at v2.6.21 5859 lines 169 kB view raw
1/* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60#include <linux/types.h> 61#include <linux/kernel.h> 62#include <linux/wait.h> 63#include <linux/time.h> 64#include <linux/ip.h> 65#include <linux/capability.h> 66#include <linux/fcntl.h> 67#include <linux/poll.h> 68#include <linux/init.h> 69#include <linux/crypto.h> 70 71#include <net/ip.h> 72#include <net/icmp.h> 73#include <net/route.h> 74#include <net/ipv6.h> 75#include <net/inet_common.h> 76 77#include <linux/socket.h> /* for sa_family_t */ 78#include <net/sock.h> 79#include <net/sctp/sctp.h> 80#include <net/sctp/sm.h> 81 82/* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87/* Forward declarations for internal helper functions. */ 88static int sctp_writeable(struct sock *sk); 89static void sctp_wfree(struct sk_buff *skb); 90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94static int sctp_wait_for_accept(struct sock *sk, long timeo); 95static void sctp_wait_for_close(struct sock *sk, long timeo); 96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105static int sctp_autobind(struct sock *sk); 106static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110extern struct kmem_cache *sctp_bucket_cachep; 111 112/* Get the sndbuf space available at the time on the association. */ 113static inline int sctp_wspace(struct sctp_association *asoc) 114{ 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130} 131 132/* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142{ 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160} 161 162/* Verify that this is a valid address. */ 163static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165{ 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181} 182 183/* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187{ 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218} 219 220/* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227{ 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 233 laddr, 234 &transport); 235 236 if (!addr_asoc) 237 return NULL; 238 239 id_asoc = sctp_id2assoc(sk, id); 240 if (id_asoc && (id_asoc != addr_asoc)) 241 return NULL; 242 243 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 244 (union sctp_addr *)addr); 245 246 return transport; 247} 248 249/* API 3.1.2 bind() - UDP Style Syntax 250 * The syntax of bind() is, 251 * 252 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 253 * 254 * sd - the socket descriptor returned by socket(). 255 * addr - the address structure (struct sockaddr_in or struct 256 * sockaddr_in6 [RFC 2553]), 257 * addr_len - the size of the address structure. 258 */ 259SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 260{ 261 int retval = 0; 262 263 sctp_lock_sock(sk); 264 265 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 266 sk, addr, addr_len); 267 268 /* Disallow binding twice. */ 269 if (!sctp_sk(sk)->ep->base.bind_addr.port) 270 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 271 addr_len); 272 else 273 retval = -EINVAL; 274 275 sctp_release_sock(sk); 276 277 return retval; 278} 279 280static long sctp_get_port_local(struct sock *, union sctp_addr *); 281 282/* Verify this is a valid sockaddr. */ 283static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 284 union sctp_addr *addr, int len) 285{ 286 struct sctp_af *af; 287 288 /* Check minimum size. */ 289 if (len < sizeof (struct sockaddr)) 290 return NULL; 291 292 /* Does this PF support this AF? */ 293 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 294 return NULL; 295 296 /* If we get this far, af is valid. */ 297 af = sctp_get_af_specific(addr->sa.sa_family); 298 299 if (len < af->sockaddr_len) 300 return NULL; 301 302 return af; 303} 304 305/* Bind a local address either to an endpoint or to an association. */ 306SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 307{ 308 struct sctp_sock *sp = sctp_sk(sk); 309 struct sctp_endpoint *ep = sp->ep; 310 struct sctp_bind_addr *bp = &ep->base.bind_addr; 311 struct sctp_af *af; 312 unsigned short snum; 313 int ret = 0; 314 315 /* Common sockaddr verification. */ 316 af = sctp_sockaddr_af(sp, addr, len); 317 if (!af) { 318 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 319 sk, addr, len); 320 return -EINVAL; 321 } 322 323 snum = ntohs(addr->v4.sin_port); 324 325 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 326 ", port: %d, new port: %d, len: %d)\n", 327 sk, 328 addr, 329 bp->port, snum, 330 len); 331 332 /* PF specific bind() address verification. */ 333 if (!sp->pf->bind_verify(sp, addr)) 334 return -EADDRNOTAVAIL; 335 336 /* We must either be unbound, or bind to the same port. */ 337 if (bp->port && (snum != bp->port)) { 338 SCTP_DEBUG_PRINTK("sctp_do_bind:" 339 " New port %d does not match existing port " 340 "%d.\n", snum, bp->port); 341 return -EINVAL; 342 } 343 344 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 345 return -EACCES; 346 347 /* Make sure we are allowed to bind here. 348 * The function sctp_get_port_local() does duplicate address 349 * detection. 350 */ 351 if ((ret = sctp_get_port_local(sk, addr))) { 352 if (ret == (long) sk) { 353 /* This endpoint has a conflicting address. */ 354 return -EINVAL; 355 } else { 356 return -EADDRINUSE; 357 } 358 } 359 360 /* Refresh ephemeral port. */ 361 if (!bp->port) 362 bp->port = inet_sk(sk)->num; 363 364 /* Add the address to the bind address list. */ 365 sctp_local_bh_disable(); 366 sctp_write_lock(&ep->base.addr_lock); 367 368 /* Use GFP_ATOMIC since BHs are disabled. */ 369 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 370 sctp_write_unlock(&ep->base.addr_lock); 371 sctp_local_bh_enable(); 372 373 /* Copy back into socket for getsockname() use. */ 374 if (!ret) { 375 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 376 af->to_sk_saddr(addr, sk); 377 } 378 379 return ret; 380} 381 382 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 383 * 384 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 385 * at any one time. If a sender, after sending an ASCONF chunk, decides 386 * it needs to transfer another ASCONF Chunk, it MUST wait until the 387 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 388 * subsequent ASCONF. Note this restriction binds each side, so at any 389 * time two ASCONF may be in-transit on any given association (one sent 390 * from each endpoint). 391 */ 392static int sctp_send_asconf(struct sctp_association *asoc, 393 struct sctp_chunk *chunk) 394{ 395 int retval = 0; 396 397 /* If there is an outstanding ASCONF chunk, queue it for later 398 * transmission. 399 */ 400 if (asoc->addip_last_asconf) { 401 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 402 goto out; 403 } 404 405 /* Hold the chunk until an ASCONF_ACK is received. */ 406 sctp_chunk_hold(chunk); 407 retval = sctp_primitive_ASCONF(asoc, chunk); 408 if (retval) 409 sctp_chunk_free(chunk); 410 else 411 asoc->addip_last_asconf = chunk; 412 413out: 414 return retval; 415} 416 417/* Add a list of addresses as bind addresses to local endpoint or 418 * association. 419 * 420 * Basically run through each address specified in the addrs/addrcnt 421 * array/length pair, determine if it is IPv6 or IPv4 and call 422 * sctp_do_bind() on it. 423 * 424 * If any of them fails, then the operation will be reversed and the 425 * ones that were added will be removed. 426 * 427 * Only sctp_setsockopt_bindx() is supposed to call this function. 428 */ 429int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 430{ 431 int cnt; 432 int retval = 0; 433 void *addr_buf; 434 struct sockaddr *sa_addr; 435 struct sctp_af *af; 436 437 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 438 sk, addrs, addrcnt); 439 440 addr_buf = addrs; 441 for (cnt = 0; cnt < addrcnt; cnt++) { 442 /* The list may contain either IPv4 or IPv6 address; 443 * determine the address length for walking thru the list. 444 */ 445 sa_addr = (struct sockaddr *)addr_buf; 446 af = sctp_get_af_specific(sa_addr->sa_family); 447 if (!af) { 448 retval = -EINVAL; 449 goto err_bindx_add; 450 } 451 452 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 453 af->sockaddr_len); 454 455 addr_buf += af->sockaddr_len; 456 457err_bindx_add: 458 if (retval < 0) { 459 /* Failed. Cleanup the ones that have been added */ 460 if (cnt > 0) 461 sctp_bindx_rem(sk, addrs, cnt); 462 return retval; 463 } 464 } 465 466 return retval; 467} 468 469/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 470 * associations that are part of the endpoint indicating that a list of local 471 * addresses are added to the endpoint. 472 * 473 * If any of the addresses is already in the bind address list of the 474 * association, we do not send the chunk for that association. But it will not 475 * affect other associations. 476 * 477 * Only sctp_setsockopt_bindx() is supposed to call this function. 478 */ 479static int sctp_send_asconf_add_ip(struct sock *sk, 480 struct sockaddr *addrs, 481 int addrcnt) 482{ 483 struct sctp_sock *sp; 484 struct sctp_endpoint *ep; 485 struct sctp_association *asoc; 486 struct sctp_bind_addr *bp; 487 struct sctp_chunk *chunk; 488 struct sctp_sockaddr_entry *laddr; 489 union sctp_addr *addr; 490 union sctp_addr saveaddr; 491 void *addr_buf; 492 struct sctp_af *af; 493 struct list_head *pos; 494 struct list_head *p; 495 int i; 496 int retval = 0; 497 498 if (!sctp_addip_enable) 499 return retval; 500 501 sp = sctp_sk(sk); 502 ep = sp->ep; 503 504 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 505 __FUNCTION__, sk, addrs, addrcnt); 506 507 list_for_each(pos, &ep->asocs) { 508 asoc = list_entry(pos, struct sctp_association, asocs); 509 510 if (!asoc->peer.asconf_capable) 511 continue; 512 513 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 514 continue; 515 516 if (!sctp_state(asoc, ESTABLISHED)) 517 continue; 518 519 /* Check if any address in the packed array of addresses is 520 * in the bind address list of the association. If so, 521 * do not send the asconf chunk to its peer, but continue with 522 * other associations. 523 */ 524 addr_buf = addrs; 525 for (i = 0; i < addrcnt; i++) { 526 addr = (union sctp_addr *)addr_buf; 527 af = sctp_get_af_specific(addr->v4.sin_family); 528 if (!af) { 529 retval = -EINVAL; 530 goto out; 531 } 532 533 if (sctp_assoc_lookup_laddr(asoc, addr)) 534 break; 535 536 addr_buf += af->sockaddr_len; 537 } 538 if (i < addrcnt) 539 continue; 540 541 /* Use the first address in bind addr list of association as 542 * Address Parameter of ASCONF CHUNK. 543 */ 544 sctp_read_lock(&asoc->base.addr_lock); 545 bp = &asoc->base.bind_addr; 546 p = bp->address_list.next; 547 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 548 sctp_read_unlock(&asoc->base.addr_lock); 549 550 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 551 addrcnt, SCTP_PARAM_ADD_IP); 552 if (!chunk) { 553 retval = -ENOMEM; 554 goto out; 555 } 556 557 retval = sctp_send_asconf(asoc, chunk); 558 if (retval) 559 goto out; 560 561 /* Add the new addresses to the bind address list with 562 * use_as_src set to 0. 563 */ 564 sctp_local_bh_disable(); 565 sctp_write_lock(&asoc->base.addr_lock); 566 addr_buf = addrs; 567 for (i = 0; i < addrcnt; i++) { 568 addr = (union sctp_addr *)addr_buf; 569 af = sctp_get_af_specific(addr->v4.sin_family); 570 memcpy(&saveaddr, addr, af->sockaddr_len); 571 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 572 GFP_ATOMIC); 573 addr_buf += af->sockaddr_len; 574 } 575 sctp_write_unlock(&asoc->base.addr_lock); 576 sctp_local_bh_enable(); 577 } 578 579out: 580 return retval; 581} 582 583/* Remove a list of addresses from bind addresses list. Do not remove the 584 * last address. 585 * 586 * Basically run through each address specified in the addrs/addrcnt 587 * array/length pair, determine if it is IPv6 or IPv4 and call 588 * sctp_del_bind() on it. 589 * 590 * If any of them fails, then the operation will be reversed and the 591 * ones that were removed will be added back. 592 * 593 * At least one address has to be left; if only one address is 594 * available, the operation will return -EBUSY. 595 * 596 * Only sctp_setsockopt_bindx() is supposed to call this function. 597 */ 598int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 599{ 600 struct sctp_sock *sp = sctp_sk(sk); 601 struct sctp_endpoint *ep = sp->ep; 602 int cnt; 603 struct sctp_bind_addr *bp = &ep->base.bind_addr; 604 int retval = 0; 605 void *addr_buf; 606 union sctp_addr *sa_addr; 607 struct sctp_af *af; 608 609 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 610 sk, addrs, addrcnt); 611 612 addr_buf = addrs; 613 for (cnt = 0; cnt < addrcnt; cnt++) { 614 /* If the bind address list is empty or if there is only one 615 * bind address, there is nothing more to be removed (we need 616 * at least one address here). 617 */ 618 if (list_empty(&bp->address_list) || 619 (sctp_list_single_entry(&bp->address_list))) { 620 retval = -EBUSY; 621 goto err_bindx_rem; 622 } 623 624 sa_addr = (union sctp_addr *)addr_buf; 625 af = sctp_get_af_specific(sa_addr->sa.sa_family); 626 if (!af) { 627 retval = -EINVAL; 628 goto err_bindx_rem; 629 } 630 631 if (!af->addr_valid(sa_addr, sp, NULL)) { 632 retval = -EADDRNOTAVAIL; 633 goto err_bindx_rem; 634 } 635 636 if (sa_addr->v4.sin_port != htons(bp->port)) { 637 retval = -EINVAL; 638 goto err_bindx_rem; 639 } 640 641 /* FIXME - There is probably a need to check if sk->sk_saddr and 642 * sk->sk_rcv_addr are currently set to one of the addresses to 643 * be removed. This is something which needs to be looked into 644 * when we are fixing the outstanding issues with multi-homing 645 * socket routing and failover schemes. Refer to comments in 646 * sctp_do_bind(). -daisy 647 */ 648 sctp_local_bh_disable(); 649 sctp_write_lock(&ep->base.addr_lock); 650 651 retval = sctp_del_bind_addr(bp, sa_addr); 652 653 sctp_write_unlock(&ep->base.addr_lock); 654 sctp_local_bh_enable(); 655 656 addr_buf += af->sockaddr_len; 657err_bindx_rem: 658 if (retval < 0) { 659 /* Failed. Add the ones that has been removed back */ 660 if (cnt > 0) 661 sctp_bindx_add(sk, addrs, cnt); 662 return retval; 663 } 664 } 665 666 return retval; 667} 668 669/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 670 * the associations that are part of the endpoint indicating that a list of 671 * local addresses are removed from the endpoint. 672 * 673 * If any of the addresses is already in the bind address list of the 674 * association, we do not send the chunk for that association. But it will not 675 * affect other associations. 676 * 677 * Only sctp_setsockopt_bindx() is supposed to call this function. 678 */ 679static int sctp_send_asconf_del_ip(struct sock *sk, 680 struct sockaddr *addrs, 681 int addrcnt) 682{ 683 struct sctp_sock *sp; 684 struct sctp_endpoint *ep; 685 struct sctp_association *asoc; 686 struct sctp_transport *transport; 687 struct sctp_bind_addr *bp; 688 struct sctp_chunk *chunk; 689 union sctp_addr *laddr; 690 void *addr_buf; 691 struct sctp_af *af; 692 struct list_head *pos, *pos1; 693 struct sctp_sockaddr_entry *saddr; 694 int i; 695 int retval = 0; 696 697 if (!sctp_addip_enable) 698 return retval; 699 700 sp = sctp_sk(sk); 701 ep = sp->ep; 702 703 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 704 __FUNCTION__, sk, addrs, addrcnt); 705 706 list_for_each(pos, &ep->asocs) { 707 asoc = list_entry(pos, struct sctp_association, asocs); 708 709 if (!asoc->peer.asconf_capable) 710 continue; 711 712 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 713 continue; 714 715 if (!sctp_state(asoc, ESTABLISHED)) 716 continue; 717 718 /* Check if any address in the packed array of addresses is 719 * not present in the bind address list of the association. 720 * If so, do not send the asconf chunk to its peer, but 721 * continue with other associations. 722 */ 723 addr_buf = addrs; 724 for (i = 0; i < addrcnt; i++) { 725 laddr = (union sctp_addr *)addr_buf; 726 af = sctp_get_af_specific(laddr->v4.sin_family); 727 if (!af) { 728 retval = -EINVAL; 729 goto out; 730 } 731 732 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 733 break; 734 735 addr_buf += af->sockaddr_len; 736 } 737 if (i < addrcnt) 738 continue; 739 740 /* Find one address in the association's bind address list 741 * that is not in the packed array of addresses. This is to 742 * make sure that we do not delete all the addresses in the 743 * association. 744 */ 745 sctp_read_lock(&asoc->base.addr_lock); 746 bp = &asoc->base.bind_addr; 747 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 748 addrcnt, sp); 749 sctp_read_unlock(&asoc->base.addr_lock); 750 if (!laddr) 751 continue; 752 753 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 754 SCTP_PARAM_DEL_IP); 755 if (!chunk) { 756 retval = -ENOMEM; 757 goto out; 758 } 759 760 /* Reset use_as_src flag for the addresses in the bind address 761 * list that are to be deleted. 762 */ 763 sctp_local_bh_disable(); 764 sctp_write_lock(&asoc->base.addr_lock); 765 addr_buf = addrs; 766 for (i = 0; i < addrcnt; i++) { 767 laddr = (union sctp_addr *)addr_buf; 768 af = sctp_get_af_specific(laddr->v4.sin_family); 769 list_for_each(pos1, &bp->address_list) { 770 saddr = list_entry(pos1, 771 struct sctp_sockaddr_entry, 772 list); 773 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 774 saddr->use_as_src = 0; 775 } 776 addr_buf += af->sockaddr_len; 777 } 778 sctp_write_unlock(&asoc->base.addr_lock); 779 sctp_local_bh_enable(); 780 781 /* Update the route and saddr entries for all the transports 782 * as some of the addresses in the bind address list are 783 * about to be deleted and cannot be used as source addresses. 784 */ 785 list_for_each(pos1, &asoc->peer.transport_addr_list) { 786 transport = list_entry(pos1, struct sctp_transport, 787 transports); 788 dst_release(transport->dst); 789 sctp_transport_route(transport, NULL, 790 sctp_sk(asoc->base.sk)); 791 } 792 793 retval = sctp_send_asconf(asoc, chunk); 794 } 795out: 796 return retval; 797} 798 799/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 800 * 801 * API 8.1 802 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 803 * int flags); 804 * 805 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 806 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 807 * or IPv6 addresses. 808 * 809 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 810 * Section 3.1.2 for this usage. 811 * 812 * addrs is a pointer to an array of one or more socket addresses. Each 813 * address is contained in its appropriate structure (i.e. struct 814 * sockaddr_in or struct sockaddr_in6) the family of the address type 815 * must be used to distinguish the address length (note that this 816 * representation is termed a "packed array" of addresses). The caller 817 * specifies the number of addresses in the array with addrcnt. 818 * 819 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 820 * -1, and sets errno to the appropriate error code. 821 * 822 * For SCTP, the port given in each socket address must be the same, or 823 * sctp_bindx() will fail, setting errno to EINVAL. 824 * 825 * The flags parameter is formed from the bitwise OR of zero or more of 826 * the following currently defined flags: 827 * 828 * SCTP_BINDX_ADD_ADDR 829 * 830 * SCTP_BINDX_REM_ADDR 831 * 832 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 833 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 834 * addresses from the association. The two flags are mutually exclusive; 835 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 836 * not remove all addresses from an association; sctp_bindx() will 837 * reject such an attempt with EINVAL. 838 * 839 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 840 * additional addresses with an endpoint after calling bind(). Or use 841 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 842 * socket is associated with so that no new association accepted will be 843 * associated with those addresses. If the endpoint supports dynamic 844 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 845 * endpoint to send the appropriate message to the peer to change the 846 * peers address lists. 847 * 848 * Adding and removing addresses from a connected association is 849 * optional functionality. Implementations that do not support this 850 * functionality should return EOPNOTSUPP. 851 * 852 * Basically do nothing but copying the addresses from user to kernel 853 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 854 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 855 * from userspace. 856 * 857 * We don't use copy_from_user() for optimization: we first do the 858 * sanity checks (buffer size -fast- and access check-healthy 859 * pointer); if all of those succeed, then we can alloc the memory 860 * (expensive operation) needed to copy the data to kernel. Then we do 861 * the copying without checking the user space area 862 * (__copy_from_user()). 863 * 864 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 865 * it. 866 * 867 * sk The sk of the socket 868 * addrs The pointer to the addresses in user land 869 * addrssize Size of the addrs buffer 870 * op Operation to perform (add or remove, see the flags of 871 * sctp_bindx) 872 * 873 * Returns 0 if ok, <0 errno code on error. 