at v2.6.22 555 lines 13 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * 9 * This is the core of the buffer management. Each 10 * CPU buffer is processed and entered into the 11 * global event buffer. Such processing is necessary 12 * in several circumstances, mentioned below. 13 * 14 * The processing does the job of converting the 15 * transitory EIP value into a persistent dentry/offset 16 * value that the profiler can record at its leisure. 17 * 18 * See fs/dcookies.c for a description of the dentry/offset 19 * objects. 20 */ 21 22#include <linux/mm.h> 23#include <linux/workqueue.h> 24#include <linux/notifier.h> 25#include <linux/dcookies.h> 26#include <linux/profile.h> 27#include <linux/module.h> 28#include <linux/fs.h> 29#include <linux/sched.h> 30 31#include "oprofile_stats.h" 32#include "event_buffer.h" 33#include "cpu_buffer.h" 34#include "buffer_sync.h" 35 36static LIST_HEAD(dying_tasks); 37static LIST_HEAD(dead_tasks); 38static cpumask_t marked_cpus = CPU_MASK_NONE; 39static DEFINE_SPINLOCK(task_mortuary); 40static void process_task_mortuary(void); 41 42 43/* Take ownership of the task struct and place it on the 44 * list for processing. Only after two full buffer syncs 45 * does the task eventually get freed, because by then 46 * we are sure we will not reference it again. 47 * Can be invoked from softirq via RCU callback due to 48 * call_rcu() of the task struct, hence the _irqsave. 49 */ 50static int task_free_notify(struct notifier_block * self, unsigned long val, void * data) 51{ 52 unsigned long flags; 53 struct task_struct * task = data; 54 spin_lock_irqsave(&task_mortuary, flags); 55 list_add(&task->tasks, &dying_tasks); 56 spin_unlock_irqrestore(&task_mortuary, flags); 57 return NOTIFY_OK; 58} 59 60 61/* The task is on its way out. A sync of the buffer means we can catch 62 * any remaining samples for this task. 63 */ 64static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data) 65{ 66 /* To avoid latency problems, we only process the current CPU, 67 * hoping that most samples for the task are on this CPU 68 */ 69 sync_buffer(raw_smp_processor_id()); 70 return 0; 71} 72 73 74/* The task is about to try a do_munmap(). We peek at what it's going to 75 * do, and if it's an executable region, process the samples first, so 76 * we don't lose any. This does not have to be exact, it's a QoI issue 77 * only. 78 */ 79static int munmap_notify(struct notifier_block * self, unsigned long val, void * data) 80{ 81 unsigned long addr = (unsigned long)data; 82 struct mm_struct * mm = current->mm; 83 struct vm_area_struct * mpnt; 84 85 down_read(&mm->mmap_sem); 86 87 mpnt = find_vma(mm, addr); 88 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 89 up_read(&mm->mmap_sem); 90 /* To avoid latency problems, we only process the current CPU, 91 * hoping that most samples for the task are on this CPU 92 */ 93 sync_buffer(raw_smp_processor_id()); 94 return 0; 95 } 96 97 up_read(&mm->mmap_sem); 98 return 0; 99} 100 101 102/* We need to be told about new modules so we don't attribute to a previously 103 * loaded module, or drop the samples on the floor. 