 0x84 1156 1157#ifndef __ASSEMBLY__ 1158extern unsigned long sun4v_svc_send(unsigned long svc_id, 1159 unsigned long buffer, 1160 unsigned long buffer_size, 1161 unsigned long *sent_bytes); 1162extern unsigned long sun4v_svc_recv(unsigned long svc_id, 1163 unsigned long buffer, 1164 unsigned long buffer_size, 1165 unsigned long *recv_bytes); 1166extern unsigned long sun4v_svc_getstatus(unsigned long svc_id, 1167 unsigned long *status_bits); 1168extern unsigned long sun4v_svc_setstatus(unsigned long svc_id, 1169 unsigned long status_bits); 1170extern unsigned long sun4v_svc_clrstatus(unsigned long svc_id, 1171 unsigned long status_bits); 1172#endif 1173 1174/* Trap trace services. 1175 * 1176 * The hypervisor provides a trap tracing capability for privileged 1177 * code running on each virtual CPU. Privileged code provides a 1178 * round-robin trap trace queue within which the hypervisor writes 1179 * 64-byte entries detailing hyperprivileged traps taken n behalf of 1180 * privileged code. This is provided as a debugging capability for 1181 * privileged code. 1182 * 1183 * The trap trace control structure is 64-bytes long and placed at the 1184 * start (offset 0) of the trap trace buffer, and is described as 1185 * follows: 1186 */ 1187#ifndef __ASSEMBLY__ 1188struct hv_trap_trace_control { 1189 unsigned long head_offset; 1190 unsigned long tail_offset; 1191 unsigned long __reserved[0x30 / sizeof(unsigned long)]; 1192}; 1193#endif 1194#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00 1195#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08 1196 1197/* The head offset is the offset of the most recently completed entry 1198 * in the trap-trace buffer. The tail offset is the offset of the 1199 * next entry to be written. The control structure is owned and 1200 * modified by the hypervisor. A guest may not modify the control 1201 * structure contents. Attempts to do so will result in undefined 1202 * behavior for the guest. 1203 * 1204 * Each trap trace buffer entry is layed out as follows: 1205 */ 1206#ifndef __ASSEMBLY__ 1207struct hv_trap_trace_entry { 1208 unsigned char type; /* Hypervisor or guest entry? */ 1209 unsigned char hpstate; /* Hyper-privileged state */ 1210 unsigned char tl; /* Trap level */ 1211 unsigned char gl; /* Global register level */ 1212 unsigned short tt; /* Trap type */ 1213 unsigned short tag; /* Extended trap identifier */ 1214 unsigned long tstate; /* Trap state */ 1215 unsigned long tick; /* Tick */ 1216 unsigned long tpc; /* Trap PC */ 1217 unsigned long f1; /* Entry specific */ 1218 unsigned long f2; /* Entry specific */ 1219 unsigned long f3; /* Entry specific */ 1220 unsigned long f4; /* Entry specific */ 1221}; 1222#endif 1223#define HV_TRAP_TRACE_ENTRY_TYPE 0x00 1224#define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01 1225#define HV_TRAP_TRACE_ENTRY_TL 0x02 1226#define HV_TRAP_TRACE_ENTRY_GL 0x03 1227#define HV_TRAP_TRACE_ENTRY_TT 0x04 1228#define HV_TRAP_TRACE_ENTRY_TAG 0x06 1229#define HV_TRAP_TRACE_ENTRY_TSTATE 0x08 1230#define HV_TRAP_TRACE_ENTRY_TICK 0x10 1231#define HV_TRAP_TRACE_ENTRY_TPC 0x18 1232#define HV_TRAP_TRACE_ENTRY_F1 0x20 1233#define HV_TRAP_TRACE_ENTRY_F2 0x28 1234#define HV_TRAP_TRACE_ENTRY_F3 0x30 1235#define HV_TRAP_TRACE_ENTRY_F4 0x38 1236 1237/* The type field is encoded as follows. */ 1238#define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */ 1239#define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */ 1240#define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */ 1241 1242/* ttrace_buf_conf() 1243 * TRAP: HV_FAST_TRAP 1244 * FUNCTION: HV_FAST_TTRACE_BUF_CONF 1245 * ARG0: real address 1246 * ARG1: number of entries 1247 * RET0: status 1248 * RET1: number of entries 1249 * ERRORS: ENORADDR Invalid real address 1250 * EINVAL Size is too small 1251 * EBADALIGN Real address not aligned on 64-byte boundary 1252 * 1253 * Requests hypervisor trap tracing and declares a virtual CPU's trap 1254 * trace buffer to the hypervisor. The real address supplies the real 1255 * base address of the trap trace queue and must be 64-byte aligned. 1256 * Specifying a value of 0 for the number of entries disables trap 1257 * tracing for the calling virtual CPU. The buffer allocated must be 1258 * sized for a power of two number of 64-byte trap trace entries plus 1259 * an initial 64-byte control structure. 1260 * 1261 * This may be invoked any number of times so that a virtual CPU may 1262 * relocate a trap trace buffer or create "snapshots" of information. 1263 * 1264 * If the real address is illegal or badly aligned, then trap tracing 1265 * is disabled and an error is returned. 1266 * 1267 * Upon failure with EINVAL, this service call returns in RET1 the 1268 * minimum number of buffer entries required. Upon other failures 1269 * RET1 is undefined. 1270 */ 1271#define HV_FAST_TTRACE_BUF_CONF 0x90 1272 1273/* ttrace_buf_info() 1274 * TRAP: HV_FAST_TRAP 1275 * FUNCTION: HV_FAST_TTRACE_BUF_INFO 1276 * RET0: status 1277 * RET1: real address 1278 * RET2: size 1279 * ERRORS: None defined. 1280 * 1281 * Returns the size and location of the previously declared trap-trace 1282 * buffer. In the event that no buffer was previously defined, or the 1283 * buffer is disabled, this call will return a size of zero bytes. 1284 */ 1285#define HV_FAST_TTRACE_BUF_INFO 0x91 1286 1287/* ttrace_enable() 1288 * TRAP: HV_FAST_TRAP 1289 * FUNCTION: HV_FAST_TTRACE_ENABLE 1290 * ARG0: enable 1291 * RET0: status 1292 * RET1: previous enable state 1293 * ERRORS: EINVAL No trap trace buffer currently defined 1294 * 1295 * Enable or disable trap tracing, and return the previous enabled 1296 * state in RET1. Future systems may define various flags for the 1297 * enable argument (ARG0), for the moment a guest should pass 1298 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all 1299 * tracing - which will ensure future compatability. 1300 */ 1301#define HV_FAST_TTRACE_ENABLE 0x92 1302 1303/* ttrace_freeze() 1304 * TRAP: HV_FAST_TRAP 1305 * FUNCTION: HV_FAST_TTRACE_FREEZE 1306 * ARG0: freeze 1307 * RET0: status 1308 * RET1: previous freeze state 1309 * ERRORS: EINVAL No trap trace buffer currently defined 1310 * 1311 * Freeze or unfreeze trap tracing, returning the previous freeze 1312 * state in RET1. A guest should pass a non-zero value to freeze and 1313 * a zero value to unfreeze all tracing. The returned previous state 1314 * is 0 for not frozen and 1 for frozen. 1315 */ 1316#define HV_FAST_TTRACE_FREEZE 0x93 1317 1318/* ttrace_addentry() 1319 * TRAP: HV_TTRACE_ADDENTRY_TRAP 1320 * ARG0: tag (16-bits) 1321 * ARG1: data word 0 1322 * ARG2: data word 1 1323 * ARG3: data word 2 1324 * ARG4: data word 3 1325 * RET0: status 1326 * ERRORS: EINVAL No trap trace buffer currently defined 1327 * 1328 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0 1329 * is modified - none of the other registers holding arguments are 1330 * volatile across this hypervisor service. 1331 */ 1332 1333/* Core dump services. 1334 * 1335 * Since the hypervisor viraulizes and thus obscures a lot of the 1336 * physical machine layout and state, traditional OS crash dumps can 1337 * be difficult to diagnose especially when the problem is a 1338 * configuration error of some sort. 1339 * 1340 * The dump services provide an opaque buffer into which the 1341 * hypervisor can place it's internal state in order to assist in 1342 * debugging such situations. The contents are opaque and extremely 1343 * platform and hypervisor implementation specific. The guest, during 1344 * a core dump, requests that the hypervisor update any information in 1345 * the dump buffer in preparation to being dumped as part of the 1346 * domain's memory image. 