874 */ 875SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 876 struct sockaddr __user *addrs, 877 int addrs_size, int op) 878{ 879 struct sockaddr *kaddrs; 880 int err; 881 int addrcnt = 0; 882 int walk_size = 0; 883 struct sockaddr *sa_addr; 884 void *addr_buf; 885 struct sctp_af *af; 886 887 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 888 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 889 890 if (unlikely(addrs_size <= 0)) 891 return -EINVAL; 892 893 /* Check the user passed a healthy pointer. */ 894 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 895 return -EFAULT; 896 897 /* Alloc space for the address array in kernel memory. */ 898 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 899 if (unlikely(!kaddrs)) 900 return -ENOMEM; 901 902 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 903 kfree(kaddrs); 904 return -EFAULT; 905 } 906 907 /* Walk through the addrs buffer and count the number of addresses. */ 908 addr_buf = kaddrs; 909 while (walk_size < addrs_size) { 910 sa_addr = (struct sockaddr *)addr_buf; 911 af = sctp_get_af_specific(sa_addr->sa_family); 912 913 /* If the address family is not supported or if this address 914 * causes the address buffer to overflow return EINVAL. 915 */ 916 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 917 kfree(kaddrs); 918 return -EINVAL; 919 } 920 addrcnt++; 921 addr_buf += af->sockaddr_len; 922 walk_size += af->sockaddr_len; 923 } 924 925 /* Do the work. */ 926 switch (op) { 927 case SCTP_BINDX_ADD_ADDR: 928 err = sctp_bindx_add(sk, kaddrs, addrcnt); 929 if (err) 930 goto out; 931 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 932 break; 933 934 case SCTP_BINDX_REM_ADDR: 935 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 936 if (err) 937 goto out; 938 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 939 break; 940 941 default: 942 err = -EINVAL; 943 break; 944 }; 945 946out: 947 kfree(kaddrs); 948 949 return err; 950} 951 952/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 953 * 954 * Common routine for handling connect() and sctp_connectx(). 955 * Connect will come in with just a single address. 956 */ 957static int __sctp_connect(struct sock* sk, 958 struct sockaddr *kaddrs, 959 int addrs_size) 960{ 961 struct sctp_sock *sp; 962 struct sctp_endpoint *ep; 963 struct sctp_association *asoc = NULL; 964 struct sctp_association *asoc2; 965 struct sctp_transport *transport; 966 union sctp_addr to; 967 struct sctp_af *af; 968 sctp_scope_t scope; 969 long timeo; 970 int err = 0; 971 int addrcnt = 0; 972 int walk_size = 0; 973 union sctp_addr *sa_addr; 974 void *addr_buf; 975 976 sp = sctp_sk(sk); 977 ep = sp->ep; 978 979 /* connect() cannot be done on a socket that is already in ESTABLISHED 980 * state - UDP-style peeled off socket or a TCP-style socket that 981 * is already connected. 982 * It cannot be done even on a TCP-style listening socket. 983 */ 984 if (sctp_sstate(sk, ESTABLISHED) || 985 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 986 err = -EISCONN; 987 goto out_free; 988 } 989 990 /* Walk through the addrs buffer and count the number of addresses. */ 991 addr_buf = kaddrs; 992 while (walk_size < addrs_size) { 993 sa_addr = (union sctp_addr *)addr_buf; 994 af = sctp_get_af_specific(sa_addr->sa.sa_family); 995 996 /* If the address family is not supported or if this address 997 * causes the address buffer to overflow return EINVAL. 998 */ 999 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1000 err = -EINVAL; 1001 goto out_free; 1002 } 1003 1004 err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len); 1005 if (err) 1006 goto out_free; 1007 1008 memcpy(&to, sa_addr, af->sockaddr_len); 1009 1010 /* Check if there already is a matching association on the 1011 * endpoint (other than the one created here). 1012 */ 1013 asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport); 1014 if (asoc2 && asoc2 != asoc) { 1015 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1016 err = -EISCONN; 1017 else 1018 err = -EALREADY; 1019 goto out_free; 1020 } 1021 1022 /* If we could not find a matching association on the endpoint, 1023 * make sure that there is no peeled-off association matching 1024 * the peer address even on another socket. 1025 */ 1026 if (sctp_endpoint_is_peeled_off(ep, sa_addr)) { 1027 err = -EADDRNOTAVAIL; 1028 goto out_free; 1029 } 1030 1031 if (!asoc) { 1032 /* If a bind() or sctp_bindx() is not called prior to 1033 * an sctp_connectx() call, the system picks an 1034 * ephemeral port and will choose an address set 1035 * equivalent to binding with a wildcard address. 1036 */ 1037 if (!ep->base.bind_addr.port) { 1038 if (sctp_autobind(sk)) { 1039 err = -EAGAIN; 1040 goto out_free; 1041 } 1042 } else { 1043 /* 1044 * If an unprivileged user inherits a 1-many 1045 * style socket with open associations on a 1046 * privileged port, it MAY be permitted to 1047 * accept new associations, but it SHOULD NOT 1048 * be permitted to open new associations. 1049 */ 1050 if (ep->base.bind_addr.port < PROT_SOCK && 1051 !capable(CAP_NET_BIND_SERVICE)) { 1052 err = -EACCES; 1053 goto out_free; 1054 } 1055 } 1056 1057 scope = sctp_scope(sa_addr); 1058 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1059 if (!asoc) { 1060 err = -ENOMEM; 1061 goto out_free; 1062 } 1063 } 1064 1065 /* Prime the peer's transport structures. */ 1066 transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL, 1067 SCTP_UNKNOWN); 1068 if (!transport) { 1069 err = -ENOMEM; 1070 goto out_free; 1071 } 1072 1073 addrcnt++; 1074 addr_buf += af->sockaddr_len; 1075 walk_size += af->sockaddr_len; 1076 } 1077 1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1079 if (err < 0) { 1080 goto out_free; 1081 } 1082 1083 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1084 if (err < 0) { 1085 goto out_free; 1086 } 1087 1088 /* Initialize sk's dport and daddr for getpeername() */ 1089 inet_sk(sk)->dport = htons(asoc->peer.port); 1090 af = sctp_get_af_specific(to.sa.sa_family); 1091 af->to_sk_daddr(&to, sk); 1092 sk->sk_err = 0; 1093 1094 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1095 err = sctp_wait_for_connect(asoc, &timeo); 1096 1097 /* Don't free association on exit. */ 1098 asoc = NULL; 1099 1100out_free: 1101 1102 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1103 " kaddrs: %p err: %d\n", 1104 asoc, kaddrs, err); 1105 if (asoc) 1106 sctp_association_free(asoc); 1107 return err; 1108} 1109 1110/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1111 * 1112 * API 8.9 1113 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1114 * 1115 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1116 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1117 * or IPv6 addresses. 1118 * 1119 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1120 * Section 3.1.2 for this usage. 1121 * 1122 * addrs is a pointer to an array of one or more socket addresses. Each 1123 * address is contained in its appropriate structure (i.e. struct 1124 * sockaddr_in or struct sockaddr_in6) the family of the address type 1125 * must be used to distengish the address length (note that this 1126 * representation is termed a "packed array" of addresses). The caller 1127 * specifies the number of addresses in the array with addrcnt. 1128 * 1129 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1130 * -1, and sets errno to the appropriate error code. 1131 * 1132 * For SCTP, the port given in each socket address must be the same, or 1133 * sctp_connectx() will fail, setting errno to EINVAL. 1134 * 1135 * An application can use sctp_connectx to initiate an association with 1136 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1137 * allows a caller to specify multiple addresses at which a peer can be 1138 * reached. The way the SCTP stack uses the list of addresses to set up 1139 * the association is implementation dependant. This function only 1140 * specifies that the stack will try to make use of all the addresses in 1141 * the list when needed. 1142 * 1143 * Note that the list of addresses passed in is only used for setting up 1144 * the association. It does not necessarily equal the set of addresses 1145 * the peer uses for the resulting association. If the caller wants to 1146 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1147 * retrieve them after the association has been set up. 1148 * 1149 * Basically do nothing but copying the addresses from user to kernel 1150 * land and invoking either sctp_connectx(). This is used for tunneling 1151 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1152 * 1153 * We don't use copy_from_user() for optimization: we first do the 1154 * sanity checks (buffer size -fast- and access check-healthy 1155 * pointer); if all of those succeed, then we can alloc the memory 1156 * (expensive operation) needed to copy the data to kernel. Then we do 1157 * the copying without checking the user space area 1158 * (__copy_from_user()). 1159 * 1160 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1161 * it. 1162 * 1163 * sk The sk of the socket 1164 * addrs The pointer to the addresses in user land 1165 * addrssize Size of the addrs buffer 1166 * 1167 * Returns 0 if ok, <0 errno code on error. 1168 */ 1169SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1170 struct sockaddr __user *addrs, 1171 int addrs_size) 1172{ 1173 int err = 0; 1174 struct sockaddr *kaddrs; 1175 1176 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1177 __FUNCTION__, sk, addrs, addrs_size); 1178 1179 if (unlikely(addrs_size <= 0)) 1180 return -EINVAL; 1181 1182 /* Check the user passed a healthy pointer. */ 1183 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1184 return -EFAULT; 1185 1186 /* Alloc space for the address array in kernel memory. */ 1187 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1188 if (unlikely(!kaddrs)) 1189 return -ENOMEM; 1190 1191 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1192 err = -EFAULT; 1193 } else { 1194 err = __sctp_connect(sk, kaddrs, addrs_size); 1195 } 1196 1197 kfree(kaddrs); 1198 return err; 1199} 1200 1201/* API 3.1.4 close() - UDP Style Syntax 1202 * Applications use close() to perform graceful shutdown (as described in 1203 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1204 * by a UDP-style socket. 1205 * 1206 * The syntax is 1207 * 1208 * ret = close(int sd); 1209 * 1210 * sd - the socket descriptor of the associations to be closed. 1211 * 1212 * To gracefully shutdown a specific association represented by the 1213 * UDP-style socket, an application should use the sendmsg() call, 1214 * passing no user data, but including the appropriate flag in the 1215 * ancillary data (see Section xxxx). 1216 * 1217 * If sd in the close() call is a branched-off socket representing only 1218 * one association, the shutdown is performed on that association only. 1219 * 1220 * 4.1.6 close() - TCP Style Syntax 1221 * 1222 * Applications use close() to gracefully close down an association. 1223 * 1224 * The syntax is: 1225 * 1226 * int close(int sd); 1227 * 1228 * sd - the socket descriptor of the association to be closed. 1229 * 1230 * After an application calls close() on a socket descriptor, no further 1231 * socket operations will succeed on that descriptor. 1232 * 1233 * API 7.1.4 SO_LINGER 1234 * 1235 * An application using the TCP-style socket can use this option to 1236 * perform the SCTP ABORT primitive. The linger option structure is: 1237 * 1238 * struct linger { 1239 * int l_onoff; // option on/off 1240 * int l_linger; // linger time 1241 * }; 1242 * 1243 * To enable the option, set l_onoff to 1. If the l_linger value is set 1244 * to 0, calling close() is the same as the ABORT primitive. If the 1245 * value is set to a negative value, the setsockopt() call will return 1246 * an error. If the value is set to a positive value linger_time, the 1247 * close() can be blocked for at most linger_time ms. If the graceful 1248 * shutdown phase does not finish during this period, close() will 1249 * return but the graceful shutdown phase continues in the system. 1250 */ 1251SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1252{ 1253 struct sctp_endpoint *ep; 1254 struct sctp_association *asoc; 1255 struct list_head *pos, *temp; 1256 1257 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1258 1259 sctp_lock_sock(sk); 1260 sk->sk_shutdown = SHUTDOWN_MASK; 1261 1262 ep = sctp_sk(sk)->ep; 1263 1264 /* Walk all associations on an endpoint. */ 1265 list_for_each_safe(pos, temp, &ep->asocs) { 1266 asoc = list_entry(pos, struct sctp_association, asocs); 1267 1268 if (sctp_style(sk, TCP)) { 1269 /* A closed association can still be in the list if 1270 * it belongs to a TCP-style listening socket that is 1271 * not yet accepted. If so, free it. If not, send an 1272 * ABORT or SHUTDOWN based on the linger options. 1273 */ 1274 if (sctp_state(asoc, CLOSED)) { 1275 sctp_unhash_established(asoc); 1276 sctp_association_free(asoc); 1277 continue; 1278 } 1279 } 1280 1281 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1282 struct sctp_chunk *chunk; 1283 1284 chunk = sctp_make_abort_user(asoc, NULL, 0); 1285 if (chunk) 1286 sctp_primitive_ABORT(asoc, chunk); 1287 } else 1288 sctp_primitive_SHUTDOWN(asoc, NULL); 1289 } 1290 1291 /* Clean up any skbs sitting on the receive queue. */ 1292 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1293 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1294 1295 /* On a TCP-style socket, block for at most linger_time if set. */ 1296 if (sctp_style(sk, TCP) && timeout) 1297 sctp_wait_for_close(sk, timeout); 1298 1299 /* This will run the backlog queue. */ 1300 sctp_release_sock(sk); 1301 1302 /* Supposedly, no process has access to the socket, but 1303 * the net layers still may. 1304 */ 1305 sctp_local_bh_disable(); 1306 sctp_bh_lock_sock(sk); 1307 1308 /* Hold the sock, since sk_common_release() will put sock_put() 1309 * and we have just a little more cleanup. 1310 */ 1311 sock_hold(sk); 1312 sk_common_release(sk); 1313 1314 sctp_bh_unlock_sock(sk); 1315 sctp_local_bh_enable(); 1316 1317 sock_put(sk); 1318 1319 SCTP_DBG_OBJCNT_DEC(sock); 1320} 1321 1322/* Handle EPIPE error. */ 1323static int sctp_error(struct sock *sk, int flags, int err) 1324{ 1325 if (err == -EPIPE) 1326 err = sock_error(sk) ? : -EPIPE; 1327 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1328 send_sig(SIGPIPE, current, 0); 1329 return err; 1330} 1331 1332/* API 3.1.3 sendmsg() - UDP Style Syntax 1333 * 1334 * An application uses sendmsg() and recvmsg() calls to transmit data to 1335 * and receive data from its peer. 1336 * 1337 * ssize_t sendmsg(int socket, const struct msghdr *message, 1338 * int flags); 1339 * 1340 * socket - the socket descriptor of the endpoint. 1341 * message - pointer to the msghdr structure which contains a single 1342 * user message and possibly some ancillary data. 1343 * 1344 * See Section 5 for complete description of the data 1345 * structures. 1346 * 1347 * flags - flags sent or received with the user message, see Section 1348 * 5 for complete description of the flags. 1349 * 1350 * Note: This function could use a rewrite especially when explicit 1351 * connect support comes in. 1352 */ 1353/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1354 1355SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1356 1357SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1358 struct msghdr *msg, size_t msg_len) 1359{ 1360 struct sctp_sock *sp; 1361 struct sctp_endpoint *ep; 1362 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1363 struct sctp_transport *transport, *chunk_tp; 1364 struct sctp_chunk *chunk; 1365 union sctp_addr to; 1366 struct sockaddr *msg_name = NULL; 1367 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1368 struct sctp_sndrcvinfo *sinfo; 1369 struct sctp_initmsg *sinit; 1370 sctp_assoc_t associd = 0; 1371 sctp_cmsgs_t cmsgs = { NULL }; 1372 int err; 1373 sctp_scope_t scope; 1374 long timeo; 1375 __u16 sinfo_flags = 0; 1376 struct sctp_datamsg *datamsg; 1377 struct list_head *pos; 1378 int msg_flags = msg->msg_flags; 1379 1380 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1381 sk, msg, msg_len); 1382 1383 err = 0; 1384 sp = sctp_sk(sk); 1385 ep = sp->ep; 1386 1387 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1388 1389 /* We cannot send a message over a TCP-style listening socket. */ 1390 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1391 err = -EPIPE; 1392 goto out_nounlock; 1393 } 1394 1395 /* Parse out the SCTP CMSGs. */ 1396 err = sctp_msghdr_parse(msg, &cmsgs); 1397 1398 if (err) { 1399 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1400 goto out_nounlock; 1401 } 1402 1403 /* Fetch the destination address for this packet. This 1404 * address only selects the association--it is not necessarily 1405 * the address we will send to. 1406 * For a peeled-off socket, msg_name is ignored. 1407 */ 1408 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1409 int msg_namelen = msg->msg_namelen; 1410 1411 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1412 msg_namelen); 1413 if (err) 1414 return err; 1415 1416 if (msg_namelen > sizeof(to)) 1417 msg_namelen = sizeof(to); 1418 memcpy(&to, msg->msg_name, msg_namelen); 1419 msg_name = msg->msg_name; 1420 } 1421 1422 sinfo = cmsgs.info; 1423 sinit = cmsgs.init; 1424 1425 /* Did the user specify SNDRCVINFO? */ 1426 if (sinfo) { 1427 sinfo_flags = sinfo->sinfo_flags; 1428 associd = sinfo->sinfo_assoc_id; 1429 } 1430 1431 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1432 msg_len, sinfo_flags); 1433 1434 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1435 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1436 err = -EINVAL; 1437 goto out_nounlock; 1438 } 1439 1440 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1441 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1442 * If SCTP_ABORT is set, the message length could be non zero with 1443 * the msg_iov set to the user abort reason. 1444 */ 1445 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1446 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1447 err = -EINVAL; 1448 goto out_nounlock; 1449 } 1450 1451 /* If SCTP_ADDR_OVER is set, there must be an address 1452 * specified in msg_name. 1453 */ 1454 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1455 err = -EINVAL; 1456 goto out_nounlock; 1457 } 1458 1459 transport = NULL; 1460 1461 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1462 1463 sctp_lock_sock(sk); 1464 1465 /* If a msg_name has been specified, assume this is to be used. */ 1466 if (msg_name) { 1467 /* Look for a matching association on the endpoint. */ 1468 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1469 if (!asoc) { 1470 /* If we could not find a matching association on the 1471 * endpoint, make sure that it is not a TCP-style 1472 * socket that already has an association or there is 1473 * no peeled-off association on another socket. 1474 */ 1475 if ((sctp_style(sk, TCP) && 1476 sctp_sstate(sk, ESTABLISHED)) || 1477 sctp_endpoint_is_peeled_off(ep, &to)) { 1478 err = -EADDRNOTAVAIL; 1479 goto out_unlock; 1480 } 1481 } 1482 } else { 1483 asoc = sctp_id2assoc(sk, associd); 1484 if (!asoc) { 1485 err = -EPIPE; 1486 goto out_unlock; 1487 } 1488 } 1489 1490 if (asoc) { 1491 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1492 1493 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1494 * socket that has an association in CLOSED state. This can 1495 * happen when an accepted socket has an association that is 1496 * already CLOSED. 1497 */ 1498 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1499 err = -EPIPE; 1500 goto out_unlock; 1501 } 1502 1503 if (sinfo_flags & SCTP_EOF) { 1504 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1505 asoc); 1506 sctp_primitive_SHUTDOWN(asoc, NULL); 1507 err = 0; 1508 goto out_unlock; 1509 } 1510 if (sinfo_flags & SCTP_ABORT) { 1511 struct sctp_chunk *chunk; 1512 1513 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1514 if (!chunk) { 1515 err = -ENOMEM; 1516 goto out_unlock; 1517 } 1518 1519 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1520 sctp_primitive_ABORT(asoc, chunk); 1521 err = 0; 1522 goto out_unlock; 1523 } 1524 } 1525 1526 /* Do we need to create the association? */ 1527 if (!asoc) { 1528 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1529 1530 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1531 err = -EINVAL; 1532 goto out_unlock; 1533 } 1534 1535 /* Check for invalid stream against the stream counts, 1536 * either the default or the user specified stream counts. 1537 */ 1538 if (sinfo) { 1539 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1540 /* Check against the defaults. */ 1541 if (sinfo->sinfo_stream >= 1542 sp->initmsg.sinit_num_ostreams) { 1543 err = -EINVAL; 1544 goto out_unlock; 1545 } 1546 } else { 1547 /* Check against the requested. */ 1548 if (sinfo->sinfo_stream >= 1549 sinit->sinit_num_ostreams) { 1550 err = -EINVAL; 1551 goto out_unlock; 1552 } 1553 } 1554 } 1555 1556 /* 1557 * API 3.1.2 bind() - UDP Style Syntax 1558 * If a bind() or sctp_bindx() is not called prior to a 1559 * sendmsg() call that initiates a new association, the 1560 * system picks an ephemeral port and will choose an address 1561 * set equivalent to binding with a wildcard address. 1562 */ 1563 if (!ep->base.bind_addr.port) { 1564 if (sctp_autobind(sk)) { 1565 err = -EAGAIN; 1566 goto out_unlock; 1567 } 1568 } else { 1569 /* 1570 * If an unprivileged user inherits a one-to-many 1571 * style socket with open associations on a privileged 1572 * port, it MAY be permitted to accept new associations, 1573 * but it SHOULD NOT be permitted to open new 1574 * associations. 1575 */ 1576 if (ep->base.bind_addr.port < PROT_SOCK && 1577 !capable(CAP_NET_BIND_SERVICE)) { 1578 err = -EACCES; 1579 goto out_unlock; 1580 } 1581 } 1582 1583 scope = sctp_scope(&to); 1584 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1585 if (!new_asoc) { 1586 err = -ENOMEM; 1587 goto out_unlock; 1588 } 1589 asoc = new_asoc; 1590 1591 /* If the SCTP_INIT ancillary data is specified, set all 1592 * the association init values accordingly. 