104 */ 105static int module_load_notify(struct notifier_block * self, unsigned long val, void * data) 106{ 107#ifdef CONFIG_MODULES 108 if (val != MODULE_STATE_COMING) 109 return 0; 110 111 /* FIXME: should we process all CPU buffers ? */ 112 mutex_lock(&buffer_mutex); 113 add_event_entry(ESCAPE_CODE); 114 add_event_entry(MODULE_LOADED_CODE); 115 mutex_unlock(&buffer_mutex); 116#endif 117 return 0; 118} 119 120 121static struct notifier_block task_free_nb = { 122 .notifier_call = task_free_notify, 123}; 124 125static struct notifier_block task_exit_nb = { 126 .notifier_call = task_exit_notify, 127}; 128 129static struct notifier_block munmap_nb = { 130 .notifier_call = munmap_notify, 131}; 132 133static struct notifier_block module_load_nb = { 134 .notifier_call = module_load_notify, 135}; 136 137 138static void end_sync(void) 139{ 140 end_cpu_work(); 141 /* make sure we don't leak task structs */ 142 process_task_mortuary(); 143 process_task_mortuary(); 144} 145 146 147int sync_start(void) 148{ 149 int err; 150 151 start_cpu_work(); 152 153 err = task_handoff_register(&task_free_nb); 154 if (err) 155 goto out1; 156 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 157 if (err) 158 goto out2; 159 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 160 if (err) 161 goto out3; 162 err = register_module_notifier(&module_load_nb); 163 if (err) 164 goto out4; 165 166out: 167 return err; 168out4: 169 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 170out3: 171 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 172out2: 173 task_handoff_unregister(&task_free_nb); 174out1: 175 end_sync(); 176 goto out; 177} 178 179 180void sync_stop(void) 181{ 182 unregister_module_notifier(&module_load_nb); 183 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 184 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 185 task_handoff_unregister(&task_free_nb); 186 end_sync(); 187} 188 189 190/* Optimisation. We can manage without taking the dcookie sem 191 * because we cannot reach this code without at least one 192 * dcookie user still being registered (namely, the reader 193 * of the event buffer). */ 194static inline unsigned long fast_get_dcookie(struct dentry * dentry, 195 struct vfsmount * vfsmnt) 196{ 197 unsigned long cookie; 198 199 if (dentry->d_cookie) 200 return (unsigned long)dentry; 201 get_dcookie(dentry, vfsmnt, &cookie); 202 return cookie; 203} 204 205 206/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 207 * which corresponds loosely to "application name". This is 208 * not strictly necessary but allows oprofile to associate 209 * shared-library samples with particular applications 210 */ 211static unsigned long get_exec_dcookie(struct mm_struct * mm) 212{ 213 unsigned long cookie = NO_COOKIE; 214 struct vm_area_struct * vma; 215 216 if (!mm) 217 goto out; 218 219 for (vma = mm->mmap; vma; vma = vma->vm_next) { 220 if (!vma->vm_file) 221 continue; 222 if (!(vma->vm_flags & VM_EXECUTABLE)) 223 continue; 224 cookie = fast_get_dcookie(vma->vm_file->f_path.dentry, 225 vma->vm_file->f_path.mnt); 226 break; 227 } 228 229out: 230 return cookie; 231} 232 233 234/* Convert the EIP value of a sample into a persistent dentry/offset 235 * pair that can then be added to the global event buffer. We make 236 * sure to do this lookup before a mm->mmap modification happens so 237 * we don't lose track. 238 */ 239static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset) 240{ 241 unsigned long cookie = NO_COOKIE; 242 struct vm_area_struct * vma; 243 244 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 245 246 if (addr < vma->vm_start || addr >= vma->vm_end) 247 continue; 248 249 if (vma->vm_file) { 250 cookie = fast_get_dcookie(vma->vm_file->f_path.dentry, 251 vma->vm_file->f_path.mnt); 252 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 253 vma->vm_start; 254 } else { 255 /* must be an anonymous map */ 256 *offset = addr; 257 } 258 259 break; 260 } 261 262 if (!vma) 263 cookie = INVALID_COOKIE; 264 265 return cookie; 