1347 */ 1348 1349/* dump_buf_update() 1350 * TRAP: HV_FAST_TRAP 1351 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE 1352 * ARG0: real address 1353 * ARG1: size 1354 * RET0: status 1355 * RET1: required size of dump buffer 1356 * ERRORS: ENORADDR Invalid real address 1357 * EBADALIGN Real address is not aligned on a 64-byte 1358 * boundary 1359 * EINVAL Size is non-zero but less than minimum size 1360 * required 1361 * ENOTSUPPORTED Operation not supported on current logical 1362 * domain 1363 * 1364 * Declare a domain dump buffer to the hypervisor. The real address 1365 * provided for the domain dump buffer must be 64-byte aligned. The 1366 * size specifies the size of the dump buffer and may be larger than 1367 * the minimum size specified in the machine description. The 1368 * hypervisor will fill the dump buffer with opaque data. 1369 * 1370 * Note: A guest may elect to include dump buffer contents as part of a crash 1371 * dump to assist with debugging. This function may be called any number 1372 * of times so that a guest may relocate a dump buffer, or create 1373 * "snapshots" of any dump-buffer information. Each call to 1374 * dump_buf_update() atomically declares the new dump buffer to the 1375 * hypervisor. 1376 * 1377 * A specified size of 0 unconfigures the dump buffer. If the real 1378 * address is illegal or badly aligned, then any currently active dump 1379 * buffer is disabled and an error is returned. 1380 * 1381 * In the event that the call fails with EINVAL, RET1 contains the 1382 * minimum size requires by the hypervisor for a valid dump buffer. 1383 */ 1384#define HV_FAST_DUMP_BUF_UPDATE 0x94 1385 1386/* dump_buf_info() 1387 * TRAP: HV_FAST_TRAP 1388 * FUNCTION: HV_FAST_DUMP_BUF_INFO 1389 * RET0: status 1390 * RET1: real address of current dump buffer 1391 * RET2: size of current dump buffer 1392 * ERRORS: No errors defined. 1393 * 1394 * Return the currently configures dump buffer description. A 1395 * returned size of 0 bytes indicates an undefined dump buffer. In 1396 * this case the return address in RET1 is undefined. 1397 */ 1398#define HV_FAST_DUMP_BUF_INFO 0x95 1399 1400/* Device interrupt services. 1401 * 1402 * Device interrupts are allocated to system bus bridges by the hypervisor, 1403 * and described to OBP in the machine description. OBP then describes 1404 * these interrupts to the OS via properties in the device tree. 1405 * 1406 * Terminology: 1407 * 1408 * cpuid Unique opaque value which represents a target cpu. 1409 * 1410 * devhandle Device handle. It uniquely identifies a device, and 1411 * consistes of the lower 28-bits of the hi-cell of the 1412 * first entry of the device's "reg" property in the 1413 * OBP device tree. 1414 * 1415 * devino Device interrupt number. Specifies the relative 1416 * interrupt number within the device. The unique 1417 * combination of devhandle and devino are used to 1418 * identify a specific device interrupt. 1419 * 1420 * Note: The devino value is the same as the values in the 1421 * "interrupts" property or "interrupt-map" property 1422 * in the OBP device tree for that device. 1423 * 1424 * sysino System interrupt number. A 64-bit unsigned interger 1425 * representing a unique interrupt within a virtual 1426 * machine. 1427 * 1428 * intr_state A flag representing the interrupt state for a given 1429 * sysino. The state values are defined below. 1430 * 1431 * intr_enabled A flag representing the 'enabled' state for a given 1432 * sysino. The enable values are defined below. 1433 */ 1434 1435#define HV_INTR_STATE_IDLE 0 /* Nothing pending */ 1436#define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */ 1437#define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */ 1438 1439#define HV_INTR_DISABLED 0 /* sysino not enabled */ 1440#define HV_INTR_ENABLED 1 /* sysino enabled */ 1441 1442/* intr_devino_to_sysino() 1443 * TRAP: HV_FAST_TRAP 1444 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO 1445 * ARG0: devhandle 1446 * ARG1: devino 1447 * RET0: status 1448 * RET1: sysino 1449 * ERRORS: EINVAL Invalid devhandle/devino 1450 * 1451 * Converts a device specific interrupt number of the given 1452 * devhandle/devino into a system specific ino (sysino). 1453 */ 1454#define HV_FAST_INTR_DEVINO2SYSINO 0xa0 1455 1456#ifndef __ASSEMBLY__ 1457extern unsigned long sun4v_devino_to_sysino(unsigned long devhandle, 1458 unsigned long devino); 1459#endif 1460 1461/* intr_getenabled() 1462 * TRAP: HV_FAST_TRAP 1463 * FUNCTION: HV_FAST_INTR_GETENABLED 1464 * ARG0: sysino 1465 * RET0: status 1466 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1467 * ERRORS: EINVAL Invalid sysino 1468 * 1469 * Returns interrupt enabled state in RET1 for the interrupt defined 1470 * by the given sysino. 1471 */ 1472#define HV_FAST_INTR_GETENABLED 0xa1 1473 1474#ifndef __ASSEMBLY__ 1475extern unsigned long sun4v_intr_getenabled(unsigned long sysino); 1476#endif 1477 1478/* intr_setenabled() 1479 * TRAP: HV_FAST_TRAP 1480 * FUNCTION: HV_FAST_INTR_SETENABLED 1481 * ARG0: sysino 1482 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1483 * RET0: status 1484 * ERRORS: EINVAL Invalid sysino or intr_enabled value 1485 * 1486 * Set the 'enabled' state of the interrupt sysino. 1487 */ 1488#define HV_FAST_INTR_SETENABLED 0xa2 1489 1490#ifndef __ASSEMBLY__ 1491extern unsigned long sun4v_intr_setenabled(unsigned long sysino, unsigned long intr_enabled); 1492#endif 1493 1494/* intr_getstate() 1495 * TRAP: HV_FAST_TRAP 1496 * FUNCTION: HV_FAST_INTR_GETSTATE 1497 * ARG0: sysino 1498 * RET0: status 1499 * RET1: intr_state (HV_INTR_STATE_*) 1500 * ERRORS: EINVAL Invalid sysino 1501 * 1502 * Returns current state of the interrupt defined by the given sysino. 1503 */ 1504#define HV_FAST_INTR_GETSTATE 0xa3 1505 1506#ifndef __ASSEMBLY__ 1507extern unsigned long sun4v_intr_getstate(unsigned long sysino); 1508#endif 1509 1510/* intr_setstate() 1511 * TRAP: HV_FAST_TRAP 1512 * FUNCTION: HV_FAST_INTR_SETSTATE 1513 * ARG0: sysino 1514 * ARG1: intr_state (HV_INTR_STATE_*) 1515 * RET0: status 1516 * ERRORS: EINVAL Invalid sysino or intr_state value 1517 * 1518 * Sets the current state of the interrupt described by the given sysino 1519 * value. 1520 * 1521 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending 1522 * interrupt for sysino. 1523 */ 1524#define HV_FAST_INTR_SETSTATE 0xa4 1525 1526#ifndef __ASSEMBLY__ 1527extern unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state); 1528#endif 1529 1530/* intr_gettarget() 1531 * TRAP: HV_FAST_TRAP 1532 * FUNCTION: HV_FAST_INTR_GETTARGET 1533 * ARG0: sysino 1534 * RET0: status 1535 * RET1: cpuid 1536 * ERRORS: EINVAL Invalid sysino 1537 * 1538 * Returns CPU that is the current target of the interrupt defined by 1539 * the given sysino. The CPU value returned is undefined if the target 1540 * has not been set via intr_settarget(). 1541 */ 1542#define HV_FAST_INTR_GETTARGET 0xa5 1543 1544#ifndef __ASSEMBLY__ 1545extern unsigned long sun4v_intr_gettarget(unsigned long sysino); 1546#endif 1547 1548/* intr_settarget() 1549 * TRAP: HV_FAST_TRAP 1550 * FUNCTION: HV_FAST_INTR_SETTARGET 1551 * ARG0: sysino 1552 * ARG1: cpuid 1553 * RET0: status 1554 * ERRORS: EINVAL Invalid sysino 1555 * ENOCPU Invalid cpuid 1556 * 1557 * Set the target CPU for the interrupt defined by the given sysino. 1558 */ 1559#define HV_FAST_INTR_SETTARGET 0xa6 1560 1561#ifndef __ASSEMBLY__ 1562extern unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid); 1563#endif 1564 1565/* vintr_get_cookie() 1566 * TRAP: HV_FAST_TRAP 1567 * FUNCTION: HV_FAST_VINTR_GET_COOKIE 1568 * ARG0: device handle 1569 * ARG1: device ino 1570 * RET0: status 1571 * RET1: cookie 1572 */ 1573#define HV_FAST_VINTR_GET_COOKIE 0xa7 1574 1575/* vintr_set_cookie() 1576 * TRAP: HV_FAST_TRAP 1577 * FUNCTION: HV_FAST_VINTR_SET_COOKIE 1578 * ARG0: device handle 1579 * ARG1: device ino 1580 * ARG2: cookie 1581 * RET0: status 1582 */ 1583#define HV_FAST_VINTR_SET_COOKIE 0xa8 1584 1585/* vintr_get_valid() 1586 * TRAP: HV_FAST_TRAP 1587 * FUNCTION: HV_FAST_VINTR_GET_VALID 1588 * ARG0: device handle 1589 * ARG1: device ino 1590 * RET0: status 1591 * RET1: valid state 1592 */ 1593#define HV_FAST_VINTR_GET_VALID 0xa9 1594 1595/* vintr_set_valid() 1596 * TRAP: HV_FAST_TRAP 1597 * FUNCTION: HV_FAST_VINTR_SET_VALID 1598 * ARG0: device handle 1599 * ARG1: device ino 1600 * ARG2: valid state 1601 * RET0: status 1602 */ 1603#define HV_FAST_VINTR_SET_VALID 0xaa 1604 1605/* vintr_get_state() 1606 * TRAP: HV_FAST_TRAP 1607 * FUNCTION: HV_FAST_VINTR_GET_STATE 1608 * ARG0: device handle 1609 * ARG1: device ino 1610 * RET0: status 1611 * RET1: state 1612 */ 1613#define HV_FAST_VINTR_GET_STATE 0xab 1614 1615/* vintr_set_state() 1616 * TRAP: HV_FAST_TRAP 1617 * FUNCTION: HV_FAST_VINTR_SET_STATE 1618 * ARG0: device handle 1619 * ARG1: device ino 1620 * ARG2: state 1621 * RET0: status 1622 */ 1623#define HV_FAST_VINTR_SET_STATE 0xac 1624 1625/* vintr_get_target() 1626 * TRAP: HV_FAST_TRAP 1627 * FUNCTION: HV_FAST_VINTR_GET_TARGET 1628 * ARG0: device handle 1629 * ARG1: device ino 1630 * RET0: status 1631 * RET1: cpuid 1632 */ 1633#define HV_FAST_VINTR_GET_TARGET 0xad 1634 1635/* vintr_set_target() 1636 * TRAP: HV_FAST_TRAP 1637 * FUNCTION: HV_FAST_VINTR_SET_TARGET 1638 * ARG0: device handle 1639 * ARG1: device ino 1640 * ARG2: cpuid 1641 * RET0: status 1642 */ 1643#define HV_FAST_VINTR_SET_TARGET 0xae 1644 1645#ifndef __ASSEMBLY__ 1646extern unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle, 1647 unsigned long dev_ino, 1648 unsigned long *cookie); 1649extern unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle, 1650 unsigned long dev_ino, 1651 unsigned long cookie); 1652extern unsigned long sun4v_vintr_get_valid(unsigned long dev_handle, 1653 unsigned long dev_ino, 1654 unsigned long *valid); 1655extern unsigned long sun4v_vintr_set_valid(unsigned long dev_handle, 1656 unsigned long dev_ino, 1657 unsigned long valid); 1658extern unsigned long sun4v_vintr_get_state(unsigned long dev_handle, 1659 unsigned long dev_ino, 1660 unsigned long *state); 1661extern unsigned long sun4v_vintr_set_state(unsigned long dev_handle, 1662 unsigned long dev_ino, 1663 unsigned long state); 1664extern unsigned long sun4v_vintr_get_target(unsigned long dev_handle, 1665 unsigned long dev_ino, 1666 unsigned long *cpuid); 1667extern unsigned long sun4v_vintr_set_target(unsigned long dev_handle, 1668 unsigned long dev_ino, 1669 unsigned long cpuid); 1670#endif 1671 1672/* PCI IO services. 1673 * 1674 * See the terminology descriptions in the device interrupt services 1675 * section above as those apply here too. Here are terminology 1676 * definitions specific to these PCI IO services: 1677 * 1678 * tsbnum TSB number. Indentifies which io-tsb is used. 1679 * For this version of the specification, tsbnum 1680 * must be zero. 1681 * 1682 * tsbindex TSB index. Identifies which entry in the TSB 1683 * is used. The first entry is zero. 1684 * 1685 * tsbid A 64-bit aligned data structure which contains 1686 * a tsbnum and a tsbindex. Bits 63:32 contain the 1687 * tsbnum and bits 31:00 contain the tsbindex. 1688 * 1689 * Use the HV_PCI_TSBID() macro to construct such 1690 * values. 1691 * 1692 * io_attributes IO attributes for IOMMU mappings. One of more 1693 * of the attritbute bits are stores in a 64-bit 1694 * value. The values are defined below. 1695 * 1696 * r_addr 64-bit real address 1697 * 1698 * pci_device PCI device address. A PCI device address identifies 1699 * a specific device on a specific PCI bus segment. 1700 * A PCI device address ia a 32-bit unsigned integer 1701 * with the following format: 1702 * 1703 * 00000000.bbbbbbbb.dddddfff.00000000 1704 * 1705 * Use the HV_PCI_DEVICE_BUILD() macro to construct 1706 * such values. 1707 * 1708 * pci_config_offset 1709 * PCI configureation space offset. For conventional 1710 * PCI a value between 0 and 255. For extended 1711 * configuration space, a value between 0 and 4095. 1712 * 1713 * Note: For PCI configuration space accesses, the offset 1714 * must be aligned to the access size. 1715 * 1716 * error_flag A return value which specifies if the action succeeded 1717 * or failed. 0 means no error, non-0 means some error 1718 * occurred while performing the service. 1719 * 1720 * io_sync_direction 1721 * Direction definition for pci_dma_sync(), defined 1722 * below in HV_PCI_SYNC_*. 1723 * 1724 * io_page_list A list of io_page_addresses, an io_page_address is 1725 * a real address. 1726 * 1727 * io_page_list_p A pointer to an io_page_list. 1728 * 1729 * "size based byte swap" - Some functions do size based byte swapping 1730 * which allows sw to access pointers and 1731 * counters in native form when the processor 1732 * operates in a different endianness than the 1733 * IO bus. Size-based byte swapping converts a 1734 * multi-byte field between big-endian and 1735 * little-endian format. 1736 */ 1737 1738#define HV_PCI_MAP_ATTR_READ 0x01 1739#define HV_PCI_MAP_ATTR_WRITE 0x02 1740 1741#define HV_PCI_DEVICE_BUILD(b,d,f) \ 1742 ((((b) & 0xff) << 16) | \ 1743 (((d) & 0x1f) << 11) | \ 1744 (((f) & 0x07) << 8)) 1745 1746#define HV_PCI_TSBID(__tsb_num, __tsb_index) \ 1747 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index))) 1748 1749#define HV_PCI_SYNC_FOR_DEVICE 0x01 1750#define HV_PCI_SYNC_FOR_CPU 0x02 1751 1752/* pci_iommu_map() 1753 * TRAP: HV_FAST_TRAP 1754 * FUNCTION: HV_FAST_PCI_IOMMU_MAP 1755 * ARG0: devhandle 1756 * ARG1: tsbid 1757 * ARG2: #ttes 1758 * ARG3: io_attributes 1759 * ARG4: io_page_list_p 1760 * RET0: status 1761 * RET1: #ttes mapped 1762 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes 1763 * EBADALIGN Improperly aligned real address 1764 * ENORADDR Invalid real address 1765 * 1766 * Create IOMMU mappings in the sun4v device defined by the given 1767 * devhandle. The mappings are created in the TSB defined by the 1768 * tsbnum component of the given tsbid. The first mapping is created 1769 * in the TSB i ndex defined by the tsbindex component of the given tsbid. 1770 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex, 1771 * the second at tsbnum, tsbindex + 1, etc. 1772 * 1773 * All mappings are created with the attributes defined by the io_attributes 1774 * argument. The page mapping addresses are described in the io_page_list 1775 * defined by the given io_page_list_p, which is a pointer to the io_page_list. 1776 * The first entry in the io_page_list is the address for the first iotte, the 1777 * 2nd for the 2nd iotte, and so on. 1778 * 1779 * Each io_page_address in the io_page_list must be appropriately aligned. 1780 * #ttes must be greater than zero. For this version of the spec, the tsbnum 1781 * component of the given tsbid must be zero. 1782 * 1783 * Returns the actual number of mappings creates, which may be less than 1784 * or equal to the argument #ttes. If the function returns a value which 1785 * is less than the #ttes, the caller may continus to call the function with 1786 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are 1787 * mapped. 1788 * 1789 * Note: This function does not imply an iotte cache flush. The guest must 1790 * demap an entry before re-mapping it. 1791 */ 1792#define HV_FAST_PCI_IOMMU_MAP 0xb0 1793 1794/* pci_iommu_demap() 1795 * TRAP: HV_FAST_TRAP 1796 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP 1797 * ARG0: devhandle 1798 * ARG1: tsbid 1799 * ARG2: #ttes 1800 * RET0: status 1801 * RET1: #ttes demapped 1802 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1803 * 1804 * Demap and flush IOMMU mappings in the device defined by the given 1805 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum 1806 * component of the given tsbid, starting at the TSB index defined by the 1807 * tsbindex component of the given tsbid. 1808 * 1809 * For this version of the spec, the tsbnum of the given tsbid must be zero. 1810 * #ttes must be greater than zero. 1811 * 1812 * Returns the actual number of ttes demapped, which may be less than or equal 1813 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller 1814 * may continue to call this function with updated tsbid and #ttes arguments 1815 * until all pages are demapped. 1816 * 1817 * Note: Entries do not have to be mapped to be demapped. A demap of an 1818 * unmapped page will flush the entry from the tte cache. 1819 */ 1820#define HV_FAST_PCI_IOMMU_DEMAP 0xb1 1821 1822/* pci_iommu_getmap() 1823 * TRAP: HV_FAST_TRAP 1824 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP 1825 * ARG0: devhandle 1826 * ARG1: tsbid 1827 * RET0: status 1828 * RET1: io_attributes 1829 * RET2: real address 1830 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1831 * ENOMAP Mapping is not valid, no translation exists 1832 * 1833 * Read and return the mapping in the device described by the given devhandle 1834 * and tsbid. If successful, the io_attributes shall be returned in RET1 1835 * and the page address of the mapping shall be returned in RET2. 