1593 */ 1594 if (sinit) { 1595 if (sinit->sinit_num_ostreams) { 1596 asoc->c.sinit_num_ostreams = 1597 sinit->sinit_num_ostreams; 1598 } 1599 if (sinit->sinit_max_instreams) { 1600 asoc->c.sinit_max_instreams = 1601 sinit->sinit_max_instreams; 1602 } 1603 if (sinit->sinit_max_attempts) { 1604 asoc->max_init_attempts 1605 = sinit->sinit_max_attempts; 1606 } 1607 if (sinit->sinit_max_init_timeo) { 1608 asoc->max_init_timeo = 1609 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1610 } 1611 } 1612 1613 /* Prime the peer's transport structures. */ 1614 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1615 if (!transport) { 1616 err = -ENOMEM; 1617 goto out_free; 1618 } 1619 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1620 if (err < 0) { 1621 err = -ENOMEM; 1622 goto out_free; 1623 } 1624 } 1625 1626 /* ASSERT: we have a valid association at this point. */ 1627 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1628 1629 if (!sinfo) { 1630 /* If the user didn't specify SNDRCVINFO, make up one with 1631 * some defaults. 1632 */ 1633 default_sinfo.sinfo_stream = asoc->default_stream; 1634 default_sinfo.sinfo_flags = asoc->default_flags; 1635 default_sinfo.sinfo_ppid = asoc->default_ppid; 1636 default_sinfo.sinfo_context = asoc->default_context; 1637 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1638 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1639 sinfo = &default_sinfo; 1640 } 1641 1642 /* API 7.1.7, the sndbuf size per association bounds the 1643 * maximum size of data that can be sent in a single send call. 1644 */ 1645 if (msg_len > sk->sk_sndbuf) { 1646 err = -EMSGSIZE; 1647 goto out_free; 1648 } 1649 1650 /* If fragmentation is disabled and the message length exceeds the 1651 * association fragmentation point, return EMSGSIZE. The I-D 1652 * does not specify what this error is, but this looks like 1653 * a great fit. 1654 */ 1655 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1656 err = -EMSGSIZE; 1657 goto out_free; 1658 } 1659 1660 if (sinfo) { 1661 /* Check for invalid stream. */ 1662 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1663 err = -EINVAL; 1664 goto out_free; 1665 } 1666 } 1667 1668 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1669 if (!sctp_wspace(asoc)) { 1670 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1671 if (err) 1672 goto out_free; 1673 } 1674 1675 /* If an address is passed with the sendto/sendmsg call, it is used 1676 * to override the primary destination address in the TCP model, or 1677 * when SCTP_ADDR_OVER flag is set in the UDP model. 1678 */ 1679 if ((sctp_style(sk, TCP) && msg_name) || 1680 (sinfo_flags & SCTP_ADDR_OVER)) { 1681 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1682 if (!chunk_tp) { 1683 err = -EINVAL; 1684 goto out_free; 1685 } 1686 } else 1687 chunk_tp = NULL; 1688 1689 /* Auto-connect, if we aren't connected already. */ 1690 if (sctp_state(asoc, CLOSED)) { 1691 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1692 if (err < 0) 1693 goto out_free; 1694 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1695 } 1696 1697 /* Break the message into multiple chunks of maximum size. */ 1698 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1699 if (!datamsg) { 1700 err = -ENOMEM; 1701 goto out_free; 1702 } 1703 1704 /* Now send the (possibly) fragmented message. */ 1705 list_for_each(pos, &datamsg->chunks) { 1706 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1707 sctp_datamsg_track(chunk); 1708 1709 /* Do accounting for the write space. */ 1710 sctp_set_owner_w(chunk); 1711 1712 chunk->transport = chunk_tp; 1713 1714 /* Send it to the lower layers. Note: all chunks 1715 * must either fail or succeed. The lower layer 1716 * works that way today. Keep it that way or this 1717 * breaks. 1718 */ 1719 err = sctp_primitive_SEND(asoc, chunk); 1720 /* Did the lower layer accept the chunk? */ 1721 if (err) 1722 sctp_chunk_free(chunk); 1723 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1724 } 1725 1726 sctp_datamsg_free(datamsg); 1727 if (err) 1728 goto out_free; 1729 else 1730 err = msg_len; 1731 1732 /* If we are already past ASSOCIATE, the lower 1733 * layers are responsible for association cleanup. 1734 */ 1735 goto out_unlock; 1736 1737out_free: 1738 if (new_asoc) 1739 sctp_association_free(asoc); 1740out_unlock: 1741 sctp_release_sock(sk); 1742 1743out_nounlock: 1744 return sctp_error(sk, msg_flags, err); 1745 1746#if 0 1747do_sock_err: 1748 if (msg_len) 1749 err = msg_len; 1750 else 1751 err = sock_error(sk); 1752 goto out; 1753 1754do_interrupted: 1755 if (msg_len) 1756 err = msg_len; 1757 goto out; 1758#endif /* 0 */ 1759} 1760 1761/* This is an extended version of skb_pull() that removes the data from the 1762 * start of a skb even when data is spread across the list of skb's in the 1763 * frag_list. len specifies the total amount of data that needs to be removed. 1764 * when 'len' bytes could be removed from the skb, it returns 0. 1765 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1766 * could not be removed. 1767 */ 1768static int sctp_skb_pull(struct sk_buff *skb, int len) 1769{ 1770 struct sk_buff *list; 1771 int skb_len = skb_headlen(skb); 1772 int rlen; 1773 1774 if (len <= skb_len) { 1775 __skb_pull(skb, len); 1776 return 0; 1777 } 1778 len -= skb_len; 1779 __skb_pull(skb, skb_len); 1780 1781 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1782 rlen = sctp_skb_pull(list, len); 1783 skb->len -= (len-rlen); 1784 skb->data_len -= (len-rlen); 1785 1786 if (!rlen) 1787 return 0; 1788 1789 len = rlen; 1790 } 1791 1792 return len; 1793} 1794 1795/* API 3.1.3 recvmsg() - UDP Style Syntax 1796 * 1797 * ssize_t recvmsg(int socket, struct msghdr *message, 1798 * int flags); 1799 * 1800 * socket - the socket descriptor of the endpoint. 1801 * message - pointer to the msghdr structure which contains a single 1802 * user message and possibly some ancillary data. 1803 * 1804 * See Section 5 for complete description of the data 1805 * structures. 1806 * 1807 * flags - flags sent or received with the user message, see Section 1808 * 5 for complete description of the flags. 1809 */ 1810static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1811 1812SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1813 struct msghdr *msg, size_t len, int noblock, 1814 int flags, int *addr_len) 1815{ 1816 struct sctp_ulpevent *event = NULL; 1817 struct sctp_sock *sp = sctp_sk(sk); 1818 struct sk_buff *skb; 1819 int copied; 1820 int err = 0; 1821 int skb_len; 1822 1823 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1824 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1825 "len", len, "knoblauch", noblock, 1826 "flags", flags, "addr_len", addr_len); 1827 1828 sctp_lock_sock(sk); 1829 1830 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1831 err = -ENOTCONN; 1832 goto out; 1833 } 1834 1835 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1836 if (!skb) 1837 goto out; 1838 1839 /* Get the total length of the skb including any skb's in the 1840 * frag_list. 1841 */ 1842 skb_len = skb->len; 1843 1844 copied = skb_len; 1845 if (copied > len) 1846 copied = len; 1847 1848 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1849 1850 event = sctp_skb2event(skb); 1851 1852 if (err) 1853 goto out_free; 1854 1855 sock_recv_timestamp(msg, sk, skb); 1856 if (sctp_ulpevent_is_notification(event)) { 1857 msg->msg_flags |= MSG_NOTIFICATION; 1858 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1859 } else { 1860 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1861 } 1862 1863 /* Check if we allow SCTP_SNDRCVINFO. */ 1864 if (sp->subscribe.sctp_data_io_event) 1865 sctp_ulpevent_read_sndrcvinfo(event, msg); 1866#if 0 1867 /* FIXME: we should be calling IP/IPv6 layers. */ 1868 if (sk->sk_protinfo.af_inet.cmsg_flags) 1869 ip_cmsg_recv(msg, skb); 1870#endif 1871 1872 err = copied; 1873 1874 /* If skb's length exceeds the user's buffer, update the skb and 1875 * push it back to the receive_queue so that the next call to 1876 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1877 */ 1878 if (skb_len > copied) { 1879 msg->msg_flags &= ~MSG_EOR; 1880 if (flags & MSG_PEEK) 1881 goto out_free; 1882 sctp_skb_pull(skb, copied); 1883 skb_queue_head(&sk->sk_receive_queue, skb); 1884 1885 /* When only partial message is copied to the user, increase 1886 * rwnd by that amount. If all the data in the skb is read, 1887 * rwnd is updated when the event is freed. 1888 */ 1889 sctp_assoc_rwnd_increase(event->asoc, copied); 1890 goto out; 1891 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1892 (event->msg_flags & MSG_EOR)) 1893 msg->msg_flags |= MSG_EOR; 1894 else 1895 msg->msg_flags &= ~MSG_EOR; 1896 1897out_free: 1898 if (flags & MSG_PEEK) { 1899 /* Release the skb reference acquired after peeking the skb in 1900 * sctp_skb_recv_datagram(). 1901 */ 1902 kfree_skb(skb); 1903 } else { 1904 /* Free the event which includes releasing the reference to 1905 * the owner of the skb, freeing the skb and updating the 1906 * rwnd. 1907 */ 1908 sctp_ulpevent_free(event); 1909 } 1910out: 1911 sctp_release_sock(sk); 1912 return err; 1913} 1914 1915/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1916 * 1917 * This option is a on/off flag. If enabled no SCTP message 1918 * fragmentation will be performed. Instead if a message being sent 1919 * exceeds the current PMTU size, the message will NOT be sent and 1920 * instead a error will be indicated to the user. 1921 */ 1922static int sctp_setsockopt_disable_fragments(struct sock *sk, 1923 char __user *optval, int optlen) 1924{ 1925 int val; 1926 1927 if (optlen < sizeof(int)) 1928 return -EINVAL; 1929 1930 if (get_user(val, (int __user *)optval)) 1931 return -EFAULT; 1932 1933 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1934 1935 return 0; 1936} 1937 1938static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1939 int optlen) 1940{ 1941 if (optlen != sizeof(struct sctp_event_subscribe)) 1942 return -EINVAL; 1943 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1944 return -EFAULT; 1945 return 0; 1946} 1947 1948/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1949 * 1950 * This socket option is applicable to the UDP-style socket only. When 1951 * set it will cause associations that are idle for more than the 1952 * specified number of seconds to automatically close. An association 1953 * being idle is defined an association that has NOT sent or received 1954 * user data. The special value of '0' indicates that no automatic 1955 * close of any associations should be performed. The option expects an 1956 * integer defining the number of seconds of idle time before an 1957 * association is closed. 1958 */ 1959static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1960 int optlen) 1961{ 1962 struct sctp_sock *sp = sctp_sk(sk); 1963 1964 /* Applicable to UDP-style socket only */ 1965 if (sctp_style(sk, TCP)) 1966 return -EOPNOTSUPP; 1967 if (optlen != sizeof(int)) 1968 return -EINVAL; 1969 if (copy_from_user(&sp->autoclose, optval, optlen)) 1970 return -EFAULT; 1971 1972 return 0; 1973} 1974 1975/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1976 * 1977 * Applications can enable or disable heartbeats for any peer address of 1978 * an association, modify an address's heartbeat interval, force a 1979 * heartbeat to be sent immediately, and adjust the address's maximum 1980 * number of retransmissions sent before an address is considered 1981 * unreachable. The following structure is used to access and modify an 1982 * address's parameters: 1983 * 1984 * struct sctp_paddrparams { 1985 * sctp_assoc_t spp_assoc_id; 1986 * struct sockaddr_storage spp_address; 1987 * uint32_t spp_hbinterval; 1988 * uint16_t spp_pathmaxrxt; 1989 * uint32_t spp_pathmtu; 1990 * uint32_t spp_sackdelay; 1991 * uint32_t spp_flags; 1992 * }; 1993 * 1994 * spp_assoc_id - (one-to-many style socket) This is filled in the 1995 * application, and identifies the association for 1996 * this query. 1997 * spp_address - This specifies which address is of interest. 1998 * spp_hbinterval - This contains the value of the heartbeat interval, 1999 * in milliseconds. If a value of zero 2000 * is present in this field then no changes are to 2001 * be made to this parameter. 2002 * spp_pathmaxrxt - This contains the maximum number of 2003 * retransmissions before this address shall be 2004 * considered unreachable. If a value of zero 2005 * is present in this field then no changes are to 2006 * be made to this parameter. 2007 * spp_pathmtu - When Path MTU discovery is disabled the value 2008 * specified here will be the "fixed" path mtu. 2009 * Note that if the spp_address field is empty 2010 * then all associations on this address will 2011 * have this fixed path mtu set upon them. 2012 * 2013 * spp_sackdelay - When delayed sack is enabled, this value specifies 2014 * the number of milliseconds that sacks will be delayed 2015 * for. This value will apply to all addresses of an 2016 * association if the spp_address field is empty. Note 2017 * also, that if delayed sack is enabled and this 2018 * value is set to 0, no change is made to the last 2019 * recorded delayed sack timer value. 2020 * 2021 * spp_flags - These flags are used to control various features 2022 * on an association. The flag field may contain 2023 * zero or more of the following options. 2024 * 2025 * SPP_HB_ENABLE - Enable heartbeats on the 2026 * specified address. Note that if the address 2027 * field is empty all addresses for the association 2028 * have heartbeats enabled upon them. 2029 * 2030 * SPP_HB_DISABLE - Disable heartbeats on the 2031 * speicifed address. Note that if the address 2032 * field is empty all addresses for the association 2033 * will have their heartbeats disabled. Note also 2034 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2035 * mutually exclusive, only one of these two should 2036 * be specified. Enabling both fields will have 2037 * undetermined results. 2038 * 2039 * SPP_HB_DEMAND - Request a user initiated heartbeat 2040 * to be made immediately. 2041 * 2042 * SPP_PMTUD_ENABLE - This field will enable PMTU 2043 * discovery upon the specified address. Note that 2044 * if the address feild is empty then all addresses 2045 * on the association are effected. 2046 * 2047 * SPP_PMTUD_DISABLE - This field will disable PMTU 2048 * discovery upon the specified address. Note that 2049 * if the address feild is empty then all addresses 2050 * on the association are effected. Not also that 2051 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2052 * exclusive. Enabling both will have undetermined 2053 * results. 2054 * 2055 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2056 * on delayed sack. The time specified in spp_sackdelay 2057 * is used to specify the sack delay for this address. Note 2058 * that if spp_address is empty then all addresses will 2059 * enable delayed sack and take on the sack delay 2060 * value specified in spp_sackdelay. 2061 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2062 * off delayed sack. If the spp_address field is blank then 2063 * delayed sack is disabled for the entire association. Note 2064 * also that this field is mutually exclusive to 2065 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2066 * results. 2067 */ 2068static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2069 struct sctp_transport *trans, 2070 struct sctp_association *asoc, 2071 struct sctp_sock *sp, 2072 int hb_change, 2073 int pmtud_change, 2074 int sackdelay_change) 2075{ 2076 int error; 2077 2078 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2079 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2080 if (error) 2081 return error; 2082 } 2083 2084 if (params->spp_hbinterval) { 2085 if (trans) { 2086 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2087 } else if (asoc) { 2088 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2089 } else { 2090 sp->hbinterval = params->spp_hbinterval; 2091 } 2092 } 2093 2094 if (hb_change) { 2095 if (trans) { 2096 trans->param_flags = 2097 (trans->param_flags & ~SPP_HB) | hb_change; 2098 } else if (asoc) { 2099 asoc->param_flags = 2100 (asoc->param_flags & ~SPP_HB) | hb_change; 2101 } else { 2102 sp->param_flags = 2103 (sp->param_flags & ~SPP_HB) | hb_change; 2104 } 2105 } 2106 2107 if (params->spp_pathmtu) { 2108 if (trans) { 2109 trans->pathmtu = params->spp_pathmtu; 2110 sctp_assoc_sync_pmtu(asoc); 2111 } else if (asoc) { 2112 asoc->pathmtu = params->spp_pathmtu; 2113 sctp_frag_point(sp, params->spp_pathmtu); 2114 } else { 2115 sp->pathmtu = params->spp_pathmtu; 2116 } 2117 } 2118 2119 if (pmtud_change) { 2120 if (trans) { 2121 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2122 (params->spp_flags & SPP_PMTUD_ENABLE); 2123 trans->param_flags = 2124 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2125 if (update) { 2126 sctp_transport_pmtu(trans); 2127 sctp_assoc_sync_pmtu(asoc); 2128 } 2129 } else if (asoc) { 2130 asoc->param_flags = 2131 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2132 } else { 2133 sp->param_flags = 2134 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2135 } 2136 } 2137 2138 if (params->spp_sackdelay) { 2139 if (trans) { 2140 trans->sackdelay = 2141 msecs_to_jiffies(params->spp_sackdelay); 2142 } else if (asoc) { 2143 asoc->sackdelay = 2144 msecs_to_jiffies(params->spp_sackdelay); 2145 } else { 2146 sp->sackdelay = params->spp_sackdelay; 2147 } 2148 } 2149 2150 if (sackdelay_change) { 2151 if (trans) { 2152 trans->param_flags = 2153 (trans->param_flags & ~SPP_SACKDELAY) | 2154 sackdelay_change; 2155 } else if (asoc) { 2156 asoc->param_flags = 2157 (asoc->param_flags & ~SPP_SACKDELAY) | 2158 sackdelay_change; 2159 } else { 2160 sp->param_flags = 2161 (sp->param_flags & ~SPP_SACKDELAY) | 2162 sackdelay_change; 2163 } 2164 } 2165 2166 if (params->spp_pathmaxrxt) { 2167 if (trans) { 2168 trans->pathmaxrxt = params->spp_pathmaxrxt; 2169 } else if (asoc) { 2170 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2171 } else { 2172 sp->pathmaxrxt = params->spp_pathmaxrxt; 2173 } 2174 } 2175 2176 return 0; 2177} 2178 2179static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2180 char __user *optval, int optlen) 2181{ 2182 struct sctp_paddrparams params; 2183 struct sctp_transport *trans = NULL; 2184 struct sctp_association *asoc = NULL; 2185 struct sctp_sock *sp = sctp_sk(sk); 2186 int error; 2187 int hb_change, pmtud_change, sackdelay_change; 2188 2189 if (optlen != sizeof(struct sctp_paddrparams)) 2190 return - EINVAL; 2191 2192 if (copy_from_user(&params, optval, optlen)) 2193 return -EFAULT; 2194 2195 /* Validate flags and value parameters. */ 2196 hb_change = params.spp_flags & SPP_HB; 2197 pmtud_change = params.spp_flags & SPP_PMTUD; 2198 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2199 2200 if (hb_change == SPP_HB || 2201 pmtud_change == SPP_PMTUD || 2202 sackdelay_change == SPP_SACKDELAY || 2203 params.spp_sackdelay > 500 || 2204 (params.spp_pathmtu 2205 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2206 return -EINVAL; 2207 2208 /* If an address other than INADDR_ANY is specified, and 2209 * no transport is found, then the request is invalid. 2210 */ 2211 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 2212 trans = sctp_addr_id2transport(sk, &params.spp_address, 2213 params.spp_assoc_id); 2214 if (!trans) 2215 return -EINVAL; 2216 } 2217 2218 /* Get association, if assoc_id != 0 and the socket is a one 2219 * to many style socket, and an association was not found, then 2220 * the id was invalid. 2221 */ 2222 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2223 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2224 return -EINVAL; 2225 2226 /* Heartbeat demand can only be sent on a transport or 2227 * association, but not a socket. 2228 */ 2229 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2230 return -EINVAL; 2231 2232 /* Process parameters. */ 2233 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2234 hb_change, pmtud_change, 2235 sackdelay_change); 2236 2237 if (error) 2238 return error; 2239 2240 /* If changes are for association, also apply parameters to each 2241 * transport. 2242 */ 2243 if (!trans && asoc) { 2244 struct list_head *pos; 2245 2246 list_for_each(pos, &asoc->peer.transport_addr_list) { 2247 trans = list_entry(pos, struct sctp_transport, 2248 transports); 2249 sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2250 hb_change, pmtud_change, 2251 sackdelay_change); 2252 } 2253 } 2254 2255 return 0; 2256} 2257 2258/* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2259 * 2260 * This options will get or set the delayed ack timer. The time is set 2261 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2262 * endpoints default delayed ack timer value. If the assoc_id field is 2263 * non-zero, then the set or get effects the specified association. 2264 * 2265 * struct sctp_assoc_value { 2266 * sctp_assoc_t assoc_id; 2267 * uint32_t assoc_value; 2268 * }; 2269 * 2270 * assoc_id - This parameter, indicates which association the 2271 * user is preforming an action upon. Note that if 2272 * this field's value is zero then the endpoints 2273 * default value is changed (effecting future 2274 * associations only). 2275 * 2276 * assoc_value - This parameter contains the number of milliseconds 2277 * that the user is requesting the delayed ACK timer 2278 * be set to. Note that this value is defined in 2279 * the standard to be between 200 and 500 milliseconds. 2280 * 2281 * Note: a value of zero will leave the value alone, 2282 * but disable SACK delay. A non-zero value will also 2283 * enable SACK delay. 