at v2.6.21 468 lines 12 kB view raw
1/* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18#include <linux/oom.h> 19#include <linux/mm.h> 20#include <linux/sched.h> 21#include <linux/swap.h> 22#include <linux/timex.h> 23#include <linux/jiffies.h> 24#include <linux/cpuset.h> 25#include <linux/module.h> 26#include <linux/notifier.h> 27 28int sysctl_panic_on_oom; 29/* #define DEBUG */ 30 31/** 32 * badness - calculate a numeric value for how bad this task has been 33 * @p: task struct of which task we should calculate 34 * @uptime: current uptime in seconds 35 * 36 * The formula used is relatively simple and documented inline in the 37 * function. The main rationale is that we want to select a good task 38 * to kill when we run out of memory. 39 * 40 * Good in this context means that: 41 * 1) we lose the minimum amount of work done 42 * 2) we recover a large amount of memory 43 * 3) we don't kill anything innocent of eating tons of memory 44 * 4) we want to kill the minimum amount of processes (one) 45 * 5) we try to kill the process the user expects us to kill, this 46 * algorithm has been meticulously tuned to meet the principle 47 * of least surprise ... (be careful when you change it) 48 */ 49 50unsigned long badness(struct task_struct *p, unsigned long uptime) 51{ 52 unsigned long points, cpu_time, run_time, s; 53 struct mm_struct *mm; 54 struct task_struct *child; 55 56 task_lock(p); 57 mm = p->mm; 58 if (!mm) { 59 task_unlock(p); 60 return 0; 61 } 62 63 /* 64 * The memory size of the process is the basis for the badness. 65 */ 66 points = mm->total_vm; 67 68 /* 69 * After this unlock we can no longer dereference local variable `mm' 70 */ 71 task_unlock(p); 72 73 /* 74 * swapoff can easily use up all memory, so kill those first. 75 */ 76 if (p->flags & PF_SWAPOFF) 77 return ULONG_MAX; 78 79 /* 80 * Processes which fork a lot of child processes are likely 81 * a good choice. We add half the vmsize of the children if they 82 * have an own mm. This prevents forking servers to flood the 83 * machine with an endless amount of children. In case a single 84 * child is eating the vast majority of memory, adding only half 85 * to the parents will make the child our kill candidate of choice. 86 */ 87 list_for_each_entry(child, &p->children, sibling) { 88 task_lock(child); 89 if (child->mm != mm && child->mm) 90 points += child->mm->total_vm/2 + 1; 91 task_unlock(child); 92 } 93 94 /* 95 * CPU time is in tens of seconds and run time is in thousands 96 * of seconds. There is no particular reason for this other than 97 * that it turned out to work very well in practice. 98 */ 99 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 100 >> (SHIFT_HZ + 3); 101 102 if (uptime >= p->start_time.tv_sec) 103 run_time = (uptime - p->start_time.tv_sec) >> 10; 104 else 105 run_time = 0; 106 107 s = int_sqrt(cpu_time); 108 if (s) 109 points /= s; 110 s = int_sqrt(int_sqrt(run_time)); 111 if (s) 112 points /= s; 113 114 /* 115 * Niced processes are most likely less important, so double 116 * their badness points. 117 */ 118 if (task_nice(p) > 0) 119 points *= 2; 120 121 /* 122 * Superuser processes are usually more important, so we make it 123 * less likely that we kill those. 124 */ 125 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) || 126 p->uid == 0 || p->euid == 0) 127 points /= 4; 128 129 /* 130 * We don't want to kill a process with direct hardware access. 131 * Not only could that mess up the hardware, but usually users 132 * tend to only have this flag set on applications they think 133 * of as important. 134 */ 135 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) 136 points /= 4; 137 138 /* 139 * If p's nodes don't overlap ours, it may still help to kill p 140 * because p may have allocated or otherwise mapped memory on 141 * this node before. However it will be less likely. 142 */ 143 if (!cpuset_excl_nodes_overlap(p)) 144 points /= 8; 145 146 /* 147 * Adjust the score by oomkilladj. 