266} 267 268 269static unsigned long last_cookie = INVALID_COOKIE; 270 271static void add_cpu_switch(int i) 272{ 273 add_event_entry(ESCAPE_CODE); 274 add_event_entry(CPU_SWITCH_CODE); 275 add_event_entry(i); 276 last_cookie = INVALID_COOKIE; 277} 278 279static void add_kernel_ctx_switch(unsigned int in_kernel) 280{ 281 add_event_entry(ESCAPE_CODE); 282 if (in_kernel) 283 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 284 else 285 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 286} 287 288static void 289add_user_ctx_switch(struct task_struct const * task, unsigned long cookie) 290{ 291 add_event_entry(ESCAPE_CODE); 292 add_event_entry(CTX_SWITCH_CODE); 293 add_event_entry(task->pid); 294 add_event_entry(cookie); 295 /* Another code for daemon back-compat */ 296 add_event_entry(ESCAPE_CODE); 297 add_event_entry(CTX_TGID_CODE); 298 add_event_entry(task->tgid); 299} 300 301 302static void add_cookie_switch(unsigned long cookie) 303{ 304 add_event_entry(ESCAPE_CODE); 305 add_event_entry(COOKIE_SWITCH_CODE); 306 add_event_entry(cookie); 307} 308 309 310static void add_trace_begin(void) 311{ 312 add_event_entry(ESCAPE_CODE); 313 add_event_entry(TRACE_BEGIN_CODE); 314} 315 316 317static void add_sample_entry(unsigned long offset, unsigned long event) 318{ 319 add_event_entry(offset); 320 add_event_entry(event); 321} 322 323 324static int add_us_sample(struct mm_struct * mm, struct op_sample * s) 325{ 326 unsigned long cookie; 327 off_t offset; 328 329 cookie = lookup_dcookie(mm, s->eip, &offset); 330 331 if (cookie == INVALID_COOKIE) { 332 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 333 return 0; 334 } 335 336 if (cookie != last_cookie) { 337 add_cookie_switch(cookie); 338 last_cookie = cookie; 339 } 340 341 add_sample_entry(offset, s->event); 342 343 return 1; 344} 345 346 347/* Add a sample to the global event buffer. If possible the 348 * sample is converted into a persistent dentry/offset pair 349 * for later lookup from userspace. 350 */ 351static int 352add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel) 353{ 354 if (in_kernel) { 355 add_sample_entry(s->eip, s->event); 356 return 1; 357 } else if (mm) { 358 return add_us_sample(mm, s); 359 } else { 360 atomic_inc(&oprofile_stats.sample_lost_no_mm); 361 } 362 return 0; 363} 364 365 366static void release_mm(struct mm_struct * mm) 367{ 368 if (!mm) 369 return; 370 up_read(&mm->mmap_sem); 371 mmput(mm); 372} 373 374 375static struct mm_struct * take_tasks_mm(struct task_struct * task) 376{ 377 struct mm_struct * mm = get_task_mm(task); 378 if (mm) 379 down_read(&mm->mmap_sem); 380 return mm; 381} 382 383 384static inline int is_code(unsigned long val) 385{ 386 return val == ESCAPE_CODE; 387} 388 389 390/* "acquire" as many cpu buffer slots as we can */ 391static unsigned long get_slots(struct oprofile_cpu_buffer * b) 392{ 393 unsigned long head = b->head_pos; 394 unsigned long tail = b->tail_pos; 395 396 /* 397 * Subtle. This resets the persistent last_task 398 * and in_kernel values used for switching notes. 399 * BUT, there is a small window between reading 400 * head_pos, and this call, that means samples 401 * can appear at the new head position, but not 402 * be prefixed with the notes for switching 403 * kernel mode or a task switch. This small hole 404 * can lead to mis-attribution or samples where 405 * we don't know if it's in the kernel or not, 406 * at the start of an event buffer. 407 */ 408 cpu_buffer_reset(b); 409 410 if (head >= tail) 411 return head - tail; 412 413 return head + (b->buffer_size - tail); 414} 415 416 417static void increment_tail(struct oprofile_cpu_buffer * b) 418{ 419 unsigned long new_tail = b->tail_pos + 1; 420 421 rmb(); 422 423 if (new_tail < b->buffer_size) 424 b->tail_pos = new_tail; 425 else 426 b->tail_pos = 0; 427} 428 429 430/* Move tasks along towards death. Any tasks on dead_tasks 431 * will definitely have no remaining references in any 432 * CPU buffers at this point, because we use two lists, 433 * and to have reached the list, it must have gone through 434 * one full sync already. 435 */ 436static void process_task_mortuary(void) 437{ 438 unsigned long flags; 439 LIST_HEAD(local_dead_tasks); 440 struct task_struct * task; 441 struct task_struct * ttask; 442 443 spin_lock_irqsave(&task_mortuary, flags); 444 445 list_splice_init(&dead_tasks, &local_dead_tasks); 446 list_splice_init(&dying_tasks, &dead_tasks); 447 448 spin_unlock_irqrestore(&task_mortuary, flags); 449 450 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 451 list_del(&task->tasks); 452 free_task(task); 453 } 454} 455 456 457static void mark_done(int cpu) 458{ 459 int i; 460 461 cpu_set(cpu, marked_cpus); 462 463 for_each_online_cpu(i) { 464 if (!cpu_isset(i, marked_cpus)) 465 return; 466 } 467 468 /* All CPUs have been processed at least once, 469 * we can process the mortuary once 470 */ 471 process_task_mortuary(); 472 473 cpus_clear(marked_cpus); 474} 475 476 477/* FIXME: this is not sufficient if we implement syscall barrier backtrace 478 * traversal, the code switch to sb_sample_start at first kernel enter/exit 479 * switch so we need a fifth state and some special handling in sync_buffer() 480 */ 481typedef enum { 482 sb_bt_ignore = -2, 483 sb_buffer_start, 484 sb_bt_start, 485 sb_sample_start, 486} sync_buffer_state; 487 488/* Sync one of the CPU's buffers into the global event buffer. 489 * Here we need to go through each batch of samples punctuated 490 * by context switch notes, taking the task's mmap_sem and doing 491 * lookup in task->mm->mmap to convert EIP into dcookie/offset 492 * value. 493 */ 494void sync_buffer(int cpu) 495{ 496 struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu]; 497 struct mm_struct *mm = NULL; 498 struct task_struct * new; 499 unsigned long cookie = 0; 500 int in_kernel = 1; 501 unsigned int i; 502 sync_buffer_state state = sb_buffer_start; 503 unsigned long available; 504 505 mutex_lock(&buffer_mutex); 506 507 add_cpu_switch(cpu); 508 509 /* Remember, only we can modify tail_pos */ 510 511 available = get_slots(cpu_buf); 512 513 for (i = 0; i < available; ++i) { 514 struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos]; 515 516 if (is_code(s->eip)) { 517 if (s->event <= CPU_IS_KERNEL) { 518 /* kernel/userspace switch */ 519 in_kernel = s->event; 520 if (state == sb_buffer_start) 521 state = sb_sample_start; 522 add_kernel_ctx_switch(s->event); 523 } else if (s->event == CPU_TRACE_BEGIN) { 524 state = sb_bt_start; 525 add_trace_begin(); 526 } else { 527 struct mm_struct * oldmm = mm; 528 529 /* userspace context switch */ 530 new = (struct task_struct *)s->event; 531 532 release_mm(oldmm); 533 mm = take_tasks_mm(new); 534 if (mm != oldmm) 535 cookie = get_exec_dcookie(mm); 536 add_user_ctx_switch(new, cookie); 537 } 538 } else { 539 if (state >= sb_bt_start && 540 !add_sample(mm, s, in_kernel)) { 541 if (state == sb_bt_start) { 542 state = sb_bt_ignore; 543 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 544 } 545 } 546 } 547 548 increment_tail(cpu_buf); 549 } 550 release_mm(mm); 551 552 mark_done(cpu); 553 554 mutex_unlock(&buffer_mutex); 555}