2284 */ 2285 2286static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2287 char __user *optval, int optlen) 2288{ 2289 struct sctp_assoc_value params; 2290 struct sctp_transport *trans = NULL; 2291 struct sctp_association *asoc = NULL; 2292 struct sctp_sock *sp = sctp_sk(sk); 2293 2294 if (optlen != sizeof(struct sctp_assoc_value)) 2295 return - EINVAL; 2296 2297 if (copy_from_user(&params, optval, optlen)) 2298 return -EFAULT; 2299 2300 /* Validate value parameter. */ 2301 if (params.assoc_value > 500) 2302 return -EINVAL; 2303 2304 /* Get association, if assoc_id != 0 and the socket is a one 2305 * to many style socket, and an association was not found, then 2306 * the id was invalid. 2307 */ 2308 asoc = sctp_id2assoc(sk, params.assoc_id); 2309 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2310 return -EINVAL; 2311 2312 if (params.assoc_value) { 2313 if (asoc) { 2314 asoc->sackdelay = 2315 msecs_to_jiffies(params.assoc_value); 2316 asoc->param_flags = 2317 (asoc->param_flags & ~SPP_SACKDELAY) | 2318 SPP_SACKDELAY_ENABLE; 2319 } else { 2320 sp->sackdelay = params.assoc_value; 2321 sp->param_flags = 2322 (sp->param_flags & ~SPP_SACKDELAY) | 2323 SPP_SACKDELAY_ENABLE; 2324 } 2325 } else { 2326 if (asoc) { 2327 asoc->param_flags = 2328 (asoc->param_flags & ~SPP_SACKDELAY) | 2329 SPP_SACKDELAY_DISABLE; 2330 } else { 2331 sp->param_flags = 2332 (sp->param_flags & ~SPP_SACKDELAY) | 2333 SPP_SACKDELAY_DISABLE; 2334 } 2335 } 2336 2337 /* If change is for association, also apply to each transport. */ 2338 if (asoc) { 2339 struct list_head *pos; 2340 2341 list_for_each(pos, &asoc->peer.transport_addr_list) { 2342 trans = list_entry(pos, struct sctp_transport, 2343 transports); 2344 if (params.assoc_value) { 2345 trans->sackdelay = 2346 msecs_to_jiffies(params.assoc_value); 2347 trans->param_flags = 2348 (trans->param_flags & ~SPP_SACKDELAY) | 2349 SPP_SACKDELAY_ENABLE; 2350 } else { 2351 trans->param_flags = 2352 (trans->param_flags & ~SPP_SACKDELAY) | 2353 SPP_SACKDELAY_DISABLE; 2354 } 2355 } 2356 } 2357 2358 return 0; 2359} 2360 2361/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2362 * 2363 * Applications can specify protocol parameters for the default association 2364 * initialization. The option name argument to setsockopt() and getsockopt() 2365 * is SCTP_INITMSG. 2366 * 2367 * Setting initialization parameters is effective only on an unconnected 2368 * socket (for UDP-style sockets only future associations are effected 2369 * by the change). With TCP-style sockets, this option is inherited by 2370 * sockets derived from a listener socket. 2371 */ 2372static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2373{ 2374 struct sctp_initmsg sinit; 2375 struct sctp_sock *sp = sctp_sk(sk); 2376 2377 if (optlen != sizeof(struct sctp_initmsg)) 2378 return -EINVAL; 2379 if (copy_from_user(&sinit, optval, optlen)) 2380 return -EFAULT; 2381 2382 if (sinit.sinit_num_ostreams) 2383 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2384 if (sinit.sinit_max_instreams) 2385 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2386 if (sinit.sinit_max_attempts) 2387 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2388 if (sinit.sinit_max_init_timeo) 2389 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2390 2391 return 0; 2392} 2393 2394/* 2395 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2396 * 2397 * Applications that wish to use the sendto() system call may wish to 2398 * specify a default set of parameters that would normally be supplied 2399 * through the inclusion of ancillary data. This socket option allows 2400 * such an application to set the default sctp_sndrcvinfo structure. 2401 * The application that wishes to use this socket option simply passes 2402 * in to this call the sctp_sndrcvinfo structure defined in Section 2403 * 5.2.2) The input parameters accepted by this call include 2404 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2405 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2406 * to this call if the caller is using the UDP model. 2407 */ 2408static int sctp_setsockopt_default_send_param(struct sock *sk, 2409 char __user *optval, int optlen) 2410{ 2411 struct sctp_sndrcvinfo info; 2412 struct sctp_association *asoc; 2413 struct sctp_sock *sp = sctp_sk(sk); 2414 2415 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2416 return -EINVAL; 2417 if (copy_from_user(&info, optval, optlen)) 2418 return -EFAULT; 2419 2420 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2421 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2422 return -EINVAL; 2423 2424 if (asoc) { 2425 asoc->default_stream = info.sinfo_stream; 2426 asoc->default_flags = info.sinfo_flags; 2427 asoc->default_ppid = info.sinfo_ppid; 2428 asoc->default_context = info.sinfo_context; 2429 asoc->default_timetolive = info.sinfo_timetolive; 2430 } else { 2431 sp->default_stream = info.sinfo_stream; 2432 sp->default_flags = info.sinfo_flags; 2433 sp->default_ppid = info.sinfo_ppid; 2434 sp->default_context = info.sinfo_context; 2435 sp->default_timetolive = info.sinfo_timetolive; 2436 } 2437 2438 return 0; 2439} 2440 2441/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2442 * 2443 * Requests that the local SCTP stack use the enclosed peer address as 2444 * the association primary. The enclosed address must be one of the 2445 * association peer's addresses. 2446 */ 2447static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2448 int optlen) 2449{ 2450 struct sctp_prim prim; 2451 struct sctp_transport *trans; 2452 2453 if (optlen != sizeof(struct sctp_prim)) 2454 return -EINVAL; 2455 2456 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2457 return -EFAULT; 2458 2459 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2460 if (!trans) 2461 return -EINVAL; 2462 2463 sctp_assoc_set_primary(trans->asoc, trans); 2464 2465 return 0; 2466} 2467 2468/* 2469 * 7.1.5 SCTP_NODELAY 2470 * 2471 * Turn on/off any Nagle-like algorithm. This means that packets are 2472 * generally sent as soon as possible and no unnecessary delays are 2473 * introduced, at the cost of more packets in the network. Expects an 2474 * integer boolean flag. 2475 */ 2476static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2477 int optlen) 2478{ 2479 int val; 2480 2481 if (optlen < sizeof(int)) 2482 return -EINVAL; 2483 if (get_user(val, (int __user *)optval)) 2484 return -EFAULT; 2485 2486 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2487 return 0; 2488} 2489 2490/* 2491 * 2492 * 7.1.1 SCTP_RTOINFO 2493 * 2494 * The protocol parameters used to initialize and bound retransmission 2495 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2496 * and modify these parameters. 2497 * All parameters are time values, in milliseconds. A value of 0, when 2498 * modifying the parameters, indicates that the current value should not 2499 * be changed. 2500 * 2501 */ 2502static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2503 struct sctp_rtoinfo rtoinfo; 2504 struct sctp_association *asoc; 2505 2506 if (optlen != sizeof (struct sctp_rtoinfo)) 2507 return -EINVAL; 2508 2509 if (copy_from_user(&rtoinfo, optval, optlen)) 2510 return -EFAULT; 2511 2512 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2513 2514 /* Set the values to the specific association */ 2515 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2516 return -EINVAL; 2517 2518 if (asoc) { 2519 if (rtoinfo.srto_initial != 0) 2520 asoc->rto_initial = 2521 msecs_to_jiffies(rtoinfo.srto_initial); 2522 if (rtoinfo.srto_max != 0) 2523 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2524 if (rtoinfo.srto_min != 0) 2525 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2526 } else { 2527 /* If there is no association or the association-id = 0 2528 * set the values to the endpoint. 2529 */ 2530 struct sctp_sock *sp = sctp_sk(sk); 2531 2532 if (rtoinfo.srto_initial != 0) 2533 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2534 if (rtoinfo.srto_max != 0) 2535 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2536 if (rtoinfo.srto_min != 0) 2537 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2538 } 2539 2540 return 0; 2541} 2542 2543/* 2544 * 2545 * 7.1.2 SCTP_ASSOCINFO 2546 * 2547 * This option is used to tune the the maximum retransmission attempts 2548 * of the association. 2549 * Returns an error if the new association retransmission value is 2550 * greater than the sum of the retransmission value of the peer. 2551 * See [SCTP] for more information. 2552 * 2553 */ 2554static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2555{ 2556 2557 struct sctp_assocparams assocparams; 2558 struct sctp_association *asoc; 2559 2560 if (optlen != sizeof(struct sctp_assocparams)) 2561 return -EINVAL; 2562 if (copy_from_user(&assocparams, optval, optlen)) 2563 return -EFAULT; 2564 2565 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2566 2567 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2568 return -EINVAL; 2569 2570 /* Set the values to the specific association */ 2571 if (asoc) { 2572 if (assocparams.sasoc_asocmaxrxt != 0) { 2573 __u32 path_sum = 0; 2574 int paths = 0; 2575 struct list_head *pos; 2576 struct sctp_transport *peer_addr; 2577 2578 list_for_each(pos, &asoc->peer.transport_addr_list) { 2579 peer_addr = list_entry(pos, 2580 struct sctp_transport, 2581 transports); 2582 path_sum += peer_addr->pathmaxrxt; 2583 paths++; 2584 } 2585 2586 /* Only validate asocmaxrxt if we have more then 2587 * one path/transport. We do this because path 2588 * retransmissions are only counted when we have more 2589 * then one path. 2590 */ 2591 if (paths > 1 && 2592 assocparams.sasoc_asocmaxrxt > path_sum) 2593 return -EINVAL; 2594 2595 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2596 } 2597 2598 if (assocparams.sasoc_cookie_life != 0) { 2599 asoc->cookie_life.tv_sec = 2600 assocparams.sasoc_cookie_life / 1000; 2601 asoc->cookie_life.tv_usec = 2602 (assocparams.sasoc_cookie_life % 1000) 2603 * 1000; 2604 } 2605 } else { 2606 /* Set the values to the endpoint */ 2607 struct sctp_sock *sp = sctp_sk(sk); 2608 2609 if (assocparams.sasoc_asocmaxrxt != 0) 2610 sp->assocparams.sasoc_asocmaxrxt = 2611 assocparams.sasoc_asocmaxrxt; 2612 if (assocparams.sasoc_cookie_life != 0) 2613 sp->assocparams.sasoc_cookie_life = 2614 assocparams.sasoc_cookie_life; 2615 } 2616 return 0; 2617} 2618 2619/* 2620 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2621 * 2622 * This socket option is a boolean flag which turns on or off mapped V4 2623 * addresses. If this option is turned on and the socket is type 2624 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2625 * If this option is turned off, then no mapping will be done of V4 2626 * addresses and a user will receive both PF_INET6 and PF_INET type 2627 * addresses on the socket. 2628 */ 2629static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2630{ 2631 int val; 2632 struct sctp_sock *sp = sctp_sk(sk); 2633 2634 if (optlen < sizeof(int)) 2635 return -EINVAL; 2636 if (get_user(val, (int __user *)optval)) 2637 return -EFAULT; 2638 if (val) 2639 sp->v4mapped = 1; 2640 else 2641 sp->v4mapped = 0; 2642 2643 return 0; 2644} 2645 2646/* 2647 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2648 * 2649 * This socket option specifies the maximum size to put in any outgoing 2650 * SCTP chunk. If a message is larger than this size it will be 2651 * fragmented by SCTP into the specified size. Note that the underlying 2652 * SCTP implementation may fragment into smaller sized chunks when the 2653 * PMTU of the underlying association is smaller than the value set by 2654 * the user. 2655 */ 2656static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2657{ 2658 struct sctp_association *asoc; 2659 struct list_head *pos; 2660 struct sctp_sock *sp = sctp_sk(sk); 2661 int val; 2662 2663 if (optlen < sizeof(int)) 2664 return -EINVAL; 2665 if (get_user(val, (int __user *)optval)) 2666 return -EFAULT; 2667 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2668 return -EINVAL; 2669 sp->user_frag = val; 2670 2671 /* Update the frag_point of the existing associations. */ 2672 list_for_each(pos, &(sp->ep->asocs)) { 2673 asoc = list_entry(pos, struct sctp_association, asocs); 2674 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2675 } 2676 2677 return 0; 2678} 2679 2680 2681/* 2682 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2683 * 2684 * Requests that the peer mark the enclosed address as the association 2685 * primary. The enclosed address must be one of the association's 2686 * locally bound addresses. The following structure is used to make a 2687 * set primary request: 2688 */ 2689static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2690 int optlen) 2691{ 2692 struct sctp_sock *sp; 2693 struct sctp_endpoint *ep; 2694 struct sctp_association *asoc = NULL; 2695 struct sctp_setpeerprim prim; 2696 struct sctp_chunk *chunk; 2697 int err; 2698 2699 sp = sctp_sk(sk); 2700 ep = sp->ep; 2701 2702 if (!sctp_addip_enable) 2703 return -EPERM; 2704 2705 if (optlen != sizeof(struct sctp_setpeerprim)) 2706 return -EINVAL; 2707 2708 if (copy_from_user(&prim, optval, optlen)) 2709 return -EFAULT; 2710 2711 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2712 if (!asoc) 2713 return -EINVAL; 2714 2715 if (!asoc->peer.asconf_capable) 2716 return -EPERM; 2717 2718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2719 return -EPERM; 2720 2721 if (!sctp_state(asoc, ESTABLISHED)) 2722 return -ENOTCONN; 2723 2724 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2725 return -EADDRNOTAVAIL; 2726 2727 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2728 chunk = sctp_make_asconf_set_prim(asoc, 2729 (union sctp_addr *)&prim.sspp_addr); 2730 if (!chunk) 2731 return -ENOMEM; 2732 2733 err = sctp_send_asconf(asoc, chunk); 2734 2735 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2736 2737 return err; 2738} 2739 2740static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2741 int optlen) 2742{ 2743 struct sctp_setadaptation adaptation; 2744 2745 if (optlen != sizeof(struct sctp_setadaptation)) 2746 return -EINVAL; 2747 if (copy_from_user(&adaptation, optval, optlen)) 2748 return -EFAULT; 2749 2750 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2751 2752 return 0; 2753} 2754 2755/* 2756 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2757 * 2758 * The context field in the sctp_sndrcvinfo structure is normally only 2759 * used when a failed message is retrieved holding the value that was 2760 * sent down on the actual send call. This option allows the setting of 2761 * a default context on an association basis that will be received on 2762 * reading messages from the peer. This is especially helpful in the 2763 * one-2-many model for an application to keep some reference to an 2764 * internal state machine that is processing messages on the 2765 * association. Note that the setting of this value only effects 2766 * received messages from the peer and does not effect the value that is 2767 * saved with outbound messages. 2768 */ 2769static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2770 int optlen) 2771{ 2772 struct sctp_assoc_value params; 2773 struct sctp_sock *sp; 2774 struct sctp_association *asoc; 2775 2776 if (optlen != sizeof(struct sctp_assoc_value)) 2777 return -EINVAL; 2778 if (copy_from_user(&params, optval, optlen)) 2779 return -EFAULT; 2780 2781 sp = sctp_sk(sk); 2782 2783 if (params.assoc_id != 0) { 2784 asoc = sctp_id2assoc(sk, params.assoc_id); 2785 if (!asoc) 2786 return -EINVAL; 2787 asoc->default_rcv_context = params.assoc_value; 2788 } else { 2789 sp->default_rcv_context = params.assoc_value; 2790 } 2791 2792 return 0; 2793} 2794 2795/* API 6.2 setsockopt(), getsockopt() 2796 * 2797 * Applications use setsockopt() and getsockopt() to set or retrieve 2798 * socket options. Socket options are used to change the default 2799 * behavior of sockets calls. They are described in Section 7. 2800 * 2801 * The syntax is: 2802 * 2803 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2804 * int __user *optlen); 2805 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2806 * int optlen); 2807 * 2808 * sd - the socket descript. 2809 * level - set to IPPROTO_SCTP for all SCTP options. 2810 * optname - the option name. 2811 * optval - the buffer to store the value of the option. 2812 * optlen - the size of the buffer. 2813 */ 2814SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2815 char __user *optval, int optlen) 2816{ 2817 int retval = 0; 2818 2819 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2820 sk, optname); 2821 2822 /* I can hardly begin to describe how wrong this is. This is 2823 * so broken as to be worse than useless. The API draft 2824 * REALLY is NOT helpful here... I am not convinced that the 2825 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2826 * are at all well-founded. 2827 */ 2828 if (level != SOL_SCTP) { 2829 struct sctp_af *af = sctp_sk(sk)->pf->af; 2830 retval = af->setsockopt(sk, level, optname, optval, optlen); 2831 goto out_nounlock; 2832 } 2833 2834 sctp_lock_sock(sk); 2835 2836 switch (optname) { 2837 case SCTP_SOCKOPT_BINDX_ADD: 2838 /* 'optlen' is the size of the addresses buffer. */ 2839 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2840 optlen, SCTP_BINDX_ADD_ADDR); 2841 break; 2842 2843 case SCTP_SOCKOPT_BINDX_REM: 2844 /* 'optlen' is the size of the addresses buffer. */ 2845 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2846 optlen, SCTP_BINDX_REM_ADDR); 2847 break; 2848 2849 case SCTP_SOCKOPT_CONNECTX: 2850 /* 'optlen' is the size of the addresses buffer. */ 2851 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2852 optlen); 2853 break; 2854 2855 case SCTP_DISABLE_FRAGMENTS: 2856 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2857 break; 2858 2859 case SCTP_EVENTS: 2860 retval = sctp_setsockopt_events(sk, optval, optlen); 2861 break; 2862 2863 case SCTP_AUTOCLOSE: 2864 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2865 break; 2866 2867 case SCTP_PEER_ADDR_PARAMS: 2868 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2869 break; 2870 2871 case SCTP_DELAYED_ACK_TIME: 2872 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 2873 break; 2874 2875 case SCTP_INITMSG: 2876 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2877 break; 2878 case SCTP_DEFAULT_SEND_PARAM: 2879 retval = sctp_setsockopt_default_send_param(sk, optval, 2880 optlen); 2881 break; 2882 case SCTP_PRIMARY_ADDR: 2883 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2884 break; 2885 case SCTP_SET_PEER_PRIMARY_ADDR: 2886 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2887 break; 2888 case SCTP_NODELAY: 2889 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2890 break; 2891 case SCTP_RTOINFO: 2892 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2893 break; 2894 case SCTP_ASSOCINFO: 2895 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2896 break; 2897 case SCTP_I_WANT_MAPPED_V4_ADDR: 2898 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2899 break; 2900 case SCTP_MAXSEG: 2901 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2902 break; 2903 case SCTP_ADAPTATION_LAYER: 2904 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 2905 break; 2906 case SCTP_CONTEXT: 2907 retval = sctp_setsockopt_context(sk, optval, optlen); 2908 break; 2909 2910 default: 2911 retval = -ENOPROTOOPT; 2912 break; 2913 }; 2914 2915 sctp_release_sock(sk); 2916 2917out_nounlock: 2918 return retval; 2919} 2920 2921/* API 3.1.6 connect() - UDP Style Syntax 2922 * 2923 * An application may use the connect() call in the UDP model to initiate an 2924 * association without sending data. 2925 * 2926 * The syntax is: 2927 * 2928 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2929 * 2930 * sd: the socket descriptor to have a new association added to. 2931 * 2932 * nam: the address structure (either struct sockaddr_in or struct 2933 * sockaddr_in6 defined in RFC2553 [7]). 2934 * 2935 * len: the size of the address. 2936 */ 2937SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2938 int addr_len) 2939{ 2940 int err = 0; 2941 struct sctp_af *af; 2942 2943 sctp_lock_sock(sk); 2944 2945 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2946 __FUNCTION__, sk, addr, addr_len); 2947 2948 /* Validate addr_len before calling common connect/connectx routine. */ 2949 af = sctp_get_af_specific(addr->sa_family); 2950 if (!af || addr_len < af->sockaddr_len) { 2951 err = -EINVAL; 2952 } else { 2953 /* Pass correct addr len to common routine (so it knows there 2954 * is only one address being passed. 2955 */ 2956 err = __sctp_connect(sk, addr, af->sockaddr_len); 2957 } 2958 2959 sctp_release_sock(sk); 2960 return err; 2961} 2962 2963/* FIXME: Write comments. */ 2964SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2965{ 2966 return -EOPNOTSUPP; /* STUB */ 2967} 2968 2969/* 4.1.4 accept() - TCP Style Syntax 2970 * 2971 * Applications use accept() call to remove an established SCTP 2972 * association from the accept queue of the endpoint. A new socket 2973 * descriptor will be returned from accept() to represent the newly 2974 * formed association. 