148 */ 149 if (p->oomkilladj) { 150 if (p->oomkilladj > 0) 151 points <<= p->oomkilladj; 152 else 153 points >>= -(p->oomkilladj); 154 } 155 156#ifdef DEBUG 157 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n", 158 p->pid, p->comm, points); 159#endif 160 return points; 161} 162 163/* 164 * Types of limitations to the nodes from which allocations may occur 165 */ 166#define CONSTRAINT_NONE 1 167#define CONSTRAINT_MEMORY_POLICY 2 168#define CONSTRAINT_CPUSET 3 169 170/* 171 * Determine the type of allocation constraint. 172 */ 173static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask) 174{ 175#ifdef CONFIG_NUMA 176 struct zone **z; 177 nodemask_t nodes; 178 int node; 179 180 nodes_clear(nodes); 181 /* node has memory ? */ 182 for_each_online_node(node) 183 if (NODE_DATA(node)->node_present_pages) 184 node_set(node, nodes); 185 186 for (z = zonelist->zones; *z; z++) 187 if (cpuset_zone_allowed_softwall(*z, gfp_mask)) 188 node_clear(zone_to_nid(*z), nodes); 189 else 190 return CONSTRAINT_CPUSET; 191 192 if (!nodes_empty(nodes)) 193 return CONSTRAINT_MEMORY_POLICY; 194#endif 195 196 return CONSTRAINT_NONE; 197} 198 199/* 200 * Simple selection loop. We chose the process with the highest 201 * number of 'points'. We expect the caller will lock the tasklist. 202 * 203 * (not docbooked, we don't want this one cluttering up the manual) 204 */ 205static struct task_struct *select_bad_process(unsigned long *ppoints) 206{ 207 struct task_struct *g, *p; 208 struct task_struct *chosen = NULL; 209 struct timespec uptime; 210 *ppoints = 0; 211 212 do_posix_clock_monotonic_gettime(&uptime); 213 do_each_thread(g, p) { 214 unsigned long points; 215 216 /* 217 * skip kernel threads and tasks which have already released 218 * their mm. 219 */ 220 if (!p->mm) 221 continue; 222 /* skip the init task */ 223 if (is_init(p)) 224 continue; 225 226 /* 227 * This task already has access to memory reserves and is 228 * being killed. Don't allow any other task access to the 229 * memory reserve. 230 * 231 * Note: this may have a chance of deadlock if it gets 232 * blocked waiting for another task which itself is waiting 233 * for memory. Is there a better alternative? 234 */ 235 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 236 return ERR_PTR(-1UL); 237 238 /* 239 * This is in the process of releasing memory so wait for it 240 * to finish before killing some other task by mistake. 241 * 242 * However, if p is the current task, we allow the 'kill' to 243 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 244 * which will allow it to gain access to memory reserves in 245 * the process of exiting and releasing its resources. 246 * Otherwise we could get an easy OOM deadlock. 247 */ 248 if (p->flags & PF_EXITING) { 249 if (p != current) 250 return ERR_PTR(-1UL); 251 252 chosen = p; 253 *ppoints = ULONG_MAX; 254 } 255 256 if (p->oomkilladj == OOM_DISABLE) 257 continue; 258 259 points = badness(p, uptime.tv_sec); 260 if (points > *ppoints || !chosen) { 261 chosen = p; 262 *ppoints = points; 263 } 264 } while_each_thread(g, p); 265 266 return chosen; 267} 268 269/** 270 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 271 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 272 * set. 273 */ 274static void __oom_kill_task(struct task_struct *p, int verbose) 275{ 276 if (is_init(p)) { 277 WARN_ON(1); 278 printk(KERN_WARNING "tried to kill init!\n"); 279 return; 280 } 281 282 if (!p->mm) { 283 WARN_ON(1); 284 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 285 return; 286 } 287 288 if (verbose) 289 printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm); 290 291 /* 292 * We give our sacrificial lamb high priority and access to 293 * all the memory it needs. That way it should be able to 294 * exit() and clear out its resources quickly... 295 */ 296 p->time_slice = HZ; 297 set_tsk_thread_flag(p, TIF_MEMDIE); 298 299 force_sig(SIGKILL, p); 300} 301 302static int oom_kill_task(struct task_struct *p) 303{ 304 struct mm_struct *mm; 305 struct task_struct *g, *q; 306 307 mm = p->mm; 308 309 /* WARNING: mm may not be dereferenced since we did not obtain its 310 * value from get_task_mm(p). This is OK since all we need to do is 311 * compare mm to q->mm below. 312 * 313 * Furthermore, even if mm contains a non-NULL value, p->mm may 314 * change to NULL at any time since we do not hold task_lock(p). 