1836 * 1837 * For this version of the spec, the tsbnum component of the given tsbid 1838 * must be zero. 1839 */ 1840#define HV_FAST_PCI_IOMMU_GETMAP 0xb2 1841 1842/* pci_iommu_getbypass() 1843 * TRAP: HV_FAST_TRAP 1844 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS 1845 * ARG0: devhandle 1846 * ARG1: real address 1847 * ARG2: io_attributes 1848 * RET0: status 1849 * RET1: io_addr 1850 * ERRORS: EINVAL Invalid devhandle/io_attributes 1851 * ENORADDR Invalid real address 1852 * ENOTSUPPORTED Function not supported in this implementation. 1853 * 1854 * Create a "special" mapping in the device described by the given devhandle, 1855 * for the given real address and attributes. Return the IO address in RET1 1856 * if successful. 1857 */ 1858#define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3 1859 1860/* pci_config_get() 1861 * TRAP: HV_FAST_TRAP 1862 * FUNCTION: HV_FAST_PCI_CONFIG_GET 1863 * ARG0: devhandle 1864 * ARG1: pci_device 1865 * ARG2: pci_config_offset 1866 * ARG3: size 1867 * RET0: status 1868 * RET1: error_flag 1869 * RET2: data 1870 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1871 * EBADALIGN pci_config_offset not size aligned 1872 * ENOACCESS Access to this offset is not permitted 1873 * 1874 * Read PCI configuration space for the adapter described by the given 1875 * devhandle. Read size (1, 2, or 4) bytes of data from the given 1876 * pci_device, at pci_config_offset from the beginning of the device's 1877 * configuration space. If there was no error, RET1 is set to zero and 1878 * RET2 is set to the data read. Insignificant bits in RET2 are not 1879 * guarenteed to have any specific value and therefore must be ignored. 1880 * 1881 * The data returned in RET2 is size based byte swapped. 1882 * 1883 * If an error occurs during the read, set RET1 to a non-zero value. The 1884 * given pci_config_offset must be 'size' aligned. 1885 */ 1886#define HV_FAST_PCI_CONFIG_GET 0xb4 1887 1888/* pci_config_put() 1889 * TRAP: HV_FAST_TRAP 1890 * FUNCTION: HV_FAST_PCI_CONFIG_PUT 1891 * ARG0: devhandle 1892 * ARG1: pci_device 1893 * ARG2: pci_config_offset 1894 * ARG3: size 1895 * ARG4: data 1896 * RET0: status 1897 * RET1: error_flag 1898 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1899 * EBADALIGN pci_config_offset not size aligned 1900 * ENOACCESS Access to this offset is not permitted 1901 * 1902 * Write PCI configuration space for the adapter described by the given 1903 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation, 1904 * at pci_config_offset from the beginning of the device's configuration 1905 * space. The data argument contains the data to be written to configuration 1906 * space. Prior to writing, the data is size based byte swapped. 1907 * 1908 * If an error occurs during the write access, do not generate an error 1909 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero. 1910 * The given pci_config_offset must be 'size' aligned. 1911 * 1912 * This function is permitted to read from offset zero in the configuration 1913 * space described by the given pci_device if necessary to ensure that the 1914 * write access to config space completes. 1915 */ 1916#define HV_FAST_PCI_CONFIG_PUT 0xb5 1917 1918/* pci_peek() 1919 * TRAP: HV_FAST_TRAP 1920 * FUNCTION: HV_FAST_PCI_PEEK 1921 * ARG0: devhandle 1922 * ARG1: real address 1923 * ARG2: size 1924 * RET0: status 1925 * RET1: error_flag 1926 * RET2: data 1927 * ERRORS: EINVAL Invalid devhandle or size 1928 * EBADALIGN Improperly aligned real address 1929 * ENORADDR Bad real address 1930 * ENOACCESS Guest access prohibited 1931 * 1932 * Attempt to read the IO address given by the given devhandle, real address, 1933 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single 1934 * access operation using the given size. If an error occurs when reading 1935 * from the given location, do not generate an error report, but return a 1936 * non-zero value in RET1. If the read was successful, return zero in RET1 1937 * and return the actual data read in RET2. The data returned is size based 1938 * byte swapped. 1939 * 1940 * Non-significant bits in RET2 are not guarenteed to have any specific value 1941 * and therefore must be ignored. If RET1 is returned as non-zero, the data 1942 * value is not guarenteed to have any specific value and should be ignored. 1943 * 1944 * The caller must have permission to read from the given devhandle, real 1945 * address, which must be an IO address. The argument real address must be a 1946 * size aligned address. 1947 * 1948 * The hypervisor implementation of this function must block access to any 1949 * IO address that the guest does not have explicit permission to access. 1950 */ 1951#define HV_FAST_PCI_PEEK 0xb6 1952 1953/* pci_poke() 1954 * TRAP: HV_FAST_TRAP 1955 * FUNCTION: HV_FAST_PCI_POKE 1956 * ARG0: devhandle 1957 * ARG1: real address 1958 * ARG2: size 1959 * ARG3: data 1960 * ARG4: pci_device 1961 * RET0: status 1962 * RET1: error_flag 1963 * ERRORS: EINVAL Invalid devhandle, size, or pci_device 1964 * EBADALIGN Improperly aligned real address 1965 * ENORADDR Bad real address 1966 * ENOACCESS Guest access prohibited 1967 * ENOTSUPPORTED Function is not supported by implementation 1968 * 1969 * Attempt to write data to the IO address given by the given devhandle, 1970 * real address, and size. Size must be 1, 2, 4, or 8. The write is 1971 * performed as a single access operation using the given size. Prior to 1972 * writing the data is size based swapped. 1973 * 1974 * If an error occurs when writing to the given location, do not generate an 1975 * error report, but return a non-zero value in RET1. If the write was 1976 * successful, return zero in RET1. 1977 * 1978 * pci_device describes the configuration address of the device being 1979 * written to. The implementation may safely read from offset 0 with 1980 * the configuration space of the device described by devhandle and 1981 * pci_device in order to guarantee that the write portion of the operation 1982 * completes 1983 * 1984 * Any error that occurs due to the read shall be reported using the normal 1985 * error reporting mechanisms .. the read error is not suppressed. 1986 * 1987 * The caller must have permission to write to the given devhandle, real 1988 * address, which must be an IO address. The argument real address must be a 1989 * size aligned address. The caller must have permission to read from 1990 * the given devhandle, pci_device cofiguration space offset 0. 1991 * 1992 * The hypervisor implementation of this function must block access to any 1993 * IO address that the guest does not have explicit permission to access. 1994 */ 1995#define HV_FAST_PCI_POKE 0xb7 1996 1997/* pci_dma_sync() 1998 * TRAP: HV_FAST_TRAP 1999 * FUNCTION: HV_FAST_PCI_DMA_SYNC 2000 * ARG0: devhandle 2001 * ARG1: real address 2002 * ARG2: size 2003 * ARG3: io_sync_direction 2004 * RET0: status 2005 * RET1: #synced 2006 * ERRORS: EINVAL Invalid devhandle or io_sync_direction 2007 * ENORADDR Bad real address 2008 * 2009 * Synchronize a memory region described by the given real address and size, 2010 * for the device defined by the given devhandle using the direction(s) 2011 * defined by the given io_sync_direction. The argument size is the size of 2012 * the memory region in bytes. 2013 * 2014 * Return the actual number of bytes synchronized in the return value #synced, 2015 * which may be less than or equal to the argument size. If the return 2016 * value #synced is less than size, the caller must continue to call this 2017 * function with updated real address and size arguments until the entire 2018 * memory region is synchronized. 