2975 */ 2976SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2977{ 2978 struct sctp_sock *sp; 2979 struct sctp_endpoint *ep; 2980 struct sock *newsk = NULL; 2981 struct sctp_association *asoc; 2982 long timeo; 2983 int error = 0; 2984 2985 sctp_lock_sock(sk); 2986 2987 sp = sctp_sk(sk); 2988 ep = sp->ep; 2989 2990 if (!sctp_style(sk, TCP)) { 2991 error = -EOPNOTSUPP; 2992 goto out; 2993 } 2994 2995 if (!sctp_sstate(sk, LISTENING)) { 2996 error = -EINVAL; 2997 goto out; 2998 } 2999 3000 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3001 3002 error = sctp_wait_for_accept(sk, timeo); 3003 if (error) 3004 goto out; 3005 3006 /* We treat the list of associations on the endpoint as the accept 3007 * queue and pick the first association on the list. 3008 */ 3009 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3010 3011 newsk = sp->pf->create_accept_sk(sk, asoc); 3012 if (!newsk) { 3013 error = -ENOMEM; 3014 goto out; 3015 } 3016 3017 /* Populate the fields of the newsk from the oldsk and migrate the 3018 * asoc to the newsk. 3019 */ 3020 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3021 3022out: 3023 sctp_release_sock(sk); 3024 *err = error; 3025 return newsk; 3026} 3027 3028/* The SCTP ioctl handler. */ 3029SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3030{ 3031 return -ENOIOCTLCMD; 3032} 3033 3034/* This is the function which gets called during socket creation to 3035 * initialized the SCTP-specific portion of the sock. 3036 * The sock structure should already be zero-filled memory. 3037 */ 3038SCTP_STATIC int sctp_init_sock(struct sock *sk) 3039{ 3040 struct sctp_endpoint *ep; 3041 struct sctp_sock *sp; 3042 3043 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3044 3045 sp = sctp_sk(sk); 3046 3047 /* Initialize the SCTP per socket area. */ 3048 switch (sk->sk_type) { 3049 case SOCK_SEQPACKET: 3050 sp->type = SCTP_SOCKET_UDP; 3051 break; 3052 case SOCK_STREAM: 3053 sp->type = SCTP_SOCKET_TCP; 3054 break; 3055 default: 3056 return -ESOCKTNOSUPPORT; 3057 } 3058 3059 /* Initialize default send parameters. These parameters can be 3060 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3061 */ 3062 sp->default_stream = 0; 3063 sp->default_ppid = 0; 3064 sp->default_flags = 0; 3065 sp->default_context = 0; 3066 sp->default_timetolive = 0; 3067 3068 sp->default_rcv_context = 0; 3069 3070 /* Initialize default setup parameters. These parameters 3071 * can be modified with the SCTP_INITMSG socket option or 3072 * overridden by the SCTP_INIT CMSG. 3073 */ 3074 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3075 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3076 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3077 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3078 3079 /* Initialize default RTO related parameters. These parameters can 3080 * be modified for with the SCTP_RTOINFO socket option. 3081 */ 3082 sp->rtoinfo.srto_initial = sctp_rto_initial; 3083 sp->rtoinfo.srto_max = sctp_rto_max; 3084 sp->rtoinfo.srto_min = sctp_rto_min; 3085 3086 /* Initialize default association related parameters. These parameters 3087 * can be modified with the SCTP_ASSOCINFO socket option. 3088 */ 3089 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3090 sp->assocparams.sasoc_number_peer_destinations = 0; 3091 sp->assocparams.sasoc_peer_rwnd = 0; 3092 sp->assocparams.sasoc_local_rwnd = 0; 3093 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3094 3095 /* Initialize default event subscriptions. By default, all the 3096 * options are off. 3097 */ 3098 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3099 3100 /* Default Peer Address Parameters. These defaults can 3101 * be modified via SCTP_PEER_ADDR_PARAMS 3102 */ 3103 sp->hbinterval = sctp_hb_interval; 3104 sp->pathmaxrxt = sctp_max_retrans_path; 3105 sp->pathmtu = 0; // allow default discovery 3106 sp->sackdelay = sctp_sack_timeout; 3107 sp->param_flags = SPP_HB_ENABLE | 3108 SPP_PMTUD_ENABLE | 3109 SPP_SACKDELAY_ENABLE; 3110 3111 /* If enabled no SCTP message fragmentation will be performed. 3112 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3113 */ 3114 sp->disable_fragments = 0; 3115 3116 /* Enable Nagle algorithm by default. */ 3117 sp->nodelay = 0; 3118 3119 /* Enable by default. */ 3120 sp->v4mapped = 1; 3121 3122 /* Auto-close idle associations after the configured 3123 * number of seconds. A value of 0 disables this 3124 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3125 * for UDP-style sockets only. 3126 */ 3127 sp->autoclose = 0; 3128 3129 /* User specified fragmentation limit. */ 3130 sp->user_frag = 0; 3131 3132 sp->adaptation_ind = 0; 3133 3134 sp->pf = sctp_get_pf_specific(sk->sk_family); 3135 3136 /* Control variables for partial data delivery. */ 3137 sp->pd_mode = 0; 3138 skb_queue_head_init(&sp->pd_lobby); 3139 3140 /* Create a per socket endpoint structure. Even if we 3141 * change the data structure relationships, this may still 3142 * be useful for storing pre-connect address information. 3143 */ 3144 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3145 if (!ep) 3146 return -ENOMEM; 3147 3148 sp->ep = ep; 3149 sp->hmac = NULL; 3150 3151 SCTP_DBG_OBJCNT_INC(sock); 3152 return 0; 3153} 3154 3155/* Cleanup any SCTP per socket resources. */ 3156SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3157{ 3158 struct sctp_endpoint *ep; 3159 3160 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3161 3162 /* Release our hold on the endpoint. */ 3163 ep = sctp_sk(sk)->ep; 3164 sctp_endpoint_free(ep); 3165 3166 return 0; 3167} 3168 3169/* API 4.1.7 shutdown() - TCP Style Syntax 3170 * int shutdown(int socket, int how); 3171 * 3172 * sd - the socket descriptor of the association to be closed. 3173 * how - Specifies the type of shutdown. The values are 3174 * as follows: 3175 * SHUT_RD 3176 * Disables further receive operations. No SCTP 3177 * protocol action is taken. 3178 * SHUT_WR 3179 * Disables further send operations, and initiates 3180 * the SCTP shutdown sequence. 3181 * SHUT_RDWR 3182 * Disables further send and receive operations 3183 * and initiates the SCTP shutdown sequence. 3184 */ 3185SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3186{ 3187 struct sctp_endpoint *ep; 3188 struct sctp_association *asoc; 3189 3190 if (!sctp_style(sk, TCP)) 3191 return; 3192 3193 if (how & SEND_SHUTDOWN) { 3194 ep = sctp_sk(sk)->ep; 3195 if (!list_empty(&ep->asocs)) { 3196 asoc = list_entry(ep->asocs.next, 3197 struct sctp_association, asocs); 3198 sctp_primitive_SHUTDOWN(asoc, NULL); 3199 } 3200 } 3201} 3202 3203/* 7.2.1 Association Status (SCTP_STATUS) 3204 3205 * Applications can retrieve current status information about an 3206 * association, including association state, peer receiver window size, 3207 * number of unacked data chunks, and number of data chunks pending 3208 * receipt. This information is read-only. 3209 */ 3210static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3211 char __user *optval, 3212 int __user *optlen) 3213{ 3214 struct sctp_status status; 3215 struct sctp_association *asoc = NULL; 3216 struct sctp_transport *transport; 3217 sctp_assoc_t associd; 3218 int retval = 0; 3219 3220 if (len != sizeof(status)) { 3221 retval = -EINVAL; 3222 goto out; 3223 } 3224 3225 if (copy_from_user(&status, optval, sizeof(status))) { 3226 retval = -EFAULT; 3227 goto out; 3228 } 3229 3230 associd = status.sstat_assoc_id; 3231 asoc = sctp_id2assoc(sk, associd); 3232 if (!asoc) { 3233 retval = -EINVAL; 3234 goto out; 3235 } 3236 3237 transport = asoc->peer.primary_path; 3238 3239 status.sstat_assoc_id = sctp_assoc2id(asoc); 3240 status.sstat_state = asoc->state; 3241 status.sstat_rwnd = asoc->peer.rwnd; 3242 status.sstat_unackdata = asoc->unack_data; 3243 3244 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3245 status.sstat_instrms = asoc->c.sinit_max_instreams; 3246 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3247 status.sstat_fragmentation_point = asoc->frag_point; 3248 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3249 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3250 transport->af_specific->sockaddr_len); 3251 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3252 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3253 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3254 status.sstat_primary.spinfo_state = transport->state; 3255 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3256 status.sstat_primary.spinfo_srtt = transport->srtt; 3257 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3258 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3259 3260 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3261 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3262 3263 if (put_user(len, optlen)) { 3264 retval = -EFAULT; 3265 goto out; 3266 } 3267 3268 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3269 len, status.sstat_state, status.sstat_rwnd, 3270 status.sstat_assoc_id); 3271 3272 if (copy_to_user(optval, &status, len)) { 3273 retval = -EFAULT; 3274 goto out; 3275 } 3276 3277out: 3278 return (retval); 3279} 3280 3281 3282/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3283 * 3284 * Applications can retrieve information about a specific peer address 3285 * of an association, including its reachability state, congestion 3286 * window, and retransmission timer values. This information is 3287 * read-only. 3288 */ 3289static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3290 char __user *optval, 3291 int __user *optlen) 3292{ 3293 struct sctp_paddrinfo pinfo; 3294 struct sctp_transport *transport; 3295 int retval = 0; 3296 3297 if (len != sizeof(pinfo)) { 3298 retval = -EINVAL; 3299 goto out; 3300 } 3301 3302 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 3303 retval = -EFAULT; 3304 goto out; 3305 } 3306 3307 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3308 pinfo.spinfo_assoc_id); 3309 if (!transport) 3310 return -EINVAL; 3311 3312 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3313 pinfo.spinfo_state = transport->state; 3314 pinfo.spinfo_cwnd = transport->cwnd; 3315 pinfo.spinfo_srtt = transport->srtt; 3316 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3317 pinfo.spinfo_mtu = transport->pathmtu; 3318 3319 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3320 pinfo.spinfo_state = SCTP_ACTIVE; 3321 3322 if (put_user(len, optlen)) { 3323 retval = -EFAULT; 3324 goto out; 3325 } 3326 3327 if (copy_to_user(optval, &pinfo, len)) { 3328 retval = -EFAULT; 3329 goto out; 3330 } 3331 3332out: 3333 return (retval); 3334} 3335 3336/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3337 * 3338 * This option is a on/off flag. If enabled no SCTP message 3339 * fragmentation will be performed. Instead if a message being sent 3340 * exceeds the current PMTU size, the message will NOT be sent and 3341 * instead a error will be indicated to the user. 3342 */ 3343static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3344 char __user *optval, int __user *optlen) 3345{ 3346 int val; 3347 3348 if (len < sizeof(int)) 3349 return -EINVAL; 3350 3351 len = sizeof(int); 3352 val = (sctp_sk(sk)->disable_fragments == 1); 3353 if (put_user(len, optlen)) 3354 return -EFAULT; 3355 if (copy_to_user(optval, &val, len)) 3356 return -EFAULT; 3357 return 0; 3358} 3359 3360/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3361 * 3362 * This socket option is used to specify various notifications and 3363 * ancillary data the user wishes to receive. 3364 */ 3365static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3366 int __user *optlen) 3367{ 3368 if (len != sizeof(struct sctp_event_subscribe)) 3369 return -EINVAL; 3370 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3371 return -EFAULT; 3372 return 0; 3373} 3374 3375/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3376 * 3377 * This socket option is applicable to the UDP-style socket only. When 3378 * set it will cause associations that are idle for more than the 3379 * specified number of seconds to automatically close. An association 3380 * being idle is defined an association that has NOT sent or received 3381 * user data. The special value of '0' indicates that no automatic 3382 * close of any associations should be performed. The option expects an 3383 * integer defining the number of seconds of idle time before an 3384 * association is closed. 3385 */ 3386static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3387{ 3388 /* Applicable to UDP-style socket only */ 3389 if (sctp_style(sk, TCP)) 3390 return -EOPNOTSUPP; 3391 if (len != sizeof(int)) 3392 return -EINVAL; 3393 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3394 return -EFAULT; 3395 return 0; 3396} 3397 3398/* Helper routine to branch off an association to a new socket. */ 3399SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3400 struct socket **sockp) 3401{ 3402 struct sock *sk = asoc->base.sk; 3403 struct socket *sock; 3404 struct inet_sock *inetsk; 3405 int err = 0; 3406 3407 /* An association cannot be branched off from an already peeled-off 3408 * socket, nor is this supported for tcp style sockets. 3409 */ 3410 if (!sctp_style(sk, UDP)) 3411 return -EINVAL; 3412 3413 /* Create a new socket. */ 3414 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3415 if (err < 0) 3416 return err; 3417 3418 /* Populate the fields of the newsk from the oldsk and migrate the 3419 * asoc to the newsk. 3420 */ 3421 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3422 3423 /* Make peeled-off sockets more like 1-1 accepted sockets. 3424 * Set the daddr and initialize id to something more random 3425 */ 3426 inetsk = inet_sk(sock->sk); 3427 inetsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr; 3428 inetsk->id = asoc->next_tsn ^ jiffies; 3429 3430 *sockp = sock; 3431 3432 return err; 3433} 3434 3435static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3436{ 3437 sctp_peeloff_arg_t peeloff; 3438 struct socket *newsock; 3439 int retval = 0; 3440 struct sctp_association *asoc; 3441 3442 if (len != sizeof(sctp_peeloff_arg_t)) 3443 return -EINVAL; 3444 if (copy_from_user(&peeloff, optval, len)) 3445 return -EFAULT; 3446 3447 asoc = sctp_id2assoc(sk, peeloff.associd); 3448 if (!asoc) { 3449 retval = -EINVAL; 3450 goto out; 3451 } 3452 3453 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3454 3455 retval = sctp_do_peeloff(asoc, &newsock); 3456 if (retval < 0) 3457 goto out; 3458 3459 /* Map the socket to an unused fd that can be returned to the user. */ 3460 retval = sock_map_fd(newsock); 3461 if (retval < 0) { 3462 sock_release(newsock); 3463 goto out; 3464 } 3465 3466 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3467 __FUNCTION__, sk, asoc, newsock->sk, retval); 3468 3469 /* Return the fd mapped to the new socket. */ 3470 peeloff.sd = retval; 3471 if (copy_to_user(optval, &peeloff, len)) 3472 retval = -EFAULT; 3473 3474out: 3475 return retval; 3476} 3477 3478/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3479 * 3480 * Applications can enable or disable heartbeats for any peer address of 3481 * an association, modify an address's heartbeat interval, force a 3482 * heartbeat to be sent immediately, and adjust the address's maximum 3483 * number of retransmissions sent before an address is considered 3484 * unreachable. The following structure is used to access and modify an 3485 * address's parameters: 3486 * 3487 * struct sctp_paddrparams { 3488 * sctp_assoc_t spp_assoc_id; 3489 * struct sockaddr_storage spp_address; 3490 * uint32_t spp_hbinterval; 3491 * uint16_t spp_pathmaxrxt; 3492 * uint32_t spp_pathmtu; 3493 * uint32_t spp_sackdelay; 3494 * uint32_t spp_flags; 3495 * }; 3496 * 3497 * spp_assoc_id - (one-to-many style socket) This is filled in the 3498 * application, and identifies the association for 3499 * this query. 3500 * spp_address - This specifies which address is of interest. 3501 * spp_hbinterval - This contains the value of the heartbeat interval, 3502 * in milliseconds. If a value of zero 3503 * is present in this field then no changes are to 3504 * be made to this parameter. 3505 * spp_pathmaxrxt - This contains the maximum number of 3506 * retransmissions before this address shall be 3507 * considered unreachable. If a value of zero 3508 * is present in this field then no changes are to 3509 * be made to this parameter. 3510 * spp_pathmtu - When Path MTU discovery is disabled the value 3511 * specified here will be the "fixed" path mtu. 3512 * Note that if the spp_address field is empty 3513 * then all associations on this address will 3514 * have this fixed path mtu set upon them. 3515 * 3516 * spp_sackdelay - When delayed sack is enabled, this value specifies 3517 * the number of milliseconds that sacks will be delayed 3518 * for. This value will apply to all addresses of an 3519 * association if the spp_address field is empty. Note 3520 * also, that if delayed sack is enabled and this 3521 * value is set to 0, no change is made to the last 3522 * recorded delayed sack timer value. 3523 * 3524 * spp_flags - These flags are used to control various features 3525 * on an association. The flag field may contain 3526 * zero or more of the following options. 3527 * 3528 * SPP_HB_ENABLE - Enable heartbeats on the 3529 * specified address. Note that if the address 3530 * field is empty all addresses for the association 3531 * have heartbeats enabled upon them. 3532 * 3533 * SPP_HB_DISABLE - Disable heartbeats on the 3534 * speicifed address. Note that if the address 3535 * field is empty all addresses for the association 3536 * will have their heartbeats disabled. Note also 3537 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3538 * mutually exclusive, only one of these two should 3539 * be specified. Enabling both fields will have 3540 * undetermined results. 3541 * 3542 * SPP_HB_DEMAND - Request a user initiated heartbeat 3543 * to be made immediately. 3544 * 3545 * SPP_PMTUD_ENABLE - This field will enable PMTU 3546 * discovery upon the specified address. Note that 3547 * if the address feild is empty then all addresses 3548 * on the association are effected. 3549 * 3550 * SPP_PMTUD_DISABLE - This field will disable PMTU 3551 * discovery upon the specified address. Note that 3552 * if the address feild is empty then all addresses 3553 * on the association are effected. Not also that 3554 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3555 * exclusive. Enabling both will have undetermined 3556 * results. 3557 * 3558 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3559 * on delayed sack. The time specified in spp_sackdelay 3560 * is used to specify the sack delay for this address. Note 3561 * that if spp_address is empty then all addresses will 3562 * enable delayed sack and take on the sack delay 3563 * value specified in spp_sackdelay. 3564 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3565 * off delayed sack. If the spp_address field is blank then 3566 * delayed sack is disabled for the entire association. Note 3567 * also that this field is mutually exclusive to 3568 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3569 * results. 3570 */ 3571static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3572 char __user *optval, int __user *optlen) 3573{ 3574 struct sctp_paddrparams params; 3575 struct sctp_transport *trans = NULL; 3576 struct sctp_association *asoc = NULL; 3577 struct sctp_sock *sp = sctp_sk(sk); 3578 3579 if (len != sizeof(struct sctp_paddrparams)) 3580 return -EINVAL; 3581 3582 if (copy_from_user(&params, optval, len)) 3583 return -EFAULT; 3584 3585 /* If an address other than INADDR_ANY is specified, and 3586 * no transport is found, then the request is invalid. 3587 */ 3588 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 3589 trans = sctp_addr_id2transport(sk, &params.spp_address, 3590 params.spp_assoc_id); 3591 if (!trans) { 3592 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3593 return -EINVAL; 3594 } 3595 } 3596 3597 /* Get association, if assoc_id != 0 and the socket is a one 3598 * to many style socket, and an association was not found, then 3599 * the id was invalid. 3600 */ 3601 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3602 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3603 SCTP_DEBUG_PRINTK("Failed no association\n"); 3604 return -EINVAL; 3605 } 3606 3607 if (trans) { 3608 /* Fetch transport values. */ 3609 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3610 params.spp_pathmtu = trans->pathmtu; 3611 params.spp_pathmaxrxt = trans->pathmaxrxt; 3612 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3613 3614 /*draft-11 doesn't say what to return in spp_flags*/ 3615 params.spp_flags = trans->param_flags; 3616 } else if (asoc) { 3617 /* Fetch association values. */ 3618 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3619 params.spp_pathmtu = asoc->pathmtu; 3620 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3621 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3622 3623 /*draft-11 doesn't say what to return in spp_flags*/ 3624 params.spp_flags = asoc->param_flags; 3625 } else { 3626 /* Fetch socket values. */ 3627 params.spp_hbinterval = sp->hbinterval; 3628 params.spp_pathmtu = sp->pathmtu; 3629 params.spp_sackdelay = sp->sackdelay; 3630 params.spp_pathmaxrxt = sp->pathmaxrxt; 3631 3632 /*draft-11 doesn't say what to return in spp_flags*/ 3633 params.spp_flags = sp->param_flags; 3634 } 3635 3636 if (copy_to_user(optval, &params, len)) 3637 return -EFAULT; 3638 3639 if (put_user(len, optlen)) 3640 return -EFAULT; 3641 3642 return 0; 3643} 3644 3645/* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3646 * 3647 * This options will get or set the delayed ack timer. The time is set 3648 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3649 * endpoints default delayed ack timer value. If the assoc_id field is 3650 * non-zero, then the set or get effects the specified association. 3651 * 3652 * struct sctp_assoc_value { 3653 * sctp_assoc_t assoc_id; 3654 * uint32_t assoc_value; 3655 * }; 3656 * 3657 * assoc_id - This parameter, indicates which association the 3658 * user is preforming an action upon. Note that if 3659 * this field's value is zero then the endpoints 3660 * default value is changed (effecting future 3661 * associations only). 