315 * However, this is of no concern to us. 316 */ 317 318 if (mm == NULL) 319 return 1; 320 321 /* 322 * Don't kill the process if any threads are set to OOM_DISABLE 323 */ 324 do_each_thread(g, q) { 325 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 326 return 1; 327 } while_each_thread(g, q); 328 329 __oom_kill_task(p, 1); 330 331 /* 332 * kill all processes that share the ->mm (i.e. all threads), 333 * but are in a different thread group. Don't let them have access 334 * to memory reserves though, otherwise we might deplete all memory. 335 */ 336 do_each_thread(g, q) { 337 if (q->mm == mm && q->tgid != p->tgid) 338 force_sig(SIGKILL, q); 339 } while_each_thread(g, q); 340 341 return 0; 342} 343 344static int oom_kill_process(struct task_struct *p, unsigned long points, 345 const char *message) 346{ 347 struct task_struct *c; 348 struct list_head *tsk; 349 350 /* 351 * If the task is already exiting, don't alarm the sysadmin or kill 352 * its children or threads, just set TIF_MEMDIE so it can die quickly 353 */ 354 if (p->flags & PF_EXITING) { 355 __oom_kill_task(p, 0); 356 return 0; 357 } 358 359 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 360 message, p->pid, p->comm, points); 361 362 /* Try to kill a child first */ 363 list_for_each(tsk, &p->children) { 364 c = list_entry(tsk, struct task_struct, sibling); 365 if (c->mm == p->mm) 366 continue; 367 if (!oom_kill_task(c)) 368 return 0; 369 } 370 return oom_kill_task(p); 371} 372 373static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 374 375int register_oom_notifier(struct notifier_block *nb) 376{ 377 return blocking_notifier_chain_register(&oom_notify_list, nb); 378} 379EXPORT_SYMBOL_GPL(register_oom_notifier); 380 381int unregister_oom_notifier(struct notifier_block *nb) 382{ 383 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 384} 385EXPORT_SYMBOL_GPL(unregister_oom_notifier); 386 387/** 388 * out_of_memory - kill the "best" process when we run out of memory 389 * 390 * If we run out of memory, we have the choice between either 391 * killing a random task (bad), letting the system crash (worse) 392 * OR try to be smart about which process to kill. Note that we 393 * don't have to be perfect here, we just have to be good. 394 */ 395void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 396{ 397 struct task_struct *p; 398 unsigned long points = 0; 399 unsigned long freed = 0; 400 401 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 402 if (freed > 0) 403 /* Got some memory back in the last second. */ 404 return; 405 406 if (printk_ratelimit()) { 407 printk(KERN_WARNING "%s invoked oom-killer: " 408 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 409 current->comm, gfp_mask, order, current->oomkilladj); 410 dump_stack(); 411 show_mem(); 412 } 413 414 cpuset_lock(); 415 read_lock(&tasklist_lock); 416 417 /* 418 * Check if there were limitations on the allocation (only relevant for 419 * NUMA) that may require different handling. 420 */ 421 switch (constrained_alloc(zonelist, gfp_mask)) { 422 case CONSTRAINT_MEMORY_POLICY: 423 oom_kill_process(current, points, 424 "No available memory (MPOL_BIND)"); 425 break; 426 427 case CONSTRAINT_CPUSET: 428 oom_kill_process(current, points, 429 "No available memory in cpuset"); 430 break; 431 432 case CONSTRAINT_NONE: 433 if (sysctl_panic_on_oom) 434 panic("out of memory. panic_on_oom is selected\n"); 435retry: 436 /* 437 * Rambo mode: Shoot down a process and hope it solves whatever 438 * issues we may have. 439 */ 440 p = select_bad_process(&points); 441 442 if (PTR_ERR(p) == -1UL) 443 goto out; 444 445 /* Found nothing?!?! Either we hang forever, or we panic. */ 446 if (!p) { 447 read_unlock(&tasklist_lock); 448 cpuset_unlock(); 449 panic("Out of memory and no killable processes...\n"); 450 } 451 452 if (oom_kill_process(p, points, "Out of memory")) 453 goto retry; 454 455 break; 456 } 457 458out: 459 read_unlock(&tasklist_lock); 460 cpuset_unlock(); 461 462 /* 463 * Give "p" a good chance of killing itself before we 464 * retry to allocate memory unless "p" is current 465 */ 466 if (!test_thread_flag(TIF_MEMDIE)) 467 schedule_timeout_uninterruptible(1); 468}