2019 */ 2020#define HV_FAST_PCI_DMA_SYNC 0xb8 2021 2022/* PCI MSI services. */ 2023 2024#define HV_MSITYPE_MSI32 0x00 2025#define HV_MSITYPE_MSI64 0x01 2026 2027#define HV_MSIQSTATE_IDLE 0x00 2028#define HV_MSIQSTATE_ERROR 0x01 2029 2030#define HV_MSIQ_INVALID 0x00 2031#define HV_MSIQ_VALID 0x01 2032 2033#define HV_MSISTATE_IDLE 0x00 2034#define HV_MSISTATE_DELIVERED 0x01 2035 2036#define HV_MSIVALID_INVALID 0x00 2037#define HV_MSIVALID_VALID 0x01 2038 2039#define HV_PCIE_MSGTYPE_PME_MSG 0x18 2040#define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b 2041#define HV_PCIE_MSGTYPE_CORR_MSG 0x30 2042#define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31 2043#define HV_PCIE_MSGTYPE_FATAL_MSG 0x33 2044 2045#define HV_MSG_INVALID 0x00 2046#define HV_MSG_VALID 0x01 2047 2048/* pci_msiq_conf() 2049 * TRAP: HV_FAST_TRAP 2050 * FUNCTION: HV_FAST_PCI_MSIQ_CONF 2051 * ARG0: devhandle 2052 * ARG1: msiqid 2053 * ARG2: real address 2054 * ARG3: number of entries 2055 * RET0: status 2056 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries 2057 * EBADALIGN Improperly aligned real address 2058 * ENORADDR Bad real address 2059 * 2060 * Configure the MSI queue given by the devhandle and msiqid arguments, 2061 * and to be placed at the given real address and be of the given 2062 * number of entries. The real address must be aligned exactly to match 2063 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry 2064 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ 2065 * Head and Tail are initialized so that the MSI-EQ is 'empty'. 2066 * 2067 * Implementation Note: Certain implementations have fixed sized queues. In 2068 * that case, number of entries must contain the correct 2069 * value. 2070 */ 2071#define HV_FAST_PCI_MSIQ_CONF 0xc0 2072 2073/* pci_msiq_info() 2074 * TRAP: HV_FAST_TRAP 2075 * FUNCTION: HV_FAST_PCI_MSIQ_INFO 2076 * ARG0: devhandle 2077 * ARG1: msiqid 2078 * RET0: status 2079 * RET1: real address 2080 * RET2: number of entries 2081 * ERRORS: EINVAL Invalid devhandle or msiqid 2082 * 2083 * Return the configuration information for the MSI queue described 2084 * by the given devhandle and msiqid. The base address of the queue 2085 * is returned in ARG1 and the number of entries is returned in ARG2. 2086 * If the queue is unconfigured, the real address is undefined and the 2087 * number of entries will be returned as zero. 2088 */ 2089#define HV_FAST_PCI_MSIQ_INFO 0xc1 2090 2091/* pci_msiq_getvalid() 2092 * TRAP: HV_FAST_TRAP 2093 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2094 * ARG0: devhandle 2095 * ARG1: msiqid 2096 * RET0: status 2097 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2098 * ERRORS: EINVAL Invalid devhandle or msiqid 2099 * 2100 * Get the valid state of the MSI-EQ described by the given devhandle and 2101 * msiqid. 2102 */ 2103#define HV_FAST_PCI_MSIQ_GETVALID 0xc2 2104 2105/* pci_msiq_setvalid() 2106 * TRAP: HV_FAST_TRAP 2107 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID 2108 * ARG0: devhandle 2109 * ARG1: msiqid 2110 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2111 * RET0: status 2112 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid 2113 * value or MSI EQ is uninitialized 2114 * 2115 * Set the valid state of the MSI-EQ described by the given devhandle and 2116 * msiqid to the given msiqvalid. 2117 */ 2118#define HV_FAST_PCI_MSIQ_SETVALID 0xc3 2119 2120/* pci_msiq_getstate() 2121 * TRAP: HV_FAST_TRAP 2122 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE 2123 * ARG0: devhandle 2124 * ARG1: msiqid 2125 * RET0: status 2126 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2127 * ERRORS: EINVAL Invalid devhandle or msiqid 2128 * 2129 * Get the state of the MSI-EQ described by the given devhandle and 2130 * msiqid. 2131 */ 2132#define HV_FAST_PCI_MSIQ_GETSTATE 0xc4 2133 2134/* pci_msiq_getvalid() 2135 * TRAP: HV_FAST_TRAP 2136 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2137 * ARG0: devhandle 2138 * ARG1: msiqid 2139 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2140 * RET0: status 2141 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate 2142 * value or MSI EQ is uninitialized 2143 * 2144 * Set the state of the MSI-EQ described by the given devhandle and 2145 * msiqid to the given msiqvalid. 2146 */ 2147#define HV_FAST_PCI_MSIQ_SETSTATE 0xc5 2148 2149/* pci_msiq_gethead() 2150 * TRAP: HV_FAST_TRAP 2151 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD 2152 * ARG0: devhandle 2153 * ARG1: msiqid 2154 * RET0: status 2155 * RET1: msiqhead 2156 * ERRORS: EINVAL Invalid devhandle or msiqid 2157 * 2158 * Get the current MSI EQ queue head for the MSI-EQ described by the 2159 * given devhandle and msiqid. 2160 */ 2161#define HV_FAST_PCI_MSIQ_GETHEAD 0xc6 2162 2163/* pci_msiq_sethead() 2164 * TRAP: HV_FAST_TRAP 2165 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD 2166 * ARG0: devhandle 2167 * ARG1: msiqid 2168 * ARG2: msiqhead 2169 * RET0: status 2170 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead, 2171 * or MSI EQ is uninitialized 2172 * 2173 * Set the current MSI EQ queue head for the MSI-EQ described by the 2174 * given devhandle and msiqid. 2175 */ 2176#define HV_FAST_PCI_MSIQ_SETHEAD 0xc7 2177 2178/* pci_msiq_gettail() 2179 * TRAP: HV_FAST_TRAP 2180 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL 2181 * ARG0: devhandle 2182 * ARG1: msiqid 2183 * RET0: status 2184 * RET1: msiqtail 2185 * ERRORS: EINVAL Invalid devhandle or msiqid 2186 * 2187 * Get the current MSI EQ queue tail for the MSI-EQ described by the 2188 * given devhandle and msiqid. 2189 */ 2190#define HV_FAST_PCI_MSIQ_GETTAIL 0xc8 2191 2192/* pci_msi_getvalid() 2193 * TRAP: HV_FAST_TRAP 2194 * FUNCTION: HV_FAST_PCI_MSI_GETVALID 2195 * ARG0: devhandle 2196 * ARG1: msinum 2197 * RET0: status 2198 * RET1: msivalidstate 2199 * ERRORS: EINVAL Invalid devhandle or msinum 2200 * 2201 * Get the current valid/enabled state for the MSI defined by the 2202 * given devhandle and msinum. 2203 */ 2204#define HV_FAST_PCI_MSI_GETVALID 0xc9 2205 2206/* pci_msi_setvalid() 2207 * TRAP: HV_FAST_TRAP 2208 * FUNCTION: HV_FAST_PCI_MSI_SETVALID 2209 * ARG0: devhandle 2210 * ARG1: msinum 2211 * ARG2: msivalidstate 2212 * RET0: status 2213 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate 2214 * 2215 * Set the current valid/enabled state for the MSI defined by the 2216 * given devhandle and msinum. 2217 */ 2218#define HV_FAST_PCI_MSI_SETVALID 0xca 2219 2220/* pci_msi_getmsiq() 2221 * TRAP: HV_FAST_TRAP 2222 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ 2223 * ARG0: devhandle 2224 * ARG1: msinum 2225 * RET0: status 2226 * RET1: msiqid 2227 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound 2228 * 2229 * Get the MSI EQ that the MSI defined by the given devhandle and 2230 * msinum is bound to. 2231 */ 2232#define HV_FAST_PCI_MSI_GETMSIQ 0xcb 2233 2234/* pci_msi_setmsiq() 2235 * TRAP: HV_FAST_TRAP 2236 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ 2237 * ARG0: devhandle 2238 * ARG1: msinum 2239 * ARG2: msitype 2240 * ARG3: msiqid 2241 * RET0: status 2242 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid 2243 * 2244 * Set the MSI EQ that the MSI defined by the given devhandle and 2245 * msinum is bound to. 2246 */ 2247#define HV_FAST_PCI_MSI_SETMSIQ 0xcc 2248 2249/* pci_msi_getstate() 2250 * TRAP: HV_FAST_TRAP 2251 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE 2252 * ARG0: devhandle 2253 * ARG1: msinum 2254 * RET0: status 2255 * RET1: msistate 2256 * ERRORS: EINVAL Invalid devhandle or msinum 2257 * 2258 * Get the state of the MSI defined by the given devhandle and msinum. 2259 * If not initialized, return HV_MSISTATE_IDLE. 2260 */ 2261#define HV_FAST_PCI_MSI_GETSTATE 0xcd 2262 2263/* pci_msi_setstate() 2264 * TRAP: HV_FAST_TRAP 2265 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE 2266 * ARG0: devhandle 2267 * ARG1: msinum 2268 * ARG2: msistate 2269 * RET0: status 2270 * ERRORS: EINVAL Invalid devhandle or msinum or msistate 2271 * 2272 * Set the state of the MSI defined by the given devhandle and msinum. 2273 */ 2274#define HV_FAST_PCI_MSI_SETSTATE 0xce 2275 2276/* pci_msg_getmsiq() 2277 * TRAP: HV_FAST_TRAP 2278 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ 2279 * ARG0: devhandle 2280 * ARG1: msgtype 2281 * RET0: status 2282 * RET1: msiqid 2283 * ERRORS: EINVAL Invalid devhandle or msgtype 2284 * 2285 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype. 2286 */ 2287#define HV_FAST_PCI_MSG_GETMSIQ 0xd0 2288 2289/* pci_msg_setmsiq() 2290 * TRAP: HV_FAST_TRAP 2291 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ 2292 * ARG0: devhandle 2293 * ARG1: msgtype 2294 * ARG2: msiqid 2295 * RET0: status 2296 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid 2297 * 2298 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype. 2299 */ 2300#define HV_FAST_PCI_MSG_SETMSIQ 0xd1 2301 2302/* pci_msg_getvalid() 2303 * TRAP: HV_FAST_TRAP 2304 * FUNCTION: HV_FAST_PCI_MSG_GETVALID 2305 * ARG0: devhandle 2306 * ARG1: msgtype 2307 * RET0: status 2308 * RET1: msgvalidstate 2309 * ERRORS: EINVAL Invalid devhandle or msgtype 2310 * 2311 * Get the valid/enabled state of the MSG defined by the given 2312 * devhandle and msgtype. 