3662 * 3663 * assoc_value - This parameter contains the number of milliseconds 3664 * that the user is requesting the delayed ACK timer 3665 * be set to. Note that this value is defined in 3666 * the standard to be between 200 and 500 milliseconds. 3667 * 3668 * Note: a value of zero will leave the value alone, 3669 * but disable SACK delay. A non-zero value will also 3670 * enable SACK delay. 3671 */ 3672static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3673 char __user *optval, 3674 int __user *optlen) 3675{ 3676 struct sctp_assoc_value params; 3677 struct sctp_association *asoc = NULL; 3678 struct sctp_sock *sp = sctp_sk(sk); 3679 3680 if (len != sizeof(struct sctp_assoc_value)) 3681 return - EINVAL; 3682 3683 if (copy_from_user(&params, optval, len)) 3684 return -EFAULT; 3685 3686 /* Get association, if assoc_id != 0 and the socket is a one 3687 * to many style socket, and an association was not found, then 3688 * the id was invalid. 3689 */ 3690 asoc = sctp_id2assoc(sk, params.assoc_id); 3691 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3692 return -EINVAL; 3693 3694 if (asoc) { 3695 /* Fetch association values. */ 3696 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3697 params.assoc_value = jiffies_to_msecs( 3698 asoc->sackdelay); 3699 else 3700 params.assoc_value = 0; 3701 } else { 3702 /* Fetch socket values. */ 3703 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3704 params.assoc_value = sp->sackdelay; 3705 else 3706 params.assoc_value = 0; 3707 } 3708 3709 if (copy_to_user(optval, &params, len)) 3710 return -EFAULT; 3711 3712 if (put_user(len, optlen)) 3713 return -EFAULT; 3714 3715 return 0; 3716} 3717 3718/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3719 * 3720 * Applications can specify protocol parameters for the default association 3721 * initialization. The option name argument to setsockopt() and getsockopt() 3722 * is SCTP_INITMSG. 3723 * 3724 * Setting initialization parameters is effective only on an unconnected 3725 * socket (for UDP-style sockets only future associations are effected 3726 * by the change). With TCP-style sockets, this option is inherited by 3727 * sockets derived from a listener socket. 3728 */ 3729static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3730{ 3731 if (len != sizeof(struct sctp_initmsg)) 3732 return -EINVAL; 3733 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3734 return -EFAULT; 3735 return 0; 3736} 3737 3738static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3739 char __user *optval, 3740 int __user *optlen) 3741{ 3742 sctp_assoc_t id; 3743 struct sctp_association *asoc; 3744 struct list_head *pos; 3745 int cnt = 0; 3746 3747 if (len != sizeof(sctp_assoc_t)) 3748 return -EINVAL; 3749 3750 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3751 return -EFAULT; 3752 3753 /* For UDP-style sockets, id specifies the association to query. */ 3754 asoc = sctp_id2assoc(sk, id); 3755 if (!asoc) 3756 return -EINVAL; 3757 3758 list_for_each(pos, &asoc->peer.transport_addr_list) { 3759 cnt ++; 3760 } 3761 3762 return cnt; 3763} 3764 3765/* 3766 * Old API for getting list of peer addresses. Does not work for 32-bit 3767 * programs running on a 64-bit kernel 3768 */ 3769static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3770 char __user *optval, 3771 int __user *optlen) 3772{ 3773 struct sctp_association *asoc; 3774 struct list_head *pos; 3775 int cnt = 0; 3776 struct sctp_getaddrs_old getaddrs; 3777 struct sctp_transport *from; 3778 void __user *to; 3779 union sctp_addr temp; 3780 struct sctp_sock *sp = sctp_sk(sk); 3781 int addrlen; 3782 3783 if (len != sizeof(struct sctp_getaddrs_old)) 3784 return -EINVAL; 3785 3786 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3787 return -EFAULT; 3788 3789 if (getaddrs.addr_num <= 0) return -EINVAL; 3790 3791 /* For UDP-style sockets, id specifies the association to query. */ 3792 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3793 if (!asoc) 3794 return -EINVAL; 3795 3796 to = (void __user *)getaddrs.addrs; 3797 list_for_each(pos, &asoc->peer.transport_addr_list) { 3798 from = list_entry(pos, struct sctp_transport, transports); 3799 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3800 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3801 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3802 if (copy_to_user(to, &temp, addrlen)) 3803 return -EFAULT; 3804 to += addrlen ; 3805 cnt ++; 3806 if (cnt >= getaddrs.addr_num) break; 3807 } 3808 getaddrs.addr_num = cnt; 3809 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3810 return -EFAULT; 3811 3812 return 0; 3813} 3814 3815static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3816 char __user *optval, int __user *optlen) 3817{ 3818 struct sctp_association *asoc; 3819 struct list_head *pos; 3820 int cnt = 0; 3821 struct sctp_getaddrs getaddrs; 3822 struct sctp_transport *from; 3823 void __user *to; 3824 union sctp_addr temp; 3825 struct sctp_sock *sp = sctp_sk(sk); 3826 int addrlen; 3827 size_t space_left; 3828 int bytes_copied; 3829 3830 if (len < sizeof(struct sctp_getaddrs)) 3831 return -EINVAL; 3832 3833 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3834 return -EFAULT; 3835 3836 /* For UDP-style sockets, id specifies the association to query. */ 3837 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3838 if (!asoc) 3839 return -EINVAL; 3840 3841 to = optval + offsetof(struct sctp_getaddrs,addrs); 3842 space_left = len - sizeof(struct sctp_getaddrs) - 3843 offsetof(struct sctp_getaddrs,addrs); 3844 3845 list_for_each(pos, &asoc->peer.transport_addr_list) { 3846 from = list_entry(pos, struct sctp_transport, transports); 3847 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3848 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3849 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3850 if(space_left < addrlen) 3851 return -ENOMEM; 3852 if (copy_to_user(to, &temp, addrlen)) 3853 return -EFAULT; 3854 to += addrlen; 3855 cnt++; 3856 space_left -= addrlen; 3857 } 3858 3859 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3860 return -EFAULT; 3861 bytes_copied = ((char __user *)to) - optval; 3862 if (put_user(bytes_copied, optlen)) 3863 return -EFAULT; 3864 3865 return 0; 3866} 3867 3868static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3869 char __user *optval, 3870 int __user *optlen) 3871{ 3872 sctp_assoc_t id; 3873 struct sctp_bind_addr *bp; 3874 struct sctp_association *asoc; 3875 struct list_head *pos, *temp; 3876 struct sctp_sockaddr_entry *addr; 3877 rwlock_t *addr_lock; 3878 int cnt = 0; 3879 3880 if (len != sizeof(sctp_assoc_t)) 3881 return -EINVAL; 3882 3883 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3884 return -EFAULT; 3885 3886 /* 3887 * For UDP-style sockets, id specifies the association to query. 3888 * If the id field is set to the value '0' then the locally bound 3889 * addresses are returned without regard to any particular 3890 * association. 3891 */ 3892 if (0 == id) { 3893 bp = &sctp_sk(sk)->ep->base.bind_addr; 3894 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3895 } else { 3896 asoc = sctp_id2assoc(sk, id); 3897 if (!asoc) 3898 return -EINVAL; 3899 bp = &asoc->base.bind_addr; 3900 addr_lock = &asoc->base.addr_lock; 3901 } 3902 3903 sctp_read_lock(addr_lock); 3904 3905 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3906 * addresses from the global local address list. 3907 */ 3908 if (sctp_list_single_entry(&bp->address_list)) { 3909 addr = list_entry(bp->address_list.next, 3910 struct sctp_sockaddr_entry, list); 3911 if (sctp_is_any(&addr->a)) { 3912 list_for_each_safe(pos, temp, &sctp_local_addr_list) { 3913 addr = list_entry(pos, 3914 struct sctp_sockaddr_entry, 3915 list); 3916 if ((PF_INET == sk->sk_family) && 3917 (AF_INET6 == addr->a.sa.sa_family)) 3918 continue; 3919 cnt++; 3920 } 3921 } else { 3922 cnt = 1; 3923 } 3924 goto done; 3925 } 3926 3927 list_for_each(pos, &bp->address_list) { 3928 cnt ++; 3929 } 3930 3931done: 3932 sctp_read_unlock(addr_lock); 3933 return cnt; 3934} 3935 3936/* Helper function that copies local addresses to user and returns the number 3937 * of addresses copied. 3938 */ 3939static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3940 void __user *to) 3941{ 3942 struct list_head *pos, *next; 3943 struct sctp_sockaddr_entry *addr; 3944 union sctp_addr temp; 3945 int cnt = 0; 3946 int addrlen; 3947 3948 list_for_each_safe(pos, next, &sctp_local_addr_list) { 3949 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3950 if ((PF_INET == sk->sk_family) && 3951 (AF_INET6 == addr->a.sa.sa_family)) 3952 continue; 3953 memcpy(&temp, &addr->a, sizeof(temp)); 3954 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3955 &temp); 3956 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3957 if (copy_to_user(to, &temp, addrlen)) 3958 return -EFAULT; 3959 3960 to += addrlen; 3961 cnt ++; 3962 if (cnt >= max_addrs) break; 3963 } 3964 3965 return cnt; 3966} 3967 3968static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3969 void __user **to, size_t space_left) 3970{ 3971 struct list_head *pos, *next; 3972 struct sctp_sockaddr_entry *addr; 3973 union sctp_addr temp; 3974 int cnt = 0; 3975 int addrlen; 3976 3977 list_for_each_safe(pos, next, &sctp_local_addr_list) { 3978 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3979 if ((PF_INET == sk->sk_family) && 3980 (AF_INET6 == addr->a.sa.sa_family)) 3981 continue; 3982 memcpy(&temp, &addr->a, sizeof(temp)); 3983 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3984 &temp); 3985 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3986 if(space_left<addrlen) 3987 return -ENOMEM; 3988 if (copy_to_user(*to, &temp, addrlen)) 3989 return -EFAULT; 3990 3991 *to += addrlen; 3992 cnt ++; 3993 space_left -= addrlen; 3994 } 3995 3996 return cnt; 3997} 3998 3999/* Old API for getting list of local addresses. Does not work for 32-bit 4000 * programs running on a 64-bit kernel 4001 */ 4002static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4003 char __user *optval, int __user *optlen) 4004{ 4005 struct sctp_bind_addr *bp; 4006 struct sctp_association *asoc; 4007 struct list_head *pos; 4008 int cnt = 0; 4009 struct sctp_getaddrs_old getaddrs; 4010 struct sctp_sockaddr_entry *addr; 4011 void __user *to; 4012 union sctp_addr temp; 4013 struct sctp_sock *sp = sctp_sk(sk); 4014 int addrlen; 4015 rwlock_t *addr_lock; 4016 int err = 0; 4017 4018 if (len != sizeof(struct sctp_getaddrs_old)) 4019 return -EINVAL; 4020 4021 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 4022 return -EFAULT; 4023 4024 if (getaddrs.addr_num <= 0) return -EINVAL; 4025 /* 4026 * For UDP-style sockets, id specifies the association to query. 4027 * If the id field is set to the value '0' then the locally bound 4028 * addresses are returned without regard to any particular 4029 * association. 4030 */ 4031 if (0 == getaddrs.assoc_id) { 4032 bp = &sctp_sk(sk)->ep->base.bind_addr; 4033 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4034 } else { 4035 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4036 if (!asoc) 4037 return -EINVAL; 4038 bp = &asoc->base.bind_addr; 4039 addr_lock = &asoc->base.addr_lock; 4040 } 4041 4042 to = getaddrs.addrs; 4043 4044 sctp_read_lock(addr_lock); 4045 4046 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4047 * addresses from the global local address list. 4048 */ 4049 if (sctp_list_single_entry(&bp->address_list)) { 4050 addr = list_entry(bp->address_list.next, 4051 struct sctp_sockaddr_entry, list); 4052 if (sctp_is_any(&addr->a)) { 4053 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 4054 getaddrs.addr_num, 4055 to); 4056 if (cnt < 0) { 4057 err = cnt; 4058 goto unlock; 4059 } 4060 goto copy_getaddrs; 4061 } 4062 } 4063 4064 list_for_each(pos, &bp->address_list) { 4065 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4066 memcpy(&temp, &addr->a, sizeof(temp)); 4067 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4068 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4069 if (copy_to_user(to, &temp, addrlen)) { 4070 err = -EFAULT; 4071 goto unlock; 4072 } 4073 to += addrlen; 4074 cnt ++; 4075 if (cnt >= getaddrs.addr_num) break; 4076 } 4077 4078copy_getaddrs: 4079 getaddrs.addr_num = cnt; 4080 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 4081 err = -EFAULT; 4082 4083unlock: 4084 sctp_read_unlock(addr_lock); 4085 return err; 4086} 4087 4088static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4089 char __user *optval, int __user *optlen) 4090{ 4091 struct sctp_bind_addr *bp; 4092 struct sctp_association *asoc; 4093 struct list_head *pos; 4094 int cnt = 0; 4095 struct sctp_getaddrs getaddrs; 4096 struct sctp_sockaddr_entry *addr; 4097 void __user *to; 4098 union sctp_addr temp; 4099 struct sctp_sock *sp = sctp_sk(sk); 4100 int addrlen; 4101 rwlock_t *addr_lock; 4102 int err = 0; 4103 size_t space_left; 4104 int bytes_copied; 4105 4106 if (len <= sizeof(struct sctp_getaddrs)) 4107 return -EINVAL; 4108 4109 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4110 return -EFAULT; 4111 4112 /* 4113 * For UDP-style sockets, id specifies the association to query. 4114 * If the id field is set to the value '0' then the locally bound 4115 * addresses are returned without regard to any particular 4116 * association. 4117 */ 4118 if (0 == getaddrs.assoc_id) { 4119 bp = &sctp_sk(sk)->ep->base.bind_addr; 4120 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4121 } else { 4122 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4123 if (!asoc) 4124 return -EINVAL; 4125 bp = &asoc->base.bind_addr; 4126 addr_lock = &asoc->base.addr_lock; 4127 } 4128 4129 to = optval + offsetof(struct sctp_getaddrs,addrs); 4130 space_left = len - sizeof(struct sctp_getaddrs) - 4131 offsetof(struct sctp_getaddrs,addrs); 4132 4133 sctp_read_lock(addr_lock); 4134 4135 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4136 * addresses from the global local address list. 4137 */ 4138 if (sctp_list_single_entry(&bp->address_list)) { 4139 addr = list_entry(bp->address_list.next, 4140 struct sctp_sockaddr_entry, list); 4141 if (sctp_is_any(&addr->a)) { 4142 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 4143 &to, space_left); 4144 if (cnt < 0) { 4145 err = cnt; 4146 goto unlock; 4147 } 4148 goto copy_getaddrs; 4149 } 4150 } 4151 4152 list_for_each(pos, &bp->address_list) { 4153 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4154 memcpy(&temp, &addr->a, sizeof(temp)); 4155 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4156 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4157 if(space_left < addrlen) 4158 return -ENOMEM; /*fixme: right error?*/ 4159 if (copy_to_user(to, &temp, addrlen)) { 4160 err = -EFAULT; 4161 goto unlock; 4162 } 4163 to += addrlen; 4164 cnt ++; 4165 space_left -= addrlen; 4166 } 4167 4168copy_getaddrs: 4169 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4170 return -EFAULT; 4171 bytes_copied = ((char __user *)to) - optval; 4172 if (put_user(bytes_copied, optlen)) 4173 return -EFAULT; 4174 4175unlock: 4176 sctp_read_unlock(addr_lock); 4177 return err; 4178} 4179 4180/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4181 * 4182 * Requests that the local SCTP stack use the enclosed peer address as 4183 * the association primary. The enclosed address must be one of the 4184 * association peer's addresses. 4185 */ 4186static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4187 char __user *optval, int __user *optlen) 4188{ 4189 struct sctp_prim prim; 4190 struct sctp_association *asoc; 4191 struct sctp_sock *sp = sctp_sk(sk); 4192 4193 if (len != sizeof(struct sctp_prim)) 4194 return -EINVAL; 4195 4196 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 4197 return -EFAULT; 4198 4199 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4200 if (!asoc) 4201 return -EINVAL; 4202 4203 if (!asoc->peer.primary_path) 4204 return -ENOTCONN; 4205 4206 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4207 asoc->peer.primary_path->af_specific->sockaddr_len); 4208 4209 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4210 (union sctp_addr *)&prim.ssp_addr); 4211 4212 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 4213 return -EFAULT; 4214 4215 return 0; 4216} 4217 4218/* 4219 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4220 * 4221 * Requests that the local endpoint set the specified Adaptation Layer 4222 * Indication parameter for all future INIT and INIT-ACK exchanges. 4223 */ 4224static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4225 char __user *optval, int __user *optlen) 4226{ 4227 struct sctp_setadaptation adaptation; 4228 4229 if (len != sizeof(struct sctp_setadaptation)) 4230 return -EINVAL; 4231 4232 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4233 if (copy_to_user(optval, &adaptation, len)) 4234 return -EFAULT; 4235 4236 return 0; 4237} 4238 4239/* 4240 * 4241 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4242 * 4243 * Applications that wish to use the sendto() system call may wish to 4244 * specify a default set of parameters that would normally be supplied 4245 * through the inclusion of ancillary data. This socket option allows 4246 * such an application to set the default sctp_sndrcvinfo structure. 4247 4248 4249 * The application that wishes to use this socket option simply passes 4250 * in to this call the sctp_sndrcvinfo structure defined in Section 4251 * 5.2.2) The input parameters accepted by this call include 4252 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4253 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4254 * to this call if the caller is using the UDP model. 4255 * 4256 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4257 */ 4258static int sctp_getsockopt_default_send_param(struct sock *sk, 4259 int len, char __user *optval, 4260 int __user *optlen) 4261{ 4262 struct sctp_sndrcvinfo info; 4263 struct sctp_association *asoc; 4264 struct sctp_sock *sp = sctp_sk(sk); 4265 4266 if (len != sizeof(struct sctp_sndrcvinfo)) 4267 return -EINVAL; 4268 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 4269 return -EFAULT; 4270 4271 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4272 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4273 return -EINVAL; 4274 4275 if (asoc) { 4276 info.sinfo_stream = asoc->default_stream; 4277 info.sinfo_flags = asoc->default_flags; 4278 info.sinfo_ppid = asoc->default_ppid; 4279 info.sinfo_context = asoc->default_context; 4280 info.sinfo_timetolive = asoc->default_timetolive; 4281 } else { 4282 info.sinfo_stream = sp->default_stream; 4283 info.sinfo_flags = sp->default_flags; 4284 info.sinfo_ppid = sp->default_ppid; 4285 info.sinfo_context = sp->default_context; 4286 info.sinfo_timetolive = sp->default_timetolive; 4287 } 4288 4289 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 4290 return -EFAULT; 4291 4292 return 0; 4293} 4294 4295/* 4296 * 4297 * 7.1.5 SCTP_NODELAY 4298 * 4299 * Turn on/off any Nagle-like algorithm. This means that packets are 4300 * generally sent as soon as possible and no unnecessary delays are 4301 * introduced, at the cost of more packets in the network. Expects an 4302 * integer boolean flag. 4303 */ 4304 4305static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4306 char __user *optval, int __user *optlen) 4307{ 4308 int val; 4309 4310 if (len < sizeof(int)) 4311 return -EINVAL; 4312 4313 len = sizeof(int); 4314 val = (sctp_sk(sk)->nodelay == 1); 4315 if (put_user(len, optlen)) 4316 return -EFAULT; 4317 if (copy_to_user(optval, &val, len)) 4318 return -EFAULT; 4319 return 0; 4320} 4321 4322/* 4323 * 4324 * 7.1.1 SCTP_RTOINFO 4325 * 4326 * The protocol parameters used to initialize and bound retransmission 4327 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4328 * and modify these parameters. 4329 * All parameters are time values, in milliseconds. A value of 0, when 4330 * modifying the parameters, indicates that the current value should not 4331 * be changed. 4332 * 4333 */ 4334static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4335 char __user *optval, 4336 int __user *optlen) { 4337 struct sctp_rtoinfo rtoinfo; 4338 struct sctp_association *asoc; 4339 4340 if (len != sizeof (struct sctp_rtoinfo)) 4341 return -EINVAL; 4342 4343 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 4344 return -EFAULT; 4345 4346 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4347 4348 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4349 return -EINVAL; 4350 4351 /* Values corresponding to the specific association. */ 4352 if (asoc) { 4353 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4354 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4355 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4356 } else { 4357 /* Values corresponding to the endpoint. */ 4358 struct sctp_sock *sp = sctp_sk(sk); 4359 4360 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4361 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4362 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4363 } 4364 4365 if (put_user(len, optlen)) 4366 return -EFAULT; 4367 4368 if (copy_to_user(optval, &rtoinfo, len)) 4369 return -EFAULT; 4370 4371 return 0; 4372} 4373 4374/* 4375 * 4376 * 7.1.2 SCTP_ASSOCINFO 4377 * 4378 * This option is used to tune the the maximum retransmission attempts 4379 * of the association. 4380 * Returns an error if the new association retransmission value is 4381 * greater than the sum of the retransmission value of the peer. 4382 * See [SCTP] for more information. 4383 * 4384 */ 4385static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4386 char __user *optval, 4387 int __user *optlen) 4388{ 4389 4390 struct sctp_assocparams assocparams; 4391 struct sctp_association *asoc; 4392 struct list_head *pos; 4393 int cnt = 0; 4394 4395 if (len != sizeof (struct sctp_assocparams)) 4396 return -EINVAL; 4397 4398 if (copy_from_user(&assocparams, optval, 4399 sizeof (struct sctp_assocparams))) 4400 return -EFAULT; 4401 4402 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4403 4404 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4405 return -EINVAL; 4406 4407 /* Values correspoinding to the specific association */ 4408 if (asoc) { 4409 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4410 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4411 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4412 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4413 * 1000) + 4414 (asoc->cookie_life.tv_usec 4415 / 1000); 4416 4417 list_for_each(pos, &asoc->peer.transport_addr_list) { 4418 cnt ++; 4419 } 4420 4421 assocparams.sasoc_number_peer_destinations = cnt; 4422 } else { 4423 /* Values corresponding to the endpoint */ 4424 struct sctp_sock *sp = sctp_sk(sk); 4425 4426 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4427 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4428 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4429 assocparams.sasoc_cookie_life = 4430 sp->assocparams.sasoc_cookie_life; 4431 assocparams.sasoc_number_peer_destinations = 4432 sp->assocparams. 4433 sasoc_number_peer_destinations; 4434 } 4435 4436 if (put_user(len, optlen)) 4437 return -EFAULT; 4438 4439 if (copy_to_user(optval, &assocparams, len)) 4440 return -EFAULT; 4441 4442 return 0; 4443} 4444 4445/* 4446 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4447 * 4448 * This socket option is a boolean flag which turns on or off mapped V4 4449 * addresses. If this option is turned on and the socket is type 4450 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4451 * If this option is turned off, then no mapping will be done of V4 4452 * addresses and a user will receive both PF_INET6 and PF_INET type 4453 * addresses on the socket. 4454 */ 4455static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4456 char __user *optval, int __user *optlen) 4457{ 4458 int val; 4459 struct sctp_sock *sp = sctp_sk(sk); 4460 4461 if (len < sizeof(int)) 4462 return -EINVAL; 4463 4464 len = sizeof(int); 4465 val = sp->v4mapped; 4466 if (put_user(len, optlen)) 4467 return -EFAULT; 4468 if (copy_to_user(optval, &val, len)) 4469 return -EFAULT; 4470 4471 return 0; 4472} 4473 4474/* 4475 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4476 * (chapter and verse is quoted at sctp_setsockopt_context()) 4477 */ 4478static int sctp_getsockopt_context(struct sock *sk, int len, 4479 char __user *optval, int __user *optlen) 4480{ 4481 struct sctp_assoc_value params; 4482 struct sctp_sock *sp; 4483 struct sctp_association *asoc; 4484 4485 if (len != sizeof(struct sctp_assoc_value)) 4486 return -EINVAL; 4487 4488 if (copy_from_user(&params, optval, len)) 4489 return -EFAULT; 4490 4491 sp = sctp_sk(sk); 4492 4493 if (params.assoc_id != 0) { 4494 asoc = sctp_id2assoc(sk, params.assoc_id); 4495 if (!asoc) 4496 return -EINVAL; 4497 params.assoc_value = asoc->default_rcv_context; 4498 } else { 4499 params.assoc_value = sp->default_rcv_context; 4500 } 4501 4502 if (put_user(len, optlen)) 4503 return -EFAULT; 4504 if (copy_to_user(optval, &params, len)) 4505 return -EFAULT; 4506 4507 return 0; 4508} 4509 4510/* 4511 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4512 * 4513 * This socket option specifies the maximum size to put in any outgoing 4514 * SCTP chunk. If a message is larger than this size it will be 4515 * fragmented by SCTP into the specified size. Note that the underlying 4516 * SCTP implementation may fragment into smaller sized chunks when the 4517 * PMTU of the underlying association is smaller than the value set by 4518 * the user. 4519 */ 4520static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4521 char __user *optval, int __user *optlen) 4522{ 4523 int val; 4524 4525 if (len < sizeof(int)) 4526 return -EINVAL; 4527 4528 len = sizeof(int); 4529 4530 val = sctp_sk(sk)->user_frag; 4531 if (put_user(len, optlen)) 4532 return -EFAULT; 4533 if (copy_to_user(optval, &val, len)) 4534 return -EFAULT; 4535 4536 return 0; 4537} 4538 4539SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4540 char __user *optval, int __user *optlen) 4541{ 4542 int retval = 0; 4543 int len; 4544 4545 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4546 sk, optname); 4547 4548 /* I can hardly begin to describe how wrong this is. This is 4549 * so broken as to be worse than useless. The API draft 4550 * REALLY is NOT helpful here... I am not convinced that the 4551 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4552 * are at all well-founded. 4553 */ 4554 if (level != SOL_SCTP) { 4555 struct sctp_af *af = sctp_sk(sk)->pf->af; 4556 4557 retval = af->getsockopt(sk, level, optname, optval, optlen); 4558 return retval; 4559 } 4560 4561 if (get_user(len, optlen)) 4562 return -EFAULT; 4563 4564 sctp_lock_sock(sk); 4565 4566 switch (optname) { 4567 case SCTP_STATUS: 4568 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4569 break; 4570 case SCTP_DISABLE_FRAGMENTS: 4571 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4572 optlen); 4573 break; 4574 case SCTP_EVENTS: 4575 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4576 break; 4577 case SCTP_AUTOCLOSE: 4578 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4579 break; 4580 case SCTP_SOCKOPT_PEELOFF: 4581 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4582 break; 4583 case SCTP_PEER_ADDR_PARAMS: 4584 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4585 optlen); 4586 break; 4587 case SCTP_DELAYED_ACK_TIME: 4588 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4589 optlen); 4590 break; 4591 case SCTP_INITMSG: 4592 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4593 break; 4594 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4595 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4596 optlen); 4597 break; 4598 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4599 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4600 optlen); 4601 break; 4602 case SCTP_GET_PEER_ADDRS_OLD: 4603 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4604 optlen); 4605 break; 4606 case SCTP_GET_LOCAL_ADDRS_OLD: 4607 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4608 optlen); 4609 break; 4610 case SCTP_GET_PEER_ADDRS: 4611 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4612 optlen); 4613 break; 4614 case SCTP_GET_LOCAL_ADDRS: 4615 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4616 optlen); 4617 break; 4618 case SCTP_DEFAULT_SEND_PARAM: 4619 retval = sctp_getsockopt_default_send_param(sk, len, 4620 optval, optlen); 4621 break; 4622 case SCTP_PRIMARY_ADDR: 4623 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4624 break; 4625 case SCTP_NODELAY: 4626 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4627 break; 4628 case SCTP_RTOINFO: 4629 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4630 break; 4631 case SCTP_ASSOCINFO: 4632 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4633 break; 4634 case SCTP_I_WANT_MAPPED_V4_ADDR: 4635 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4636 break; 4637 case SCTP_MAXSEG: 4638 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4639 break; 4640 case SCTP_GET_PEER_ADDR_INFO: 4641 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4642 optlen); 4643 break; 4644 case SCTP_ADAPTATION_LAYER: 4645 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 4646 optlen); 4647 break; 4648 case SCTP_CONTEXT: 4649 retval = sctp_getsockopt_context(sk, len, optval, optlen); 4650 break; 4651 default: 4652 retval = -ENOPROTOOPT; 4653 break; 4654 }; 4655 4656 sctp_release_sock(sk); 4657 return retval; 4658} 4659 4660static void sctp_hash(struct sock *sk) 4661{ 4662 /* STUB */ 4663} 4664 4665static void sctp_unhash(struct sock *sk) 4666{ 4667 /* STUB */ 4668} 4669 4670/* Check if port is acceptable. Possibly find first available port. 4671 * 4672 * The port hash table (contained in the 'global' SCTP protocol storage 4673 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4674 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4675 * list (the list number is the port number hashed out, so as you 4676 * would expect from a hash function, all the ports in a given list have 4677 * such a number that hashes out to the same list number; you were 4678 * expecting that, right?); so each list has a set of ports, with a 4679 * link to the socket (struct sock) that uses it, the port number and 4680 * a fastreuse flag (FIXME: NPI ipg). 4681 */ 4682static struct sctp_bind_bucket *sctp_bucket_create( 4683 struct sctp_bind_hashbucket *head, unsigned short snum); 4684 4685static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4686{ 4687 struct sctp_bind_hashbucket *head; /* hash list */ 4688 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4689 unsigned short snum; 4690 int ret; 4691 4692 snum = ntohs(addr->v4.sin_port); 4693 4694 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4695 sctp_local_bh_disable(); 4696 4697 if (snum == 0) { 4698 /* Search for an available port. 4699 * 4700 * 'sctp_port_rover' was the last port assigned, so 4701 * we start to search from 'sctp_port_rover + 4702 * 1'. What we do is first check if port 'rover' is 4703 * already in the hash table; if not, we use that; if 4704 * it is, we try next. 4705 */ 4706 int low = sysctl_local_port_range[0]; 4707 int high = sysctl_local_port_range[1]; 4708 int remaining = (high - low) + 1; 4709 int rover; 4710 int index; 4711 4712 sctp_spin_lock(&sctp_port_alloc_lock); 4713 rover = sctp_port_rover; 4714 do { 4715 rover++; 4716 if ((rover < low) || (rover > high)) 4717 rover = low; 4718 index = sctp_phashfn(rover); 4719 head = &sctp_port_hashtable[index]; 4720 sctp_spin_lock(&head->lock); 4721 for (pp = head->chain; pp; pp = pp->next) 4722 if (pp->port == rover) 4723 goto next; 4724 break; 4725 next: 4726 sctp_spin_unlock(&head->lock); 4727 } while (--remaining > 0); 4728 sctp_port_rover = rover; 4729 sctp_spin_unlock(&sctp_port_alloc_lock); 4730 4731 /* Exhausted local port range during search? */ 4732 ret = 1; 4733 if (remaining <= 0) 4734 goto fail; 4735 4736 /* OK, here is the one we will use. HEAD (the port 4737 * hash table list entry) is non-NULL and we hold it's 4738 * mutex. 4739 */ 4740 snum = rover; 4741 } else { 4742 /* We are given an specific port number; we verify 4743 * that it is not being used. If it is used, we will 4744 * exahust the search in the hash list corresponding 4745 * to the port number (snum) - we detect that with the 4746 * port iterator, pp being NULL. 4747 */ 4748 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4749 sctp_spin_lock(&head->lock); 4750 for (pp = head->chain; pp; pp = pp->next) { 4751 if (pp->port == snum) 4752 goto pp_found; 4753 } 4754 } 4755 pp = NULL; 4756 goto pp_not_found; 4757pp_found: 4758 if (!hlist_empty(&pp->owner)) { 4759 /* We had a port hash table hit - there is an 4760 * available port (pp != NULL) and it is being 4761 * used by other socket (pp->owner not empty); that other 4762 * socket is going to be sk2. 4763 */ 4764 int reuse = sk->sk_reuse; 4765 struct sock *sk2; 4766 struct hlist_node *node; 4767 4768 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4769 if (pp->fastreuse && sk->sk_reuse) 4770 goto success; 4771 4772 /* Run through the list of sockets bound to the port 4773 * (pp->port) [via the pointers bind_next and 4774 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4775 * we get the endpoint they describe and run through 4776 * the endpoint's list of IP (v4 or v6) addresses, 4777 * comparing each of the addresses with the address of 4778 * the socket sk. If we find a match, then that means 4779 * that this port/socket (sk) combination are already 4780 * in an endpoint. 4781 */ 4782 sk_for_each_bound(sk2, node, &pp->owner) { 4783 struct sctp_endpoint *ep2; 4784 ep2 = sctp_sk(sk2)->ep; 4785 4786 if (reuse && sk2->sk_reuse) 4787 continue; 4788 4789 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4790 sctp_sk(sk))) { 4791 ret = (long)sk2; 4792 goto fail_unlock; 4793 } 4794 } 4795 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4796 } 4797pp_not_found: 4798 /* If there was a hash table miss, create a new port. */ 4799 ret = 1; 4800 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4801 goto fail_unlock; 4802 4803 /* In either case (hit or miss), make sure fastreuse is 1 only 4804 * if sk->sk_reuse is too (that is, if the caller requested 4805 * SO_REUSEADDR on this socket -sk-). 4806 */ 4807 if (hlist_empty(&pp->owner)) 4808 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4809 else if (pp->fastreuse && !sk->sk_reuse) 4810 pp->fastreuse = 0; 4811 4812 /* We are set, so fill up all the data in the hash table 4813 * entry, tie the socket list information with the rest of the 4814 * sockets FIXME: Blurry, NPI (ipg). 4815 */ 4816success: 4817 inet_sk(sk)->num = snum; 4818 if (!sctp_sk(sk)->bind_hash) { 4819 sk_add_bind_node(sk, &pp->owner); 4820 sctp_sk(sk)->bind_hash = pp; 4821 } 4822 ret = 0; 4823 4824fail_unlock: 4825 sctp_spin_unlock(&head->lock); 4826 4827fail: 4828 sctp_local_bh_enable(); 4829 return ret; 4830} 4831 4832/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4833 * port is requested. 4834 */ 4835static int sctp_get_port(struct sock *sk, unsigned short snum) 4836{ 4837 long ret; 4838 union sctp_addr addr; 4839 struct sctp_af *af = sctp_sk(sk)->pf->af; 4840 4841 /* Set up a dummy address struct from the sk. */ 4842 af->from_sk(&addr, sk); 4843 addr.v4.sin_port = htons(snum); 4844 4845 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4846 ret = sctp_get_port_local(sk, &addr); 4847 4848 return (ret ? 1 : 0); 4849} 4850 4851/* 4852 * 3.1.3 listen() - UDP Style Syntax 4853 * 4854 * By default, new associations are not accepted for UDP style sockets. 4855 * An application uses listen() to mark a socket as being able to 4856 * accept new associations. 4857 */ 4858SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4859{ 4860 struct sctp_sock *sp = sctp_sk(sk); 4861 struct sctp_endpoint *ep = sp->ep; 4862 4863 /* Only UDP style sockets that are not peeled off are allowed to 4864 * listen(). 4865 */ 4866 if (!sctp_style(sk, UDP)) 4867 return -EINVAL; 4868 4869 /* If backlog is zero, disable listening. */ 4870 if (!backlog) { 4871 if (sctp_sstate(sk, CLOSED)) 4872 return 0; 4873 4874 sctp_unhash_endpoint(ep); 4875 sk->sk_state = SCTP_SS_CLOSED; 4876 } 4877 4878 /* Return if we are already listening. */ 4879 if (sctp_sstate(sk, LISTENING)) 4880 return 0; 4881 4882 /* 4883 * If a bind() or sctp_bindx() is not called prior to a listen() 4884 * call that allows new associations to be accepted, the system 4885 * picks an ephemeral port and will choose an address set equivalent 4886 * to binding with a wildcard address. 4887 * 4888 * This is not currently spelled out in the SCTP sockets 4889 * extensions draft, but follows the practice as seen in TCP 4890 * sockets. 4891 */ 4892 if (!ep->base.bind_addr.port) { 4893 if (sctp_autobind(sk)) 4894 return -EAGAIN; 4895 } 4896 sk->sk_state = SCTP_SS_LISTENING; 4897 sctp_hash_endpoint(ep); 4898 return 0; 4899} 4900 4901/* 4902 * 4.1.3 listen() - TCP Style Syntax 4903 * 4904 * Applications uses listen() to ready the SCTP endpoint for accepting 4905 * inbound associations. 4906 */ 4907SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4908{ 4909 struct sctp_sock *sp = sctp_sk(sk); 4910 struct sctp_endpoint *ep = sp->ep; 4911 4912 /* If backlog is zero, disable listening. */ 4913 if (!backlog) { 4914 if (sctp_sstate(sk, CLOSED)) 4915 return 0; 4916 4917 sctp_unhash_endpoint(ep); 4918 sk->sk_state = SCTP_SS_CLOSED; 4919 } 4920 4921 if (sctp_sstate(sk, LISTENING)) 4922 return 0; 4923 4924 /* 4925 * If a bind() or sctp_bindx() is not called prior to a listen() 4926 * call that allows new associations to be accepted, the system 4927 * picks an ephemeral port and will choose an address set equivalent 4928 * to binding with a wildcard address. 4929 * 4930 * This is not currently spelled out in the SCTP sockets 4931 * extensions draft, but follows the practice as seen in TCP 4932 * sockets. 4933 */ 4934 if (!ep->base.bind_addr.port) { 4935 if (sctp_autobind(sk)) 4936 return -EAGAIN; 4937 } 4938 sk->sk_state = SCTP_SS_LISTENING; 4939 sk->sk_max_ack_backlog = backlog; 4940 sctp_hash_endpoint(ep); 4941 return 0; 4942} 4943 4944/* 4945 * Move a socket to LISTENING state. 4946 */ 4947int sctp_inet_listen(struct socket *sock, int backlog) 4948{ 4949 struct sock *sk = sock->sk; 4950 struct crypto_hash *tfm = NULL; 4951 int err = -EINVAL; 4952 4953 if (unlikely(backlog < 0)) 4954 goto out; 4955 4956 sctp_lock_sock(sk); 4957 4958 if (sock->state != SS_UNCONNECTED) 4959 goto out; 4960 4961 /* Allocate HMAC for generating cookie. */ 4962 if (sctp_hmac_alg) { 4963 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 4964 if (!tfm) { 4965 err = -ENOSYS; 4966 goto out; 4967 } 4968 } 4969 4970 switch (sock->type) { 4971 case SOCK_SEQPACKET: 4972 err = sctp_seqpacket_listen(sk, backlog); 4973 break; 4974 case SOCK_STREAM: 4975 err = sctp_stream_listen(sk, backlog); 4976 break; 4977 default: 4978 break; 4979 }; 4980 if (err) 4981 goto cleanup; 4982 4983 /* Store away the transform reference. */ 4984 sctp_sk(sk)->hmac = tfm; 4985out: 4986 sctp_release_sock(sk); 4987 return err; 4988cleanup: 4989 crypto_free_hash(tfm); 4990 goto out; 4991} 4992 4993/* 4994 * This function is done by modeling the current datagram_poll() and the 4995 * tcp_poll(). Note that, based on these implementations, we don't 4996 * lock the socket in this function, even though it seems that, 4997 * ideally, locking or some other mechanisms can be used to ensure 4998 * the integrity of the counters (sndbuf and wmem_alloc) used 4999 * in this place. We assume that we don't need locks either until proven 5000 * otherwise. 5001 * 5002 * Another thing to note is that we include the Async I/O support 5003 * here, again, by modeling the current TCP/UDP code. We don't have 5004 * a good way to test with it yet. 5005 */ 5006unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5007{ 5008 struct sock *sk = sock->sk; 5009 struct sctp_sock *sp = sctp_sk(sk); 5010 unsigned int mask; 5011 5012 poll_wait(file, sk->sk_sleep, wait); 5013 5014 /* A TCP-style listening socket becomes readable when the accept queue 5015 * is not empty. 5016 */ 5017 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5018 return (!list_empty(&sp->ep->asocs)) ? 5019 (POLLIN | POLLRDNORM) : 0; 5020 5021 mask = 0; 5022 5023 /* Is there any exceptional events? */ 5024 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5025 mask |= POLLERR; 5026 if (sk->sk_shutdown & RCV_SHUTDOWN) 5027 mask |= POLLRDHUP; 5028 if (sk->sk_shutdown == SHUTDOWN_MASK) 5029 mask |= POLLHUP; 5030 5031 /* Is it readable? Reconsider this code with TCP-style support. */ 5032 if (!skb_queue_empty(&sk->sk_receive_queue) || 5033 (sk->sk_shutdown & RCV_SHUTDOWN)) 5034 mask |= POLLIN | POLLRDNORM; 5035 5036 /* The association is either gone or not ready. */ 5037 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5038 return mask; 5039 5040 /* Is it writable? */ 5041 if (sctp_writeable(sk)) { 5042 mask |= POLLOUT | POLLWRNORM; 5043 } else { 5044 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5045 /* 5046 * Since the socket is not locked, the buffer 5047 * might be made available after the writeable check and 5048 * before the bit is set. This could cause a lost I/O 5049 * signal. tcp_poll() has a race breaker for this race 5050 * condition. Based on their implementation, we put 5051 * in the following code to cover it as well. 5052 */ 5053 if (sctp_writeable(sk)) 5054 mask |= POLLOUT | POLLWRNORM; 5055 } 5056 return mask; 5057} 5058 5059/******************************************************************** 5060 * 2nd Level Abstractions 5061 ********************************************************************/ 5062 5063static struct sctp_bind_bucket *sctp_bucket_create( 5064 struct sctp_bind_hashbucket *head, unsigned short snum) 5065{ 5066 struct sctp_bind_bucket *pp; 5067 5068 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5069 SCTP_DBG_OBJCNT_INC(bind_bucket); 5070 if (pp) { 5071 pp->port = snum; 5072 pp->fastreuse = 0; 5073 INIT_HLIST_HEAD(&pp->owner); 5074 if ((pp->next = head->chain) != NULL) 5075 pp->next->pprev = &pp->next; 5076 head->chain = pp; 5077 pp->pprev = &head->chain; 5078 } 5079 return pp; 5080} 5081 5082/* Caller must hold hashbucket lock for this tb with local BH disabled */ 5083static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5084{ 5085 if (pp && hlist_empty(&pp->owner)) { 5086 if (pp->next) 5087 pp->next->pprev = pp->pprev; 5088 *(pp->pprev) = pp->next; 5089 kmem_cache_free(sctp_bucket_cachep, pp); 5090 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5091 } 5092} 5093 5094/* Release this socket's reference to a local port. */ 5095static inline void __sctp_put_port(struct sock *sk) 5096{ 5097 struct sctp_bind_hashbucket *head = 5098 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5099 struct sctp_bind_bucket *pp; 5100 5101 sctp_spin_lock(&head->lock); 5102 pp = sctp_sk(sk)->bind_hash; 5103 __sk_del_bind_node(sk); 5104 sctp_sk(sk)->bind_hash = NULL; 5105 inet_sk(sk)->num = 0; 5106 sctp_bucket_destroy(pp); 5107 sctp_spin_unlock(&head->lock); 5108} 5109 5110void sctp_put_port(struct sock *sk) 5111{ 5112 sctp_local_bh_disable(); 5113 __sctp_put_port(sk); 5114 sctp_local_bh_enable(); 5115} 5116 5117/* 5118 * The system picks an ephemeral port and choose an address set equivalent 5119 * to binding with a wildcard address. 