2313 */ 2314#define HV_FAST_PCI_MSG_GETVALID 0xd2 2315 2316/* pci_msg_setvalid() 2317 * TRAP: HV_FAST_TRAP 2318 * FUNCTION: HV_FAST_PCI_MSG_SETVALID 2319 * ARG0: devhandle 2320 * ARG1: msgtype 2321 * ARG2: msgvalidstate 2322 * RET0: status 2323 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate 2324 * 2325 * Set the valid/enabled state of the MSG defined by the given 2326 * devhandle and msgtype. 2327 */ 2328#define HV_FAST_PCI_MSG_SETVALID 0xd3 2329 2330/* Logical Domain Channel services. */ 2331 2332#define LDC_CHANNEL_DOWN 0 2333#define LDC_CHANNEL_UP 1 2334#define LDC_CHANNEL_RESETTING 2 2335 2336/* ldc_tx_qconf() 2337 * TRAP: HV_FAST_TRAP 2338 * FUNCTION: HV_FAST_LDC_TX_QCONF 2339 * ARG0: channel ID 2340 * ARG1: real address base of queue 2341 * ARG2: num entries in queue 2342 * RET0: status 2343 * 2344 * Configure transmit queue for the LDC endpoint specified by the 2345 * given channel ID, to be placed at the given real address, and 2346 * be of the given num entries. Num entries must be a power of two. 2347 * The real address base of the queue must be aligned on the queue 2348 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2349 * queue must be aligned on a 2048 byte real address boundary. 2350 * 2351 * Upon configuration of a valid transmit queue the head and tail 2352 * pointers are set to a hypervisor specific identical value indicating 2353 * that the queue initially is empty. 2354 * 2355 * The endpoint's transmit queue is un-configured if num entries is zero. 2356 * 2357 * The maximum number of entries for each queue for a specific cpu may be 2358 * determined from the machine description. A transmit queue may be 2359 * specified even in the event that the LDC is down (peer endpoint has no 2360 * receive queue specified). Transmission will begin as soon as the peer 2361 * endpoint defines a receive queue. 2362 * 2363 * It is recommended that a guest wait for a transmit queue to empty prior 2364 * to reconfiguring it, or un-configuring it. Re or un-configuring of a 2365 * non-empty transmit queue behaves exactly as defined above, however it 2366 * is undefined as to how many of the pending entries in the original queue 2367 * will be delivered prior to the re-configuration taking effect. 2368 * Furthermore, as the queue configuration causes a reset of the head and 2369 * tail pointers there is no way for a guest to determine how many entries 2370 * have been sent after the configuration operation. 2371 */ 2372#define HV_FAST_LDC_TX_QCONF 0xe0 2373 2374/* ldc_tx_qinfo() 2375 * TRAP: HV_FAST_TRAP 2376 * FUNCTION: HV_FAST_LDC_TX_QINFO 2377 * ARG0: channel ID 2378 * RET0: status 2379 * RET1: real address base of queue 2380 * RET2: num entries in queue 2381 * 2382 * Return the configuration info for the transmit queue of LDC endpoint 2383 * defined by the given channel ID. The real address is the currently 2384 * defined real address base of the defined queue, and num entries is the 2385 * size of the queue in terms of number of entries. 2386 * 2387 * If the specified channel ID is a valid endpoint number, but no transmit 2388 * queue has been defined this service will return success, but with num 2389 * entries set to zero and the real address will have an undefined value. 2390 */ 2391#define HV_FAST_LDC_TX_QINFO 0xe1 2392 2393/* ldc_tx_get_state() 2394 * TRAP: HV_FAST_TRAP 2395 * FUNCTION: HV_FAST_LDC_TX_GET_STATE 2396 * ARG0: channel ID 2397 * RET0: status 2398 * RET1: head offset 2399 * RET2: tail offset 2400 * RET3: channel state 2401 * 2402 * Return the transmit state, and the head and tail queue pointers, for 2403 * the transmit queue of the LDC endpoint defined by the given channel ID. 2404 * The head and tail values are the byte offset of the head and tail 2405 * positions of the transmit queue for the specified endpoint. 2406 */ 2407#define HV_FAST_LDC_TX_GET_STATE 0xe2 2408 2409/* ldc_tx_set_qtail() 2410 * TRAP: HV_FAST_TRAP 2411 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL 2412 * ARG0: channel ID 2413 * ARG1: tail offset 2414 * RET0: status 2415 * 2416 * Update the tail pointer for the transmit queue associated with the LDC 2417 * endpoint defined by the given channel ID. The tail offset specified 2418 * must be aligned on a 64 byte boundary, and calculated so as to increase 2419 * the number of pending entries on the transmit queue. Any attempt to 2420 * decrease the number of pending transmit queue entires is considered 2421 * an invalid tail offset and will result in an EINVAL error. 2422 * 2423 * Since the tail of the transmit queue may not be moved backwards, the 2424 * transmit queue may be flushed by configuring a new transmit queue, 2425 * whereupon the hypervisor will configure the initial transmit head and 2426 * tail pointers to be equal. 2427 */ 2428#define HV_FAST_LDC_TX_SET_QTAIL 0xe3 2429 2430/* ldc_rx_qconf() 2431 * TRAP: HV_FAST_TRAP 2432 * FUNCTION: HV_FAST_LDC_RX_QCONF 2433 * ARG0: channel ID 2434 * ARG1: real address base of queue 2435 * ARG2: num entries in queue 2436 * RET0: status 2437 * 2438 * Configure receive queue for the LDC endpoint specified by the 2439 * given channel ID, to be placed at the given real address, and 2440 * be of the given num entries. Num entries must be a power of two. 2441 * The real address base of the queue must be aligned on the queue 2442 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2443 * queue must be aligned on a 2048 byte real address boundary. 2444 * 2445 * The endpoint's transmit queue is un-configured if num entries is zero. 2446 * 2447 * If a valid receive queue is specified for a local endpoint the LDC is 2448 * in the up state for the purpose of transmission to this endpoint. 2449 * 2450 * The maximum number of entries for each queue for a specific cpu may be 2451 * determined from the machine description. 2452 * 2453 * As receive queue configuration causes a reset of the queue's head and 2454 * tail pointers there is no way for a gues to determine how many entries 2455 * have been received between a preceeding ldc_get_rx_state() API call 2456 * and the completion of the configuration operation. It should be noted 2457 * that datagram delivery is not guarenteed via domain channels anyway, 2458 * and therefore any higher protocol should be resilient to datagram 2459 * loss if necessary. However, to overcome this specific race potential 2460 * it is recommended, for example, that a higher level protocol be employed 2461 * to ensure either retransmission, or ensure that no datagrams are pending 2462 * on the peer endpoint's transmit queue prior to the configuration process. 2463 */ 2464#define HV_FAST_LDC_RX_QCONF 0xe4 2465 2466/* ldc_rx_qinfo() 2467 * TRAP: HV_FAST_TRAP 2468 * FUNCTION: HV_FAST_LDC_RX_QINFO 2469 * ARG0: channel ID 2470 * RET0: status 2471 * RET1: real address base of queue 2472 * RET2: num entries in queue 2473 * 2474 * Return the configuration info for the receive queue of LDC endpoint 2475 * defined by the given channel ID. The real address is the currently 2476 * defined real address base of the defined queue, and num entries is the 2477 * size of the queue in terms of number of entries. 2478 * 2479 * If the specified channel ID is a valid endpoint number, but no receive 2480 * queue has been defined this service will return success, but with num 2481 * entries set to zero and the real address will have an undefined value. 2482 */ 2483#define HV_FAST_LDC_RX_QINFO 0xe5 2484 2485/* ldc_rx_get_state() 2486 * TRAP: HV_FAST_TRAP 2487 * FUNCTION: HV_FAST_LDC_RX_GET_STATE 2488 * ARG0: channel ID 2489 * RET0: status 2490 * RET1: head offset 2491 * RET2: tail offset 2492 * RET3: channel state 2493 * 2494 * Return the receive state, and the head and tail queue pointers, for 2495 * the receive queue of the LDC endpoint defined by the given channel ID. 2496 * The head and tail values are the byte offset of the head and tail 2497 * positions of the receive queue for the specified endpoint. 2498 */ 2499#define HV_FAST_LDC_RX_GET_STATE 0xe6 2500 2501/* ldc_rx_set_qhead() 2502 * TRAP: HV_FAST_TRAP 2503 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD 2504 * ARG0: channel ID 2505 * ARG1: head offset 2506 * RET0: status 2507 * 2508 * Update the head pointer for the receive queue associated with the LDC 2509 * endpoint defined by the given channel ID. The head offset specified 2510 * must be aligned on a 64 byte boundary, and calculated so as to decrease 2511 * the number of pending entries on the receive queue. Any attempt to 2512 * increase the number of pending receive queue entires is considered 2513 * an invalid head offset and will result in an EINVAL error. 2514 * 2515 * The receive queue may be flushed by setting the head offset equal 2516 * to the current tail offset. 2517 */ 2518#define HV_FAST_LDC_RX_SET_QHEAD 0xe7 2519 2520/* LDC Map Table Entry. Each slot is defined by a translation table 2521 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit 2522 * hypervisor invalidation cookie. 2523 */ 2524#define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */ 2525#define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */ 2526#define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */ 2527#define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */ 2528#define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */ 2529#define LDC_MTE_EXEC 0x0000000000000040 /* execute */ 2530#define LDC_MTE_WRITE 0x0000000000000020 /* read */ 2531#define LDC_MTE_READ 0x0000000000000010 /* write */ 2532#define LDC_MTE_SZALL 0x000000000000000f /* page size bits */ 2533#define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */ 2534#define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */ 2535#define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */ 2536#define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */ 2537#define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */ 2538#define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */ 2539#define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */ 2540#define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */ 2541 2542#ifndef __ASSEMBLY__ 2543struct ldc_mtable_entry { 2544 unsigned long mte; 2545 unsigned long cookie; 2546}; 2547#endif 2548 2549/* ldc_set_map_table() 2550 * TRAP: HV_FAST_TRAP 2551 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE 2552 * ARG0: channel ID 2553 * ARG1: table real address 2554 * ARG2: num entries 2555 * RET0: status 2556 * 2557 * Register the MTE table at the given table real address, with the 2558 * specified num entries, for the LDC indicated by the given channel 2559 * ID. 2560 */ 2561#define HV_FAST_LDC_SET_MAP_TABLE 0xea 2562 2563/* ldc_get_map_table() 2564 * TRAP: HV_FAST_TRAP 2565 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE 2566 * ARG0: channel ID 2567 * RET0: status 2568 * RET1: table real address 2569 * RET2: num entries 2570 * 2571 * Return the configuration of the current mapping table registered 2572 * for the given channel ID. 2573 */ 2574#define HV_FAST_LDC_GET_MAP_TABLE 0xeb 2575 2576#define LDC_COPY_IN 0 2577#define LDC_COPY_OUT 1 2578 2579/* ldc_copy() 2580 * TRAP: HV_FAST_TRAP 2581 * FUNCTION: HV_FAST_LDC_COPY 2582 * ARG0: channel ID 2583 * ARG1: LDC_COPY_* direction code 2584 * ARG2: target real address 2585 * ARG3: local real address 2586 * ARG4: length in bytes 2587 * RET0: status 2588 * RET1: actual length in bytes 2589 */ 2590#define HV_FAST_LDC_COPY 0xec 2591 2592#define LDC_MEM_READ 1 2593#define LDC_MEM_WRITE 2 2594#define LDC_MEM_EXEC 4 2595 2596/* ldc_mapin() 2597 * TRAP: HV_FAST_TRAP 2598 * FUNCTION: HV_FAST_LDC_MAPIN 2599 * ARG0: channel ID 2600 * ARG1: cookie 2601 * RET0: status 2602 * RET1: real address 2603 * RET2: LDC_MEM_* permissions 2604 */ 2605#define HV_FAST_LDC_MAPIN 0xed 2606 2607/* ldc_unmap() 2608 * TRAP: HV_FAST_TRAP 2609 * FUNCTION: HV_FAST_LDC_UNMAP 2610 * ARG0: real address 2611 * RET0: status 2612 */ 2613#define HV_FAST_LDC_UNMAP 0xee 2614 2615/* ldc_revoke() 2616 * TRAP: HV_FAST_TRAP 2617 * FUNCTION: HV_FAST_LDC_REVOKE 2618 * ARG0: channel ID 2619 * ARG1: cookie 2620 * ARG2: ldc_mtable_entry cookie 2621 * RET0: status 2622 */ 2623#define HV_FAST_LDC_REVOKE 0xef 2624 2625#ifndef __ASSEMBLY__ 2626extern unsigned long sun4v_ldc_tx_qconf(unsigned long channel, 2627 unsigned long ra, 2628 unsigned long num_entries); 2629extern unsigned long sun4v_ldc_tx_qinfo(unsigned long channel, 2630 unsigned long *ra, 2631 unsigned long *num_entries); 2632extern unsigned long sun4v_ldc_tx_get_state(unsigned long channel, 2633 unsigned long *head_off, 2634 unsigned long *tail_off, 2635 unsigned long *chan_state); 2636extern unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel, 2637 unsigned long tail_off); 2638extern unsigned long sun4v_ldc_rx_qconf(unsigned long channel, 2639 unsigned long ra, 2640 unsigned long num_entries); 2641extern unsigned long sun4v_ldc_rx_qinfo(unsigned long channel, 2642 unsigned long *ra, 2643 unsigned long *num_entries); 2644extern unsigned long sun4v_ldc_rx_get_state(unsigned long channel, 2645 unsigned long *head_off, 2646 unsigned long *tail_off, 2647 unsigned long *chan_state); 2648extern unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel, 2649 unsigned long head_off); 2650extern unsigned long sun4v_ldc_set_map_table(unsigned long channel, 2651 unsigned long ra, 2652 unsigned long num_entries); 2653extern unsigned long sun4v_ldc_get_map_table(unsigned long channel, 2654 unsigned long *ra, 2655 unsigned long *num_entries); 2656extern unsigned long sun4v_ldc_copy(unsigned long channel, 2657 unsigned long dir_code, 2658 unsigned long tgt_raddr, 2659 unsigned long lcl_raddr, 2660 unsigned long len, 2661 unsigned long *actual_len); 2662extern unsigned long sun4v_ldc_mapin(unsigned long channel, 2663 unsigned long cookie, 2664 unsigned long *ra, 2665 unsigned long *perm); 2666extern unsigned long sun4v_ldc_unmap(unsigned long ra); 2667extern unsigned long sun4v_ldc_revoke(unsigned long channel, 2668 unsigned long cookie, 2669 unsigned long mte_cookie); 2670#endif 2671 2672/* Performance counter services. */ 2673 2674#define HV_PERF_JBUS_PERF_CTRL_REG 0x00 2675#define HV_PERF_JBUS_PERF_CNT_REG 0x01 2676#define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02 2677#define HV_PERF_DRAM_PERF_CNT_REG_0 0x03 2678#define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04 2679#define HV_PERF_DRAM_PERF_CNT_REG_1 0x05 2680#define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06 2681#define HV_PERF_DRAM_PERF_CNT_REG_2 0x07 2682#define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08 2683#define HV_PERF_DRAM_PERF_CNT_REG_3 0x09 2684 2685/* get_perfreg() 2686 * TRAP: HV_FAST_TRAP 2687 * FUNCTION: HV_FAST_GET_PERFREG 2688 * ARG0: performance reg number 2689 * RET0: status 2690 * RET1: performance reg value 2691 * ERRORS: EINVAL Invalid performance register number 2692 * ENOACCESS No access allowed to performance counters 2693 * 2694 * Read the value of the given DRAM/JBUS performance counter/control register. 2695 */ 2696#define HV_FAST_GET_PERFREG 0x100 2697 2698/* set_perfreg() 2699 * TRAP: HV_FAST_TRAP 2700 * FUNCTION: HV_FAST_SET_PERFREG 2701 * ARG0: performance reg number 2702 * ARG1: performance reg value 2703 * RET0: status 2704 * ERRORS: EINVAL Invalid performance register number 2705 * ENOACCESS No access allowed to performance counters 2706 * 2707 * Write the given performance reg value to the given DRAM/JBUS 2708 * performance counter/control register. 2709 */ 2710#define HV_FAST_SET_PERFREG 0x101 2711 2712/* MMU statistics services. 2713 * 2714 * The hypervisor maintains MMU statistics and privileged code provides 2715 * a buffer where these statistics can be collected. It is continually 2716 * updated once configured. The layout is as follows: 2717 */ 2718#ifndef __ASSEMBLY__ 2719struct hv_mmu_statistics { 2720 unsigned long immu_tsb_hits_ctx0_8k_tte; 2721 unsigned long immu_tsb_ticks_ctx0_8k_tte; 2722 unsigned long immu_tsb_hits_ctx0_64k_tte; 2723 unsigned long immu_tsb_ticks_ctx0_64k_tte; 2724 unsigned long __reserved1[2]; 2725 unsigned long immu_tsb_hits_ctx0_4mb_tte; 2726 unsigned long immu_tsb_ticks_ctx0_4mb_tte; 2727 unsigned long __reserved2[2]; 2728 unsigned long immu_tsb_hits_ctx0_256mb_tte; 2729 unsigned long immu_tsb_ticks_ctx0_256mb_tte; 2730 unsigned long __reserved3[4]; 2731 unsigned long immu_tsb_hits_ctxnon0_8k_tte; 2732 unsigned long immu_tsb_ticks_ctxnon0_8k_tte; 2733 unsigned long immu_tsb_hits_ctxnon0_64k_tte; 2734 unsigned long immu_tsb_ticks_ctxnon0_64k_tte; 2735 unsigned long __reserved4[2]; 2736 unsigned long immu_tsb_hits_ctxnon0_4mb_tte; 2737 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte; 2738 unsigned long __reserved5[2]; 2739 unsigned long immu_tsb_hits_ctxnon0_256mb_tte; 2740 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte; 2741 unsigned long __reserved6[4]; 2742 unsigned long dmmu_tsb_hits_ctx0_8k_tte; 2743 unsigned long dmmu_tsb_ticks_ctx0_8k_tte; 2744 unsigned long dmmu_tsb_hits_ctx0_64k_tte; 2745 unsigned long dmmu_tsb_ticks_ctx0_64k_tte; 2746 unsigned long __reserved7[2]; 2747 unsigned long dmmu_tsb_hits_ctx0_4mb_tte; 2748 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte; 2749 unsigned long __reserved8[2]; 2750 unsigned long dmmu_tsb_hits_ctx0_256mb_tte; 2751 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte; 2752 unsigned long __reserved9[4]; 2753 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte; 2754 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte; 2755 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte; 2756 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte; 2757 unsigned long __reserved10[2]; 2758 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte; 2759 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte; 2760 unsigned long __reserved11[2]; 2761 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte; 2762 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte; 2763 unsigned long __reserved12[4]; 2764}; 2765#endif 2766 2767/* mmustat_conf() 2768 * TRAP: HV_FAST_TRAP 2769 * FUNCTION: HV_FAST_MMUSTAT_CONF 2770 * ARG0: real address 2771 * RET0: status 2772 * RET1: real address 2773 * ERRORS: ENORADDR Invalid real address 2774 * EBADALIGN Real address not aligned on 64-byte boundary 2775 * EBADTRAP API not supported on this processor 2776 * 2777 * Enable MMU statistic gathering using the buffer at the given real 2778 * address on the current virtual CPU. The new buffer real address 2779 * is given in ARG1, and the previously specified buffer real address 2780 * is returned in RET1, or is returned as zero for the first invocation. 2781 * 2782 * If the passed in real address argument is zero, this will disable 2783 * MMU statistic collection on the current virtual CPU. If an error is 2784 * returned then no statistics are collected. 2785 * 2786 * The buffer contents should be initialized to all zeros before being 2787 * given to the hypervisor or else the statistics will be meaningless. 2788 */ 2789#define HV_FAST_MMUSTAT_CONF 0x102 2790 2791/* mmustat_info() 2792 * TRAP: HV_FAST_TRAP 2793 * FUNCTION: HV_FAST_MMUSTAT_INFO 2794 * RET0: status 2795 * RET1: real address 2796 * ERRORS: EBADTRAP API not supported on this processor 2797 * 2798 * Return the current state and real address of the currently configured 2799 * MMU statistics buffer on the current virtual CPU. 2800 */ 2801#define HV_FAST_MMUSTAT_INFO 0x103 2802 2803#ifndef __ASSEMBLY__ 2804extern unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra); 2805extern unsigned long sun4v_mmustat_info(unsigned long *ra); 2806#endif 2807 2808/* NCS crypto services */ 2809 2810/* ncs_request() sub-function numbers */ 2811#define HV_NCS_QCONF 0x01 2812#define HV_NCS_QTAIL_UPDATE 0x02 2813 2814#ifndef __ASSEMBLY__ 2815struct hv_ncs_queue_entry { 2816 /* MAU Control Register */ 2817 unsigned long mau_control; 2818#define MAU_CONTROL_INV_PARITY 0x0000000000002000 2819#define MAU_CONTROL_STRAND 0x0000000000001800 2820#define MAU_CONTROL_BUSY 0x0000000000000400 2821#define MAU_CONTROL_INT 0x0000000000000200 2822#define MAU_CONTROL_OP 0x00000000000001c0 2823#define MAU_CONTROL_OP_SHIFT 6 2824#define MAU_OP_LOAD_MA_MEMORY 0x0 2825#define MAU_OP_STORE_MA_MEMORY 0x1 2826#define MAU_OP_MODULAR_MULT 0x2 2827#define MAU_OP_MODULAR_REDUCE 0x3 2828#define MAU_OP_MODULAR_EXP_LOOP 0x4 2829#define MAU_CONTROL_LEN 0x000000000000003f 2830#define MAU_CONTROL_LEN_SHIFT 0 2831 2832 /* Real address of bytes to load or store bytes 2833 * into/out-of the MAU. 2834 */ 2835 unsigned long mau_mpa; 2836 2837 /* Modular Arithmetic MA Offset Register. */ 2838 unsigned long mau_ma; 2839 2840 /* Modular Arithmetic N Prime Register. */ 2841 unsigned long mau_np; 2842}; 2843 2844struct hv_ncs_qconf_arg { 2845 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 2846 unsigned long base; /* Real address base of queue */ 2847 unsigned long end; /* Real address end of queue */ 2848 unsigned long num_ents; /* Number of entries in queue */ 2849}; 2850 2851struct hv_ncs_qtail_update_arg { 2852 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 2853 unsigned long tail; /* New tail index to use */ 2854 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */ 2855#define HV_NCS_SYNCFLAG_SYNC 0x00 2856#define HV_NCS_SYNCFLAG_ASYNC 0x01 2857}; 2858#endif 2859 2860/* ncs_request() 2861 * TRAP: HV_FAST_TRAP 2862 * FUNCTION: HV_FAST_NCS_REQUEST 2863 * ARG0: NCS sub-function 2864 * ARG1: sub-function argument real address 2865 * ARG2: size in bytes of sub-function argument 2866 * RET0: status 2867 * 2868 * The MAU chip of the Niagara processor is not directly accessible 2869 * to privileged code, instead it is programmed indirectly via this 2870 * hypervisor API. 2871 * 2872 * The interfaces defines a queue of MAU operations to perform. 2873 * Privileged code registers a queue with the hypervisor by invoking 2874 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the 2875 * base, end, and number of entries of the queue. Each queue entry 2876 * contains a MAU register struct block. 2877 * 2878 * The privileged code then proceeds to add entries to the queue and 2879 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only 2880 * synchronous operations are supported by the current hypervisor, 2881 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to 2882 * completion and return HV_EOK, or return an error code. 2883 * 2884 * The real address of the sub-function argument must be aligned on at 2885 * least an 8-byte boundary. 2886 * 2887 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte 2888 * offset, into the queue and must be less than or equal the 'num_ents' 2889 * argument given in the HV_NCS_QCONF call. 2890 */ 2891#define HV_FAST_NCS_REQUEST 0x110 2892 2893#ifndef __ASSEMBLY__ 2894extern unsigned long sun4v_ncs_request(unsigned long request, 2895 unsigned long arg_ra, 2896 unsigned long arg_size); 2897#endif 2898 2899#define HV_FAST_FIRE_GET_PERFREG 0x120 2900#define HV_FAST_FIRE_SET_PERFREG 0x121 2901 2902/* Function numbers for HV_CORE_TRAP. */ 2903#define HV_CORE_SET_VER 0x00 2904#define HV_CORE_PUTCHAR 0x01 2905#define HV_CORE_EXIT 0x02 2906#define HV_CORE_GET_VER 0x03 2907 2908/* Hypervisor API groups for use with HV_CORE_SET_VER and 2909 * HV_CORE_GET_VER. 2910 */ 2911#define HV_GRP_SUN4V 0x0000 2912#define HV_GRP_CORE 0x0001 2913#define HV_GRP_INTR 0x0002 2914#define HV_GRP_SOFT_STATE 0x0003 2915#define HV_GRP_PCI 0x0100 2916#define HV_GRP_LDOM 0x0101 2917#define HV_GRP_SVC_CHAN 0x0102 2918#define HV_GRP_NCS 0x0103 2919#define HV_GRP_NIAG_PERF 0x0200 2920#define HV_GRP_FIRE_PERF 0x0201 2921#define HV_GRP_DIAG 0x0300 2922 2923#ifndef __ASSEMBLY__ 2924extern unsigned long sun4v_get_version(unsigned long group, 2925 unsigned long *major, 2926 unsigned long *minor); 2927extern unsigned long sun4v_set_version(unsigned long group, 2928 unsigned long major, 2929 unsigned long minor, 2930 unsigned long *actual_minor); 2931 2932extern int sun4v_hvapi_register(unsigned long group, unsigned long major, 2933 unsigned long *minor); 2934extern void sun4v_hvapi_unregister(unsigned long group); 2935extern int sun4v_hvapi_get(unsigned long group, 2936 unsigned long *major, 2937 unsigned long *minor); 2938extern void sun4v_hvapi_init(void); 2939#endif 2940 2941#endif /* !(_SPARC64_HYPERVISOR_H) */