5120 * One of those addresses will be the primary address for the association. 5121 * This automatically enables the multihoming capability of SCTP. 5122 */ 5123static int sctp_autobind(struct sock *sk) 5124{ 5125 union sctp_addr autoaddr; 5126 struct sctp_af *af; 5127 __be16 port; 5128 5129 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5130 af = sctp_sk(sk)->pf->af; 5131 5132 port = htons(inet_sk(sk)->num); 5133 af->inaddr_any(&autoaddr, port); 5134 5135 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5136} 5137 5138/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5139 * 5140 * From RFC 2292 5141 * 4.2 The cmsghdr Structure * 5142 * 5143 * When ancillary data is sent or received, any number of ancillary data 5144 * objects can be specified by the msg_control and msg_controllen members of 5145 * the msghdr structure, because each object is preceded by 5146 * a cmsghdr structure defining the object's length (the cmsg_len member). 5147 * Historically Berkeley-derived implementations have passed only one object 5148 * at a time, but this API allows multiple objects to be 5149 * passed in a single call to sendmsg() or recvmsg(). The following example 5150 * shows two ancillary data objects in a control buffer. 5151 * 5152 * |<--------------------------- msg_controllen -------------------------->| 5153 * | | 5154 * 5155 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5156 * 5157 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5158 * | | | 5159 * 5160 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5161 * 5162 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5163 * | | | | | 5164 * 5165 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5166 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5167 * 5168 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5169 * 5170 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5171 * ^ 5172 * | 5173 * 5174 * msg_control 5175 * points here 5176 */ 5177SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5178 sctp_cmsgs_t *cmsgs) 5179{ 5180 struct cmsghdr *cmsg; 5181 5182 for (cmsg = CMSG_FIRSTHDR(msg); 5183 cmsg != NULL; 5184 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5185 if (!CMSG_OK(msg, cmsg)) 5186 return -EINVAL; 5187 5188 /* Should we parse this header or ignore? */ 5189 if (cmsg->cmsg_level != IPPROTO_SCTP) 5190 continue; 5191 5192 /* Strictly check lengths following example in SCM code. */ 5193 switch (cmsg->cmsg_type) { 5194 case SCTP_INIT: 5195 /* SCTP Socket API Extension 5196 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5197 * 5198 * This cmsghdr structure provides information for 5199 * initializing new SCTP associations with sendmsg(). 5200 * The SCTP_INITMSG socket option uses this same data 5201 * structure. This structure is not used for 5202 * recvmsg(). 5203 * 5204 * cmsg_level cmsg_type cmsg_data[] 5205 * ------------ ------------ ---------------------- 5206 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5207 */ 5208 if (cmsg->cmsg_len != 5209 CMSG_LEN(sizeof(struct sctp_initmsg))) 5210 return -EINVAL; 5211 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5212 break; 5213 5214 case SCTP_SNDRCV: 5215 /* SCTP Socket API Extension 5216 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5217 * 5218 * This cmsghdr structure specifies SCTP options for 5219 * sendmsg() and describes SCTP header information 5220 * about a received message through recvmsg(). 5221 * 5222 * cmsg_level cmsg_type cmsg_data[] 5223 * ------------ ------------ ---------------------- 5224 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5225 */ 5226 if (cmsg->cmsg_len != 5227 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5228 return -EINVAL; 5229 5230 cmsgs->info = 5231 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5232 5233 /* Minimally, validate the sinfo_flags. */ 5234 if (cmsgs->info->sinfo_flags & 5235 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5236 SCTP_ABORT | SCTP_EOF)) 5237 return -EINVAL; 5238 break; 5239 5240 default: 5241 return -EINVAL; 5242 }; 5243 } 5244 return 0; 5245} 5246 5247/* 5248 * Wait for a packet.. 5249 * Note: This function is the same function as in core/datagram.c 5250 * with a few modifications to make lksctp work. 5251 */ 5252static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5253{ 5254 int error; 5255 DEFINE_WAIT(wait); 5256 5257 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5258 5259 /* Socket errors? */ 5260 error = sock_error(sk); 5261 if (error) 5262 goto out; 5263 5264 if (!skb_queue_empty(&sk->sk_receive_queue)) 5265 goto ready; 5266 5267 /* Socket shut down? */ 5268 if (sk->sk_shutdown & RCV_SHUTDOWN) 5269 goto out; 5270 5271 /* Sequenced packets can come disconnected. If so we report the 5272 * problem. 5273 */ 5274 error = -ENOTCONN; 5275 5276 /* Is there a good reason to think that we may receive some data? */ 5277 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5278 goto out; 5279 5280 /* Handle signals. */ 5281 if (signal_pending(current)) 5282 goto interrupted; 5283 5284 /* Let another process have a go. Since we are going to sleep 5285 * anyway. Note: This may cause odd behaviors if the message 5286 * does not fit in the user's buffer, but this seems to be the 5287 * only way to honor MSG_DONTWAIT realistically. 5288 */ 5289 sctp_release_sock(sk); 5290 *timeo_p = schedule_timeout(*timeo_p); 5291 sctp_lock_sock(sk); 5292 5293ready: 5294 finish_wait(sk->sk_sleep, &wait); 5295 return 0; 5296 5297interrupted: 5298 error = sock_intr_errno(*timeo_p); 5299 5300out: 5301 finish_wait(sk->sk_sleep, &wait); 5302 *err = error; 5303 return error; 5304} 5305 5306/* Receive a datagram. 5307 * Note: This is pretty much the same routine as in core/datagram.c 5308 * with a few changes to make lksctp work. 5309 */ 5310static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5311 int noblock, int *err) 5312{ 5313 int error; 5314 struct sk_buff *skb; 5315 long timeo; 5316 5317 timeo = sock_rcvtimeo(sk, noblock); 5318 5319 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5320 timeo, MAX_SCHEDULE_TIMEOUT); 5321 5322 do { 5323 /* Again only user level code calls this function, 5324 * so nothing interrupt level 5325 * will suddenly eat the receive_queue. 5326 * 5327 * Look at current nfs client by the way... 5328 * However, this function was corrent in any case. 8) 5329 */ 5330 if (flags & MSG_PEEK) { 5331 spin_lock_bh(&sk->sk_receive_queue.lock); 5332 skb = skb_peek(&sk->sk_receive_queue); 5333 if (skb) 5334 atomic_inc(&skb->users); 5335 spin_unlock_bh(&sk->sk_receive_queue.lock); 5336 } else { 5337 skb = skb_dequeue(&sk->sk_receive_queue); 5338 } 5339 5340 if (skb) 5341 return skb; 5342 5343 /* Caller is allowed not to check sk->sk_err before calling. */ 5344 error = sock_error(sk); 5345 if (error) 5346 goto no_packet; 5347 5348 if (sk->sk_shutdown & RCV_SHUTDOWN) 5349 break; 5350 5351 /* User doesn't want to wait. */ 5352 error = -EAGAIN; 5353 if (!timeo) 5354 goto no_packet; 5355 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5356 5357 return NULL; 5358 5359no_packet: 5360 *err = error; 5361 return NULL; 5362} 5363 5364/* If sndbuf has changed, wake up per association sndbuf waiters. */ 5365static void __sctp_write_space(struct sctp_association *asoc) 5366{ 5367 struct sock *sk = asoc->base.sk; 5368 struct socket *sock = sk->sk_socket; 5369 5370 if ((sctp_wspace(asoc) > 0) && sock) { 5371 if (waitqueue_active(&asoc->wait)) 5372 wake_up_interruptible(&asoc->wait); 5373 5374 if (sctp_writeable(sk)) { 5375 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5376 wake_up_interruptible(sk->sk_sleep); 5377 5378 /* Note that we try to include the Async I/O support 5379 * here by modeling from the current TCP/UDP code. 5380 * We have not tested with it yet. 5381 */ 5382 if (sock->fasync_list && 5383 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5384 sock_wake_async(sock, 2, POLL_OUT); 5385 } 5386 } 5387} 5388 5389/* Do accounting for the sndbuf space. 5390 * Decrement the used sndbuf space of the corresponding association by the 5391 * data size which was just transmitted(freed). 5392 */ 5393static void sctp_wfree(struct sk_buff *skb) 5394{ 5395 struct sctp_association *asoc; 5396 struct sctp_chunk *chunk; 5397 struct sock *sk; 5398 5399 /* Get the saved chunk pointer. */ 5400 chunk = *((struct sctp_chunk **)(skb->cb)); 5401 asoc = chunk->asoc; 5402 sk = asoc->base.sk; 5403 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5404 sizeof(struct sk_buff) + 5405 sizeof(struct sctp_chunk); 5406 5407 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5408 5409 sock_wfree(skb); 5410 __sctp_write_space(asoc); 5411 5412 sctp_association_put(asoc); 5413} 5414 5415/* Do accounting for the receive space on the socket. 5416 * Accounting for the association is done in ulpevent.c 5417 * We set this as a destructor for the cloned data skbs so that 5418 * accounting is done at the correct time. 5419 */ 5420void sctp_sock_rfree(struct sk_buff *skb) 5421{ 5422 struct sock *sk = skb->sk; 5423 struct sctp_ulpevent *event = sctp_skb2event(skb); 5424 5425 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 5426} 5427 5428 5429/* Helper function to wait for space in the sndbuf. */ 5430static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5431 size_t msg_len) 5432{ 5433 struct sock *sk = asoc->base.sk; 5434 int err = 0; 5435 long current_timeo = *timeo_p; 5436 DEFINE_WAIT(wait); 5437 5438 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5439 asoc, (long)(*timeo_p), msg_len); 5440 5441 /* Increment the association's refcnt. */ 5442 sctp_association_hold(asoc); 5443 5444 /* Wait on the association specific sndbuf space. */ 5445 for (;;) { 5446 prepare_to_wait_exclusive(&asoc->wait, &wait, 5447 TASK_INTERRUPTIBLE); 5448 if (!*timeo_p) 5449 goto do_nonblock; 5450 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5451 asoc->base.dead) 5452 goto do_error; 5453 if (signal_pending(current)) 5454 goto do_interrupted; 5455 if (msg_len <= sctp_wspace(asoc)) 5456 break; 5457 5458 /* Let another process have a go. Since we are going 5459 * to sleep anyway. 5460 */ 5461 sctp_release_sock(sk); 5462 current_timeo = schedule_timeout(current_timeo); 5463 BUG_ON(sk != asoc->base.sk); 5464 sctp_lock_sock(sk); 5465 5466 *timeo_p = current_timeo; 5467 } 5468 5469out: 5470 finish_wait(&asoc->wait, &wait); 5471 5472 /* Release the association's refcnt. */ 5473 sctp_association_put(asoc); 5474 5475 return err; 5476 5477do_error: 5478 err = -EPIPE; 5479 goto out; 5480 5481do_interrupted: 5482 err = sock_intr_errno(*timeo_p); 5483 goto out; 5484 5485do_nonblock: 5486 err = -EAGAIN; 5487 goto out; 5488} 5489 5490/* If socket sndbuf has changed, wake up all per association waiters. */ 5491void sctp_write_space(struct sock *sk) 5492{ 5493 struct sctp_association *asoc; 5494 struct list_head *pos; 5495 5496 /* Wake up the tasks in each wait queue. */ 5497 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5498 asoc = list_entry(pos, struct sctp_association, asocs); 5499 __sctp_write_space(asoc); 5500 } 5501} 5502 5503/* Is there any sndbuf space available on the socket? 5504 * 5505 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5506 * associations on the same socket. For a UDP-style socket with 5507 * multiple associations, it is possible for it to be "unwriteable" 5508 * prematurely. I assume that this is acceptable because 5509 * a premature "unwriteable" is better than an accidental "writeable" which 5510 * would cause an unwanted block under certain circumstances. For the 1-1 5511 * UDP-style sockets or TCP-style sockets, this code should work. 5512 * - Daisy 5513 */ 5514static int sctp_writeable(struct sock *sk) 5515{ 5516 int amt = 0; 5517 5518 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5519 if (amt < 0) 5520 amt = 0; 5521 return amt; 5522} 5523 5524/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5525 * returns immediately with EINPROGRESS. 5526 */ 5527static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5528{ 5529 struct sock *sk = asoc->base.sk; 5530 int err = 0; 5531 long current_timeo = *timeo_p; 5532 DEFINE_WAIT(wait); 5533 5534 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5535 (long)(*timeo_p)); 5536 5537 /* Increment the association's refcnt. */ 5538 sctp_association_hold(asoc); 5539 5540 for (;;) { 5541 prepare_to_wait_exclusive(&asoc->wait, &wait, 5542 TASK_INTERRUPTIBLE); 5543 if (!*timeo_p) 5544 goto do_nonblock; 5545 if (sk->sk_shutdown & RCV_SHUTDOWN) 5546 break; 5547 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5548 asoc->base.dead) 5549 goto do_error; 5550 if (signal_pending(current)) 5551 goto do_interrupted; 5552 5553 if (sctp_state(asoc, ESTABLISHED)) 5554 break; 5555 5556 /* Let another process have a go. Since we are going 5557 * to sleep anyway. 5558 */ 5559 sctp_release_sock(sk); 5560 current_timeo = schedule_timeout(current_timeo); 5561 sctp_lock_sock(sk); 5562 5563 *timeo_p = current_timeo; 5564 } 5565 5566out: 5567 finish_wait(&asoc->wait, &wait); 5568 5569 /* Release the association's refcnt. */ 5570 sctp_association_put(asoc); 5571 5572 return err; 5573 5574do_error: 5575 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5576 err = -ETIMEDOUT; 5577 else 5578 err = -ECONNREFUSED; 5579 goto out; 5580 5581do_interrupted: 5582 err = sock_intr_errno(*timeo_p); 5583 goto out; 5584 5585do_nonblock: 5586 err = -EINPROGRESS; 5587 goto out; 5588} 5589 5590static int sctp_wait_for_accept(struct sock *sk, long timeo) 5591{ 5592 struct sctp_endpoint *ep; 5593 int err = 0; 5594 DEFINE_WAIT(wait); 5595 5596 ep = sctp_sk(sk)->ep; 5597 5598 5599 for (;;) { 5600 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5601 TASK_INTERRUPTIBLE); 5602 5603 if (list_empty(&ep->asocs)) { 5604 sctp_release_sock(sk); 5605 timeo = schedule_timeout(timeo); 5606 sctp_lock_sock(sk); 5607 } 5608 5609 err = -EINVAL; 5610 if (!sctp_sstate(sk, LISTENING)) 5611 break; 5612 5613 err = 0; 5614 if (!list_empty(&ep->asocs)) 5615 break; 5616 5617 err = sock_intr_errno(timeo); 5618 if (signal_pending(current)) 5619 break; 5620 5621 err = -EAGAIN; 5622 if (!timeo) 5623 break; 5624 } 5625 5626 finish_wait(sk->sk_sleep, &wait); 5627 5628 return err; 5629} 5630 5631void sctp_wait_for_close(struct sock *sk, long timeout) 5632{ 5633 DEFINE_WAIT(wait); 5634 5635 do { 5636 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5637 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5638 break; 5639 sctp_release_sock(sk); 5640 timeout = schedule_timeout(timeout); 5641 sctp_lock_sock(sk); 5642 } while (!signal_pending(current) && timeout); 5643 5644 finish_wait(sk->sk_sleep, &wait); 5645} 5646 5647static void sctp_sock_rfree_frag(struct sk_buff *skb) 5648{ 5649 struct sk_buff *frag; 5650 5651 if (!skb->data_len) 5652 goto done; 5653 5654 /* Don't forget the fragments. */ 5655 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 5656 sctp_sock_rfree_frag(frag); 5657 5658done: 5659 sctp_sock_rfree(skb); 5660} 5661 5662static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 5663{ 5664 struct sk_buff *frag; 5665 5666 if (!skb->data_len) 5667 goto done; 5668 5669 /* Don't forget the fragments. */ 5670 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 5671 sctp_skb_set_owner_r_frag(frag, sk); 5672 5673done: 5674 sctp_skb_set_owner_r(skb, sk); 5675} 5676 5677/* Populate the fields of the newsk from the oldsk and migrate the assoc 5678 * and its messages to the newsk. 5679 */ 5680static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5681 struct sctp_association *assoc, 5682 sctp_socket_type_t type) 5683{ 5684 struct sctp_sock *oldsp = sctp_sk(oldsk); 5685 struct sctp_sock *newsp = sctp_sk(newsk); 5686 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5687 struct sctp_endpoint *newep = newsp->ep; 5688 struct sk_buff *skb, *tmp; 5689 struct sctp_ulpevent *event; 5690 int flags = 0; 5691 5692 /* Migrate socket buffer sizes and all the socket level options to the 5693 * new socket. 5694 */ 5695 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5696 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5697 /* Brute force copy old sctp opt. */ 5698 inet_sk_copy_descendant(newsk, oldsk); 5699 5700 /* Restore the ep value that was overwritten with the above structure 5701 * copy. 5702 */ 5703 newsp->ep = newep; 5704 newsp->hmac = NULL; 5705 5706 /* Hook this new socket in to the bind_hash list. */ 5707 pp = sctp_sk(oldsk)->bind_hash; 5708 sk_add_bind_node(newsk, &pp->owner); 5709 sctp_sk(newsk)->bind_hash = pp; 5710 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5711 5712 /* Copy the bind_addr list from the original endpoint to the new 5713 * endpoint so that we can handle restarts properly 5714 */ 5715 if (PF_INET6 == assoc->base.sk->sk_family) 5716 flags = SCTP_ADDR6_ALLOWED; 5717 if (assoc->peer.ipv4_address) 5718 flags |= SCTP_ADDR4_PEERSUPP; 5719 if (assoc->peer.ipv6_address) 5720 flags |= SCTP_ADDR6_PEERSUPP; 5721 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5722 &oldsp->ep->base.bind_addr, 5723 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5724 5725 /* Move any messages in the old socket's receive queue that are for the 5726 * peeled off association to the new socket's receive queue. 5727 */ 5728 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5729 event = sctp_skb2event(skb); 5730 if (event->asoc == assoc) { 5731 sctp_sock_rfree_frag(skb); 5732 __skb_unlink(skb, &oldsk->sk_receive_queue); 5733 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5734 sctp_skb_set_owner_r_frag(skb, newsk); 5735 } 5736 } 5737 5738 /* Clean up any messages pending delivery due to partial 5739 * delivery. Three cases: 5740 * 1) No partial deliver; no work. 5741 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5742 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5743 */ 5744 skb_queue_head_init(&newsp->pd_lobby); 5745 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5746 5747 if (sctp_sk(oldsk)->pd_mode) { 5748 struct sk_buff_head *queue; 5749 5750 /* Decide which queue to move pd_lobby skbs to. */ 5751 if (assoc->ulpq.pd_mode) { 5752 queue = &newsp->pd_lobby; 5753 } else 5754 queue = &newsk->sk_receive_queue; 5755 5756 /* Walk through the pd_lobby, looking for skbs that 5757 * need moved to the new socket. 5758 */ 5759 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5760 event = sctp_skb2event(skb); 5761 if (event->asoc == assoc) { 5762 sctp_sock_rfree_frag(skb); 5763 __skb_unlink(skb, &oldsp->pd_lobby); 5764 __skb_queue_tail(queue, skb); 5765 sctp_skb_set_owner_r_frag(skb, newsk); 5766 } 5767 } 5768 5769 /* Clear up any skbs waiting for the partial 5770 * delivery to finish. 5771 */ 5772 if (assoc->ulpq.pd_mode) 5773 sctp_clear_pd(oldsk); 5774 5775 } 5776 5777 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 5778 sctp_sock_rfree_frag(skb); 5779 sctp_skb_set_owner_r_frag(skb, newsk); 5780 } 5781 5782 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 5783 sctp_sock_rfree_frag(skb); 5784 sctp_skb_set_owner_r_frag(skb, newsk); 5785 } 5786 5787 /* Set the type of socket to indicate that it is peeled off from the 5788 * original UDP-style socket or created with the accept() call on a 5789 * TCP-style socket.. 5790 */ 5791 newsp->type = type; 5792 5793 /* Mark the new socket "in-use" by the user so that any packets 5794 * that may arrive on the association after we've moved it are 5795 * queued to the backlog. This prevents a potential race between 5796 * backlog processing on the old socket and new-packet processing 5797 * on the new socket. 5798 */ 5799 sctp_lock_sock(newsk); 5800 sctp_assoc_migrate(assoc, newsk); 5801 5802 /* If the association on the newsk is already closed before accept() 5803 * is called, set RCV_SHUTDOWN flag. 5804 */ 5805 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5806 newsk->sk_shutdown |= RCV_SHUTDOWN; 5807 5808 newsk->sk_state = SCTP_SS_ESTABLISHED; 5809 sctp_release_sock(newsk); 5810} 5811 5812/* This proto struct describes the ULP interface for SCTP. */ 5813struct proto sctp_prot = { 5814 .name = "SCTP", 5815 .owner = THIS_MODULE, 5816 .close = sctp_close, 5817 .connect = sctp_connect, 5818 .disconnect = sctp_disconnect, 5819 .accept = sctp_accept, 5820 .ioctl = sctp_ioctl, 5821 .init = sctp_init_sock, 5822 .destroy = sctp_destroy_sock, 5823 .shutdown = sctp_shutdown, 5824 .setsockopt = sctp_setsockopt, 5825 .getsockopt = sctp_getsockopt, 5826 .sendmsg = sctp_sendmsg, 5827 .recvmsg = sctp_recvmsg, 5828 .bind = sctp_bind, 5829 .backlog_rcv = sctp_backlog_rcv, 5830 .hash = sctp_hash, 5831 .unhash = sctp_unhash, 5832 .get_port = sctp_get_port, 5833 .obj_size = sizeof(struct sctp_sock), 5834}; 5835 5836#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5837struct proto sctpv6_prot = { 5838 .name = "SCTPv6", 5839 .owner = THIS_MODULE, 5840 .close = sctp_close, 5841 .connect = sctp_connect, 5842 .disconnect = sctp_disconnect, 5843 .accept = sctp_accept, 5844 .ioctl = sctp_ioctl, 5845 .init = sctp_init_sock, 5846 .destroy = sctp_destroy_sock, 5847 .shutdown = sctp_shutdown, 5848 .setsockopt = sctp_setsockopt, 5849 .getsockopt = sctp_getsockopt, 5850 .sendmsg = sctp_sendmsg, 5851 .recvmsg = sctp_recvmsg, 5852 .bind = sctp_bind, 5853 .backlog_rcv = sctp_backlog_rcv, 5854 .hash = sctp_hash, 5855 .unhash = sctp_unhash, 5856 .get_port = sctp_get_port, 5857 .obj_size = sizeof(struct sctp6_sock), 5858}; 5859#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */