at v2.6.21 58 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67}; 68 69/* host-side wrapper for one interface setting's parsed descriptors */ 70struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81}; 82 83enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88}; 89 90/** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @usb_dev: if an interface is bound to the USB major, this will point 111 * to the sysfs representation for that device. 112 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 113 * allowed unless the counter is 0. 114 * 115 * USB device drivers attach to interfaces on a physical device. Each 116 * interface encapsulates a single high level function, such as feeding 117 * an audio stream to a speaker or reporting a change in a volume control. 118 * Many USB devices only have one interface. The protocol used to talk to 119 * an interface's endpoints can be defined in a usb "class" specification, 120 * or by a product's vendor. The (default) control endpoint is part of 121 * every interface, but is never listed among the interface's descriptors. 122 * 123 * The driver that is bound to the interface can use standard driver model 124 * calls such as dev_get_drvdata() on the dev member of this structure. 125 * 126 * Each interface may have alternate settings. The initial configuration 127 * of a device sets altsetting 0, but the device driver can change 128 * that setting using usb_set_interface(). Alternate settings are often 129 * used to control the the use of periodic endpoints, such as by having 130 * different endpoints use different amounts of reserved USB bandwidth. 131 * All standards-conformant USB devices that use isochronous endpoints 132 * will use them in non-default settings. 133 * 134 * The USB specification says that alternate setting numbers must run from 135 * 0 to one less than the total number of alternate settings. But some 136 * devices manage to mess this up, and the structures aren't necessarily 137 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 138 * look up an alternate setting in the altsetting array based on its number. 139 */ 140struct usb_interface { 141 /* array of alternate settings for this interface, 142 * stored in no particular order */ 143 struct usb_host_interface *altsetting; 144 145 struct usb_host_interface *cur_altsetting; /* the currently 146 * active alternate setting */ 147 unsigned num_altsetting; /* number of alternate settings */ 148 149 int minor; /* minor number this interface is 150 * bound to */ 151 enum usb_interface_condition condition; /* state of binding */ 152 unsigned is_active:1; /* the interface is not suspended */ 153 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 154 155 struct device dev; /* interface specific device info */ 156 struct device *usb_dev; /* pointer to the usb class's device, if any */ 157 int pm_usage_cnt; /* usage counter for autosuspend */ 158}; 159#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 160#define interface_to_usbdev(intf) \ 161 container_of(intf->dev.parent, struct usb_device, dev) 162 163static inline void *usb_get_intfdata (struct usb_interface *intf) 164{ 165 return dev_get_drvdata (&intf->dev); 166} 167 168static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 169{ 170 dev_set_drvdata(&intf->dev, data); 171} 172 173struct usb_interface *usb_get_intf(struct usb_interface *intf); 174void usb_put_intf(struct usb_interface *intf); 175 176/* this maximum is arbitrary */ 177#define USB_MAXINTERFACES 32 178 179/** 180 * struct usb_interface_cache - long-term representation of a device interface 181 * @num_altsetting: number of altsettings defined. 182 * @ref: reference counter. 183 * @altsetting: variable-length array of interface structures, one for 184 * each alternate setting that may be selected. Each one includes a 185 * set of endpoint configurations. They will be in no particular order. 186 * 187 * These structures persist for the lifetime of a usb_device, unlike 188 * struct usb_interface (which persists only as long as its configuration 189 * is installed). The altsetting arrays can be accessed through these 190 * structures at any time, permitting comparison of configurations and 191 * providing support for the /proc/bus/usb/devices pseudo-file. 192 */ 193struct usb_interface_cache { 194 unsigned num_altsetting; /* number of alternate settings */ 195 struct kref ref; /* reference counter */ 196 197 /* variable-length array of alternate settings for this interface, 198 * stored in no particular order */ 199 struct usb_host_interface altsetting[0]; 200}; 201#define ref_to_usb_interface_cache(r) \ 202 container_of(r, struct usb_interface_cache, ref) 203#define altsetting_to_usb_interface_cache(a) \ 204 container_of(a, struct usb_interface_cache, altsetting[0]) 205 206/** 207 * struct usb_host_config - representation of a device's configuration 208 * @desc: the device's configuration descriptor. 209 * @string: pointer to the cached version of the iConfiguration string, if 210 * present for this configuration. 211 * @interface: array of pointers to usb_interface structures, one for each 212 * interface in the configuration. The number of interfaces is stored 213 * in desc.bNumInterfaces. These pointers are valid only while the 214 * the configuration is active. 215 * @intf_cache: array of pointers to usb_interface_cache structures, one 216 * for each interface in the configuration. These structures exist 217 * for the entire life of the device. 218 * @extra: pointer to buffer containing all extra descriptors associated 219 * with this configuration (those preceding the first interface 220 * descriptor). 221 * @extralen: length of the extra descriptors buffer. 222 * 223 * USB devices may have multiple configurations, but only one can be active 224 * at any time. Each encapsulates a different operational environment; 225 * for example, a dual-speed device would have separate configurations for 226 * full-speed and high-speed operation. The number of configurations 227 * available is stored in the device descriptor as bNumConfigurations. 228 * 229 * A configuration can contain multiple interfaces. Each corresponds to 230 * a different function of the USB device, and all are available whenever 231 * the configuration is active. The USB standard says that interfaces 232 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 233 * of devices get this wrong. In addition, the interface array is not 234 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 235 * look up an interface entry based on its number. 236 * 237 * Device drivers should not attempt to activate configurations. The choice 238 * of which configuration to install is a policy decision based on such 239 * considerations as available power, functionality provided, and the user's 240 * desires (expressed through userspace tools). However, drivers can call 241 * usb_reset_configuration() to reinitialize the current configuration and 242 * all its interfaces. 243 */ 244struct usb_host_config { 245 struct usb_config_descriptor desc; 246 247 char *string; /* iConfiguration string, if present */ 248 /* the interfaces associated with this configuration, 249 * stored in no particular order */ 250 struct usb_interface *interface[USB_MAXINTERFACES]; 251 252 /* Interface information available even when this is not the 253 * active configuration */ 254 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 255 256 unsigned char *extra; /* Extra descriptors */ 257 int extralen; 258}; 259 260int __usb_get_extra_descriptor(char *buffer, unsigned size, 261 unsigned char type, void **ptr); 262#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 263 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 264 type,(void**)ptr) 265 266/* ----------------------------------------------------------------------- */ 267 268/* USB device number allocation bitmap */ 269struct usb_devmap { 270 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 271}; 272 273/* 274 * Allocated per bus (tree of devices) we have: 275 */ 276struct usb_bus { 277 struct device *controller; /* host/master side hardware */ 278 int busnum; /* Bus number (in order of reg) */ 279 char *bus_name; /* stable id (PCI slot_name etc) */ 280 u8 uses_dma; /* Does the host controller use DMA? */ 281 u8 otg_port; /* 0, or number of OTG/HNP port */ 282 unsigned is_b_host:1; /* true during some HNP roleswitches */ 283 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 284 285 int devnum_next; /* Next open device number in 286 * round-robin allocation */ 287 288 struct usb_devmap devmap; /* device address allocation map */ 289 struct usb_device *root_hub; /* Root hub */ 290 struct list_head bus_list; /* list of busses */ 291 292 int bandwidth_allocated; /* on this bus: how much of the time 293 * reserved for periodic (intr/iso) 294 * requests is used, on average? 295 * Units: microseconds/frame. 296 * Limits: Full/low speed reserve 90%, 297 * while high speed reserves 80%. 298 */ 299 int bandwidth_int_reqs; /* number of Interrupt requests */ 300 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 301 302 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 303 304 struct class_device *class_dev; /* class device for this bus */ 305 306#if defined(CONFIG_USB_MON) 307 struct mon_bus *mon_bus; /* non-null when associated */ 308 int monitored; /* non-zero when monitored */ 309#endif 310}; 311 312/* ----------------------------------------------------------------------- */ 313 314/* This is arbitrary. 315 * From USB 2.0 spec Table 11-13, offset 7, a hub can 316 * have up to 255 ports. The most yet reported is 10. 317 * 318 * Current Wireless USB host hardware (Intel i1480 for example) allows 319 * up to 22 devices to connect. Upcoming hardware might raise that 320 * limit. Because the arrays need to add a bit for hub status data, we 321 * do 31, so plus one evens out to four bytes. 322 */ 323#define USB_MAXCHILDREN (31) 324 325struct usb_tt; 326 327/* 328 * struct usb_device - kernel's representation of a USB device 329 * 330 * FIXME: Write the kerneldoc! 331 * 332 * Usbcore drivers should not set usbdev->state directly. Instead use 333 * usb_set_device_state(). 334 */ 335struct usb_device { 336 int devnum; /* Address on USB bus */ 337 char devpath [16]; /* Use in messages: /port/port/... */ 338 enum usb_device_state state; /* configured, not attached, etc */ 339 enum usb_device_speed speed; /* high/full/low (or error) */ 340 341 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 342 int ttport; /* device port on that tt hub */ 343 344 unsigned int toggle[2]; /* one bit for each endpoint 345 * ([0] = IN, [1] = OUT) */ 346 347 struct usb_device *parent; /* our hub, unless we're the root */ 348 struct usb_bus *bus; /* Bus we're part of */ 349 struct usb_host_endpoint ep0; 350 351 struct device dev; /* Generic device interface */ 352 353 struct usb_device_descriptor descriptor;/* Descriptor */ 354 struct usb_host_config *config; /* All of the configs */ 355 356 struct usb_host_config *actconfig;/* the active configuration */ 357 struct usb_host_endpoint *ep_in[16]; 358 struct usb_host_endpoint *ep_out[16]; 359 360 char **rawdescriptors; /* Raw descriptors for each config */ 361 362 unsigned short bus_mA; /* Current available from the bus */ 363 u8 portnum; /* Parent port number (origin 1) */ 364 u8 level; /* Number of USB hub ancestors */ 365 366 unsigned discon_suspended:1; /* Disconnected while suspended */ 367 unsigned have_langid:1; /* whether string_langid is valid */ 368 int string_langid; /* language ID for strings */ 369 370 /* static strings from the device */ 371 char *product; /* iProduct string, if present */ 372 char *manufacturer; /* iManufacturer string, if present */ 373 char *serial; /* iSerialNumber string, if present */ 374 375 struct list_head filelist; 376 struct device *usbfs_dev; 377 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 378 379 /* 380 * Child devices - these can be either new devices 381 * (if this is a hub device), or different instances 382 * of this same device. 383 * 384 * Each instance needs its own set of data structures. 385 */ 386 387 int maxchild; /* Number of ports if hub */ 388 struct usb_device *children[USB_MAXCHILDREN]; 389 390 int pm_usage_cnt; /* usage counter for autosuspend */ 391 u32 quirks; /* quirks of the whole device */ 392 393#ifdef CONFIG_PM 394 struct delayed_work autosuspend; /* for delayed autosuspends */ 395 struct mutex pm_mutex; /* protects PM operations */ 396 397 unsigned autosuspend_delay; /* in jiffies */ 398 399 unsigned auto_pm:1; /* autosuspend/resume in progress */ 400 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 401#endif 402}; 403#define to_usb_device(d) container_of(d, struct usb_device, dev) 404 405extern struct usb_device *usb_get_dev(struct usb_device *dev); 406extern void usb_put_dev(struct usb_device *dev); 407 408/* USB device locking */ 409#define usb_lock_device(udev) down(&(udev)->dev.sem) 410#define usb_unlock_device(udev) up(&(udev)->dev.sem) 411#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 412extern int usb_lock_device_for_reset(struct usb_device *udev, 413 const struct usb_interface *iface); 414 415/* USB port reset for device reinitialization */ 416extern int usb_reset_device(struct usb_device *dev); 417extern int usb_reset_composite_device(struct usb_device *dev, 418 struct usb_interface *iface); 419 420extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 421 422/* USB autosuspend and autoresume */ 423#ifdef CONFIG_USB_SUSPEND 424extern int usb_autopm_set_interface(struct usb_interface *intf); 425extern int usb_autopm_get_interface(struct usb_interface *intf); 426extern void usb_autopm_put_interface(struct usb_interface *intf); 427 428static inline void usb_autopm_enable(struct usb_interface *intf) 429{ 430 intf->pm_usage_cnt = 0; 431 usb_autopm_set_interface(intf); 432} 433 434static inline void usb_autopm_disable(struct usb_interface *intf) 435{ 436 intf->pm_usage_cnt = 1; 437 usb_autopm_set_interface(intf); 438} 439 440#else 441 442static inline int usb_autopm_set_interface(struct usb_interface *intf) 443{ return 0; } 444 445static inline int usb_autopm_get_interface(struct usb_interface *intf) 446{ return 0; } 447 448static inline void usb_autopm_put_interface(struct usb_interface *intf) 449{ } 450static inline void usb_autopm_enable(struct usb_interface *intf) 451{ } 452static inline void usb_autopm_disable(struct usb_interface *intf) 453{ } 454#endif 455 456/*-------------------------------------------------------------------------*/ 457 458/* for drivers using iso endpoints */ 459extern int usb_get_current_frame_number (struct usb_device *usb_dev); 460 461/* used these for multi-interface device registration */ 462extern int usb_driver_claim_interface(struct usb_driver *driver, 463 struct usb_interface *iface, void* priv); 464 465/** 466 * usb_interface_claimed - returns true iff an interface is claimed 467 * @iface: the interface being checked 468 * 469 * Returns true (nonzero) iff the interface is claimed, else false (zero). 470 * Callers must own the driver model's usb bus readlock. So driver 471 * probe() entries don't need extra locking, but other call contexts 472 * may need to explicitly claim that lock. 473 * 474 */ 475static inline int usb_interface_claimed(struct usb_interface *iface) { 476 return (iface->dev.driver != NULL); 477} 478 479extern void usb_driver_release_interface(struct usb_driver *driver, 480 struct usb_interface *iface); 481const struct usb_device_id *usb_match_id(struct usb_interface *interface, 482 const struct usb_device_id *id); 483extern int usb_match_one_id(struct usb_interface *interface, 484 const struct usb_device_id *id); 485 486extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 487 int minor); 488extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 489 unsigned ifnum); 490extern struct usb_host_interface *usb_altnum_to_altsetting( 491 const struct usb_interface *intf, unsigned int altnum); 492 493 494/** 495 * usb_make_path - returns stable device path in the usb tree 496 * @dev: the device whose path is being constructed 497 * @buf: where to put the string 498 * @size: how big is "buf"? 499 * 500 * Returns length of the string (> 0) or negative if size was too small. 501 * 502 * This identifier is intended to be "stable", reflecting physical paths in 503 * hardware such as physical bus addresses for host controllers or ports on 504 * USB hubs. That makes it stay the same until systems are physically 505 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 506 * controllers. Adding and removing devices, including virtual root hubs 507 * in host controller driver modules, does not change these path identifers; 508 * neither does rebooting or re-enumerating. These are more useful identifiers 509 * than changeable ("unstable") ones like bus numbers or device addresses. 510 * 511 * With a partial exception for devices connected to USB 2.0 root hubs, these 512 * identifiers are also predictable. So long as the device tree isn't changed, 513 * plugging any USB device into a given hub port always gives it the same path. 514 * Because of the use of "companion" controllers, devices connected to ports on 515 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 516 * high speed, and a different one if they are full or low speed. 517 */ 518static inline int usb_make_path (struct usb_device *dev, char *buf, 519 size_t size) 520{ 521 int actual; 522 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 523 dev->devpath); 524 return (actual >= (int)size) ? -1 : actual; 525} 526 527/*-------------------------------------------------------------------------*/ 528 529/** 530 * usb_endpoint_dir_in - check if the endpoint has IN direction 531 * @epd: endpoint to be checked 532 * 533 * Returns true if the endpoint is of type IN, otherwise it returns false. 534 */ 535static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 536{ 537 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 538} 539 540/** 541 * usb_endpoint_dir_out - check if the endpoint has OUT direction 542 * @epd: endpoint to be checked 543 * 544 * Returns true if the endpoint is of type OUT, otherwise it returns false. 545 */ 546static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 547{ 548 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 549} 550 551/** 552 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 553 * @epd: endpoint to be checked 554 * 555 * Returns true if the endpoint is of type bulk, otherwise it returns false. 556 */ 557static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 558{ 559 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 560 USB_ENDPOINT_XFER_BULK); 561} 562 563/** 564 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 565 * @epd: endpoint to be checked 566 * 567 * Returns true if the endpoint is of type control, otherwise it returns false. 568 */ 569static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 570{ 571 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 572 USB_ENDPOINT_XFER_CONTROL); 573} 574 575/** 576 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 577 * @epd: endpoint to be checked 578 * 579 * Returns true if the endpoint is of type interrupt, otherwise it returns 580 * false. 581 */ 582static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 583{ 584 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 585 USB_ENDPOINT_XFER_INT); 586} 587 588/** 589 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 590 * @epd: endpoint to be checked 591 * 592 * Returns true if the endpoint is of type isochronous, otherwise it returns 593 * false. 594 */ 595static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 596{ 597 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 598 USB_ENDPOINT_XFER_ISOC); 599} 600 601/** 602 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 603 * @epd: endpoint to be checked 604 * 605 * Returns true if the endpoint has bulk transfer type and IN direction, 606 * otherwise it returns false. 607 */ 608static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 609{ 610 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 611} 612 613/** 614 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 615 * @epd: endpoint to be checked 616 * 617 * Returns true if the endpoint has bulk transfer type and OUT direction, 618 * otherwise it returns false. 619 */ 620static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 621{ 622 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 623} 624 625/** 626 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 627 * @epd: endpoint to be checked 628 * 629 * Returns true if the endpoint has interrupt transfer type and IN direction, 630 * otherwise it returns false. 631 */ 632static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 633{ 634 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 635} 636 637/** 638 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 639 * @epd: endpoint to be checked 640 * 641 * Returns true if the endpoint has interrupt transfer type and OUT direction, 642 * otherwise it returns false. 643 */ 644static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 645{ 646 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 647} 648 649/** 650 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 651 * @epd: endpoint to be checked 652 * 653 * Returns true if the endpoint has isochronous transfer type and IN direction, 654 * otherwise it returns false. 655 */ 656static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 657{ 658 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 659} 660 661/** 662 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 663 * @epd: endpoint to be checked 664 * 665 * Returns true if the endpoint has isochronous transfer type and OUT direction, 666 * otherwise it returns false. 667 */ 668static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 669{ 670 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 671} 672 673/*-------------------------------------------------------------------------*/ 674 675#define USB_DEVICE_ID_MATCH_DEVICE \ 676 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 677#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 678 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 679#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 680 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 681#define USB_DEVICE_ID_MATCH_DEV_INFO \ 682 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 683 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 684 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 685#define USB_DEVICE_ID_MATCH_INT_INFO \ 686 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 687 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 688 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 689 690/** 691 * USB_DEVICE - macro used to describe a specific usb device 692 * @vend: the 16 bit USB Vendor ID 693 * @prod: the 16 bit USB Product ID 694 * 695 * This macro is used to create a struct usb_device_id that matches a 696 * specific device. 697 */ 698#define USB_DEVICE(vend,prod) \ 699 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 700 .idProduct = (prod) 701/** 702 * USB_DEVICE_VER - macro used to describe a specific usb device with a 703 * version range 704 * @vend: the 16 bit USB Vendor ID 705 * @prod: the 16 bit USB Product ID 706 * @lo: the bcdDevice_lo value 707 * @hi: the bcdDevice_hi value 708 * 709 * This macro is used to create a struct usb_device_id that matches a 710 * specific device, with a version range. 711 */ 712#define USB_DEVICE_VER(vend,prod,lo,hi) \ 713 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 714 .idVendor = (vend), .idProduct = (prod), \ 715 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 716 717/** 718 * USB_DEVICE_INFO - macro used to describe a class of usb devices 719 * @cl: bDeviceClass value 720 * @sc: bDeviceSubClass value 721 * @pr: bDeviceProtocol value 722 * 723 * This macro is used to create a struct usb_device_id that matches a 724 * specific class of devices. 725 */ 726#define USB_DEVICE_INFO(cl,sc,pr) \ 727 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 728 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 729 730/** 731 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 732 * @cl: bInterfaceClass value 733 * @sc: bInterfaceSubClass value 734 * @pr: bInterfaceProtocol value 735 * 736 * This macro is used to create a struct usb_device_id that matches a 737 * specific class of interfaces. 738 */ 739#define USB_INTERFACE_INFO(cl,sc,pr) \ 740 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 741 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 742 743/* ----------------------------------------------------------------------- */ 744 745/* Stuff for dynamic usb ids */ 746struct usb_dynids { 747 spinlock_t lock; 748 struct list_head list; 749}; 750 751struct usb_dynid { 752 struct list_head node; 753 struct usb_device_id id; 754}; 755 756extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 757 struct device_driver *driver, 758 const char *buf, size_t count); 759 760/** 761 * struct usbdrv_wrap - wrapper for driver-model structure 762 * @driver: The driver-model core driver structure. 763 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 764 */ 765struct usbdrv_wrap { 766 struct device_driver driver; 767 int for_devices; 768}; 769 770/** 771 * struct usb_driver - identifies USB interface driver to usbcore 772 * @name: The driver name should be unique among USB drivers, 773 * and should normally be the same as the module name. 774 * @probe: Called to see if the driver is willing to manage a particular 775 * interface on a device. If it is, probe returns zero and uses 776 * dev_set_drvdata() to associate driver-specific data with the 777 * interface. It may also use usb_set_interface() to specify the 778 * appropriate altsetting. If unwilling to manage the interface, 779 * return a negative errno value. 780 * @disconnect: Called when the interface is no longer accessible, usually 781 * because its device has been (or is being) disconnected or the 782 * driver module is being unloaded. 783 * @ioctl: Used for drivers that want to talk to userspace through 784 * the "usbfs" filesystem. This lets devices provide ways to 785 * expose information to user space regardless of where they 786 * do (or don't) show up otherwise in the filesystem. 787 * @suspend: Called when the device is going to be suspended by the system. 788 * @resume: Called when the device is being resumed by the system. 789 * @pre_reset: Called by usb_reset_composite_device() when the device 790 * is about to be reset. 791 * @post_reset: Called by usb_reset_composite_device() after the device 792 * has been reset. 793 * @id_table: USB drivers use ID table to support hotplugging. 794 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 795 * or your driver's probe function will never get called. 796 * @dynids: used internally to hold the list of dynamically added device 797 * ids for this driver. 798 * @drvwrap: Driver-model core structure wrapper. 799 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 800 * added to this driver by preventing the sysfs file from being created. 801 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 802 * for interfaces bound to this driver. 803 * 804 * USB interface drivers must provide a name, probe() and disconnect() 805 * methods, and an id_table. Other driver fields are optional. 806 * 807 * The id_table is used in hotplugging. It holds a set of descriptors, 808 * and specialized data may be associated with each entry. That table 809 * is used by both user and kernel mode hotplugging support. 810 * 811 * The probe() and disconnect() methods are called in a context where 812 * they can sleep, but they should avoid abusing the privilege. Most 813 * work to connect to a device should be done when the device is opened, 814 * and undone at the last close. The disconnect code needs to address 815 * concurrency issues with respect to open() and close() methods, as 816 * well as forcing all pending I/O requests to complete (by unlinking 817 * them as necessary, and blocking until the unlinks complete). 818 */ 819struct usb_driver { 820 const char *name; 821 822 int (*probe) (struct usb_interface *intf, 823 const struct usb_device_id *id); 824 825 void (*disconnect) (struct usb_interface *intf); 826 827 int (*ioctl) (struct usb_interface *intf, unsigned int code, 828 void *buf); 829 830 int (*suspend) (struct usb_interface *intf, pm_message_t message); 831 int (*resume) (struct usb_interface *intf); 832 833 void (*pre_reset) (struct usb_interface *intf); 834 void (*post_reset) (struct usb_interface *intf); 835 836 const struct usb_device_id *id_table; 837 838 struct usb_dynids dynids; 839 struct usbdrv_wrap drvwrap; 840 unsigned int no_dynamic_id:1; 841 unsigned int supports_autosuspend:1; 842}; 843#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 844 845/** 846 * struct usb_device_driver - identifies USB device driver to usbcore 847 * @name: The driver name should be unique among USB drivers, 848 * and should normally be the same as the module name. 849 * @probe: Called to see if the driver is willing to manage a particular 850 * device. If it is, probe returns zero and uses dev_set_drvdata() 851 * to associate driver-specific data with the device. If unwilling 852 * to manage the device, return a negative errno value. 853 * @disconnect: Called when the device is no longer accessible, usually 854 * because it has been (or is being) disconnected or the driver's 855 * module is being unloaded. 856 * @suspend: Called when the device is going to be suspended by the system. 857 * @resume: Called when the device is being resumed by the system. 858 * @drvwrap: Driver-model core structure wrapper. 859 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 860 * for devices bound to this driver. 861 * 862 * USB drivers must provide all the fields listed above except drvwrap. 863 */ 864struct usb_device_driver { 865 const char *name; 866 867 int (*probe) (struct usb_device *udev); 868 void (*disconnect) (struct usb_device *udev); 869 870 int (*suspend) (struct usb_device *udev, pm_message_t message); 871 int (*resume) (struct usb_device *udev); 872 struct usbdrv_wrap drvwrap; 873 unsigned int supports_autosuspend:1; 874}; 875#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 876 drvwrap.driver) 877 878extern struct bus_type usb_bus_type; 879 880/** 881 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 882 * @name: the usb class device name for this driver. Will show up in sysfs. 883 * @fops: pointer to the struct file_operations of this driver. 884 * @minor_base: the start of the minor range for this driver. 885 * 886 * This structure is used for the usb_register_dev() and 887 * usb_unregister_dev() functions, to consolidate a number of the 888 * parameters used for them. 889 */ 890struct usb_class_driver { 891 char *name; 892 const struct file_operations *fops; 893 int minor_base; 894}; 895 896/* 897 * use these in module_init()/module_exit() 898 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 899 */ 900extern int usb_register_driver(struct usb_driver *, struct module *, 901 const char *); 902static inline int usb_register(struct usb_driver *driver) 903{ 904 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 905} 906extern void usb_deregister(struct usb_driver *); 907 908extern int usb_register_device_driver(struct usb_device_driver *, 909 struct module *); 910extern void usb_deregister_device_driver(struct usb_device_driver *); 911 912extern int usb_register_dev(struct usb_interface *intf, 913 struct usb_class_driver *class_driver); 914extern void usb_deregister_dev(struct usb_interface *intf, 915 struct usb_class_driver *class_driver); 916 917extern int usb_disabled(void); 918 919/* ----------------------------------------------------------------------- */ 920 921/* 922 * URB support, for asynchronous request completions 923 */ 924 925/* 926 * urb->transfer_flags: 927 */ 928#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 929#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 930 * ignored */ 931#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 932#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 933#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 934#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 935#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 936 * needed */ 937 938struct usb_iso_packet_descriptor { 939 unsigned int offset; 940 unsigned int length; /* expected length */ 941 unsigned int actual_length; 942 int status; 943}; 944 945struct urb; 946 947typedef void (*usb_complete_t)(struct urb *); 948 949/** 950 * struct urb - USB Request Block 951 * @urb_list: For use by current owner of the URB. 952 * @pipe: Holds endpoint number, direction, type, and more. 953 * Create these values with the eight macros available; 954 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 955 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 956 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 957 * numbers range from zero to fifteen. Note that "in" endpoint two 958 * is a different endpoint (and pipe) from "out" endpoint two. 959 * The current configuration controls the existence, type, and 960 * maximum packet size of any given endpoint. 961 * @dev: Identifies the USB device to perform the request. 962 * @status: This is read in non-iso completion functions to get the 963 * status of the particular request. ISO requests only use it 964 * to tell whether the URB was unlinked; detailed status for 965 * each frame is in the fields of the iso_frame-desc. 966 * @transfer_flags: A variety of flags may be used to affect how URB 967 * submission, unlinking, or operation are handled. Different 968 * kinds of URB can use different flags. 969 * @transfer_buffer: This identifies the buffer to (or from) which 970 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 971 * is set). This buffer must be suitable for DMA; allocate it with 972 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 973 * of this buffer will be modified. This buffer is used for the data 974 * stage of control transfers. 975 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 976 * the device driver is saying that it provided this DMA address, 977 * which the host controller driver should use in preference to the 978 * transfer_buffer. 979 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 980 * be broken up into chunks according to the current maximum packet 981 * size for the endpoint, which is a function of the configuration 982 * and is encoded in the pipe. When the length is zero, neither 983 * transfer_buffer nor transfer_dma is used. 984 * @actual_length: This is read in non-iso completion functions, and 985 * it tells how many bytes (out of transfer_buffer_length) were 986 * transferred. It will normally be the same as requested, unless 987 * either an error was reported or a short read was performed. 988 * The URB_SHORT_NOT_OK transfer flag may be used to make such 989 * short reads be reported as errors. 990 * @setup_packet: Only used for control transfers, this points to eight bytes 991 * of setup data. Control transfers always start by sending this data 992 * to the device. Then transfer_buffer is read or written, if needed. 993 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 994 * device driver has provided this DMA address for the setup packet. 995 * The host controller driver should use this in preference to 996 * setup_packet. 997 * @start_frame: Returns the initial frame for isochronous transfers. 998 * @number_of_packets: Lists the number of ISO transfer buffers. 999 * @interval: Specifies the polling interval for interrupt or isochronous 1000 * transfers. The units are frames (milliseconds) for for full and low 1001 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1002 * @error_count: Returns the number of ISO transfers that reported errors. 1003 * @context: For use in completion functions. This normally points to 1004 * request-specific driver context. 1005 * @complete: Completion handler. This URB is passed as the parameter to the 1006 * completion function. The completion function may then do what 1007 * it likes with the URB, including resubmitting or freeing it. 1008 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1009 * collect the transfer status for each buffer. 1010 * 1011 * This structure identifies USB transfer requests. URBs must be allocated by 1012 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1013 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1014 * are submitted using usb_submit_urb(), and pending requests may be canceled 1015 * using usb_unlink_urb() or usb_kill_urb(). 1016 * 1017 * Data Transfer Buffers: 1018 * 1019 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1020 * taken from the general page pool. That is provided by transfer_buffer 1021 * (control requests also use setup_packet), and host controller drivers 1022 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1023 * mapping operations can be expensive on some platforms (perhaps using a dma 1024 * bounce buffer or talking to an IOMMU), 1025 * although they're cheap on commodity x86 and ppc hardware. 1026 * 1027 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1028 * which tell the host controller driver that no such mapping is needed since 1029 * the device driver is DMA-aware. For example, a device driver might 1030 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1031 * When these transfer flags are provided, host controller drivers will 1032 * attempt to use the dma addresses found in the transfer_dma and/or 1033 * setup_dma fields rather than determining a dma address themselves. (Note 1034 * that transfer_buffer and setup_packet must still be set because not all 1035 * host controllers use DMA, nor do virtual root hubs). 1036 * 1037 * Initialization: 1038 * 1039 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1040 * zero), and complete fields. All URBs must also initialize 1041 * transfer_buffer and transfer_buffer_length. They may provide the 1042 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1043 * to be treated as errors; that flag is invalid for write requests. 1044 * 1045 * Bulk URBs may 1046 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1047 * should always terminate with a short packet, even if it means adding an 1048 * extra zero length packet. 1049 * 1050 * Control URBs must provide a setup_packet. The setup_packet and 1051 * transfer_buffer may each be mapped for DMA or not, independently of 1052 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1053 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1054 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1055 * 1056 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1057 * or, for highspeed devices, 125 microsecond units) 1058 * to poll for transfers. After the URB has been submitted, the interval 1059 * field reflects how the transfer was actually scheduled. 1060 * The polling interval may be more frequent than requested. 1061 * For example, some controllers have a maximum interval of 32 milliseconds, 1062 * while others support intervals of up to 1024 milliseconds. 1063 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1064 * endpoints, as well as high speed interrupt endpoints, the encoding of 1065 * the transfer interval in the endpoint descriptor is logarithmic. 1066 * Device drivers must convert that value to linear units themselves.) 1067 * 1068 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1069 * the host controller to schedule the transfer as soon as bandwidth 1070 * utilization allows, and then set start_frame to reflect the actual frame 1071 * selected during submission. Otherwise drivers must specify the start_frame 1072 * and handle the case where the transfer can't begin then. However, drivers 1073 * won't know how bandwidth is currently allocated, and while they can 1074 * find the current frame using usb_get_current_frame_number () they can't 1075 * know the range for that frame number. (Ranges for frame counter values 1076 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1077 * 1078 * Isochronous URBs have a different data transfer model, in part because 1079 * the quality of service is only "best effort". Callers provide specially 1080 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1081 * at the end. Each such packet is an individual ISO transfer. Isochronous 1082 * URBs are normally queued, submitted by drivers to arrange that 1083 * transfers are at least double buffered, and then explicitly resubmitted 1084 * in completion handlers, so 1085 * that data (such as audio or video) streams at as constant a rate as the 1086 * host controller scheduler can support. 1087 * 1088 * Completion Callbacks: 1089 * 1090 * The completion callback is made in_interrupt(), and one of the first 1091 * things that a completion handler should do is check the status field. 1092 * The status field is provided for all URBs. It is used to report 1093 * unlinked URBs, and status for all non-ISO transfers. It should not 1094 * be examined before the URB is returned to the completion handler. 1095 * 1096 * The context field is normally used to link URBs back to the relevant 1097 * driver or request state. 1098 * 1099 * When the completion callback is invoked for non-isochronous URBs, the 1100 * actual_length field tells how many bytes were transferred. This field 1101 * is updated even when the URB terminated with an error or was unlinked. 1102 * 1103 * ISO transfer status is reported in the status and actual_length fields 1104 * of the iso_frame_desc array, and the number of errors is reported in 1105 * error_count. Completion callbacks for ISO transfers will normally 1106 * (re)submit URBs to ensure a constant transfer rate. 1107 * 1108 * Note that even fields marked "public" should not be touched by the driver 1109 * when the urb is owned by the hcd, that is, since the call to 1110 * usb_submit_urb() till the entry into the completion routine. 1111 */ 1112struct urb 1113{ 1114 /* private: usb core and host controller only fields in the urb */ 1115 struct kref kref; /* reference count of the URB */ 1116 spinlock_t lock; /* lock for the URB */ 1117 void *hcpriv; /* private data for host controller */ 1118 atomic_t use_count; /* concurrent submissions counter */ 1119 u8 reject; /* submissions will fail */ 1120 1121 /* public: documented fields in the urb that can be used by drivers */ 1122 struct list_head urb_list; /* list head for use by the urb's 1123 * current owner */ 1124 struct usb_device *dev; /* (in) pointer to associated device */ 1125 unsigned int pipe; /* (in) pipe information */ 1126 int status; /* (return) non-ISO status */ 1127 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1128 void *transfer_buffer; /* (in) associated data buffer */ 1129 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1130 int transfer_buffer_length; /* (in) data buffer length */ 1131 int actual_length; /* (return) actual transfer length */ 1132 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1133 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1134 int start_frame; /* (modify) start frame (ISO) */ 1135 int number_of_packets; /* (in) number of ISO packets */ 1136 int interval; /* (modify) transfer interval 1137 * (INT/ISO) */ 1138 int error_count; /* (return) number of ISO errors */ 1139 void *context; /* (in) context for completion */ 1140 usb_complete_t complete; /* (in) completion routine */ 1141 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1142 /* (in) ISO ONLY */ 1143}; 1144 1145/* ----------------------------------------------------------------------- */ 1146 1147/** 1148 * usb_fill_control_urb - initializes a control urb 1149 * @urb: pointer to the urb to initialize. 1150 * @dev: pointer to the struct usb_device for this urb. 1151 * @pipe: the endpoint pipe 1152 * @setup_packet: pointer to the setup_packet buffer 1153 * @transfer_buffer: pointer to the transfer buffer 1154 * @buffer_length: length of the transfer buffer 1155 * @complete_fn: pointer to the usb_complete_t function 1156 * @context: what to set the urb context to. 1157 * 1158 * Initializes a control urb with the proper information needed to submit 1159 * it to a device. 1160 */ 1161static inline void usb_fill_control_urb (struct urb *urb, 1162 struct usb_device *dev, 1163 unsigned int pipe, 1164 unsigned char *setup_packet, 1165 void *transfer_buffer, 1166 int buffer_length, 1167 usb_complete_t complete_fn, 1168 void *context) 1169{ 1170 spin_lock_init(&urb->lock); 1171 urb->dev = dev; 1172 urb->pipe = pipe; 1173 urb->setup_packet = setup_packet; 1174 urb->transfer_buffer = transfer_buffer; 1175 urb->transfer_buffer_length = buffer_length; 1176 urb->complete = complete_fn; 1177 urb->context = context; 1178} 1179 1180/** 1181 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1182 * @urb: pointer to the urb to initialize. 1183 * @dev: pointer to the struct usb_device for this urb. 1184 * @pipe: the endpoint pipe 1185 * @transfer_buffer: pointer to the transfer buffer 1186 * @buffer_length: length of the transfer buffer 1187 * @complete_fn: pointer to the usb_complete_t function 1188 * @context: what to set the urb context to. 1189 * 1190 * Initializes a bulk urb with the proper information needed to submit it 1191 * to a device. 1192 */ 1193static inline void usb_fill_bulk_urb (struct urb *urb, 1194 struct usb_device *dev, 1195 unsigned int pipe, 1196 void *transfer_buffer, 1197 int buffer_length, 1198 usb_complete_t complete_fn, 1199 void *context) 1200{ 1201 spin_lock_init(&urb->lock); 1202 urb->dev = dev; 1203 urb->pipe = pipe; 1204 urb->transfer_buffer = transfer_buffer; 1205 urb->transfer_buffer_length = buffer_length; 1206 urb->complete = complete_fn; 1207 urb->context = context; 1208} 1209 1210/** 1211 * usb_fill_int_urb - macro to help initialize a interrupt urb 1212 * @urb: pointer to the urb to initialize. 1213 * @dev: pointer to the struct usb_device for this urb. 1214 * @pipe: the endpoint pipe 1215 * @transfer_buffer: pointer to the transfer buffer 1216 * @buffer_length: length of the transfer buffer 1217 * @complete_fn: pointer to the usb_complete_t function 1218 * @context: what to set the urb context to. 1219 * @interval: what to set the urb interval to, encoded like 1220 * the endpoint descriptor's bInterval value. 1221 * 1222 * Initializes a interrupt urb with the proper information needed to submit 1223 * it to a device. 1224 * Note that high speed interrupt endpoints use a logarithmic encoding of 1225 * the endpoint interval, and express polling intervals in microframes 1226 * (eight per millisecond) rather than in frames (one per millisecond). 1227 */ 1228static inline void usb_fill_int_urb (struct urb *urb, 1229 struct usb_device *dev, 1230 unsigned int pipe, 1231 void *transfer_buffer, 1232 int buffer_length, 1233 usb_complete_t complete_fn, 1234 void *context, 1235 int interval) 1236{ 1237 spin_lock_init(&urb->lock); 1238 urb->dev = dev; 1239 urb->pipe = pipe; 1240 urb->transfer_buffer = transfer_buffer; 1241 urb->transfer_buffer_length = buffer_length; 1242 urb->complete = complete_fn; 1243 urb->context = context; 1244 if (dev->speed == USB_SPEED_HIGH) 1245 urb->interval = 1 << (interval - 1); 1246 else 1247 urb->interval = interval; 1248 urb->start_frame = -1; 1249} 1250 1251extern void usb_init_urb(struct urb *urb); 1252extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1253extern void usb_free_urb(struct urb *urb); 1254#define usb_put_urb usb_free_urb 1255extern struct urb *usb_get_urb(struct urb *urb); 1256extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1257extern int usb_unlink_urb(struct urb *urb); 1258extern void usb_kill_urb(struct urb *urb); 1259 1260void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1261 gfp_t mem_flags, dma_addr_t *dma); 1262void usb_buffer_free (struct usb_device *dev, size_t size, 1263 void *addr, dma_addr_t dma); 1264 1265#if 0 1266struct urb *usb_buffer_map (struct urb *urb); 1267void usb_buffer_dmasync (struct urb *urb); 1268void usb_buffer_unmap (struct urb *urb); 1269#endif 1270 1271struct scatterlist; 1272int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1273 struct scatterlist *sg, int nents); 1274#if 0 1275void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1276 struct scatterlist *sg, int n_hw_ents); 1277#endif 1278void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1279 struct scatterlist *sg, int n_hw_ents); 1280 1281/*-------------------------------------------------------------------* 1282 * SYNCHRONOUS CALL SUPPORT * 1283 *-------------------------------------------------------------------*/ 1284 1285extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1286 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1287 void *data, __u16 size, int timeout); 1288extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1289 void *data, int len, int *actual_length, int timeout); 1290extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1291 void *data, int len, int *actual_length, 1292 int timeout); 1293 1294/* wrappers around usb_control_msg() for the most common standard requests */ 1295extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1296 unsigned char descindex, void *buf, int size); 1297extern int usb_get_status(struct usb_device *dev, 1298 int type, int target, void *data); 1299extern int usb_string(struct usb_device *dev, int index, 1300 char *buf, size_t size); 1301 1302/* wrappers that also update important state inside usbcore */ 1303extern int usb_clear_halt(struct usb_device *dev, int pipe); 1304extern int usb_reset_configuration(struct usb_device *dev); 1305extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1306 1307/* this request isn't really synchronous, but it belongs with the others */ 1308extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1309 1310/* 1311 * timeouts, in milliseconds, used for sending/receiving control messages 1312 * they typically complete within a few frames (msec) after they're issued 1313 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1314 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1315 */ 1316#define USB_CTRL_GET_TIMEOUT 5000 1317#define USB_CTRL_SET_TIMEOUT 5000 1318 1319 1320/** 1321 * struct usb_sg_request - support for scatter/gather I/O 1322 * @status: zero indicates success, else negative errno 1323 * @bytes: counts bytes transferred. 1324 * 1325 * These requests are initialized using usb_sg_init(), and then are used 1326 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1327 * members of the request object aren't for driver access. 1328 * 1329 * The status and bytecount values are valid only after usb_sg_wait() 1330 * returns. If the status is zero, then the bytecount matches the total 1331 * from the request. 1332 * 1333 * After an error completion, drivers may need to clear a halt condition 1334 * on the endpoint. 1335 */ 1336struct usb_sg_request { 1337 int status; 1338 size_t bytes; 1339 1340 /* 1341 * members below are private: to usbcore, 1342 * and are not provided for driver access! 1343 */ 1344 spinlock_t lock; 1345 1346 struct usb_device *dev; 1347 int pipe; 1348 struct scatterlist *sg; 1349 int nents; 1350 1351 int entries; 1352 struct urb **urbs; 1353 1354 int count; 1355 struct completion complete; 1356}; 1357 1358int usb_sg_init ( 1359 struct usb_sg_request *io, 1360 struct usb_device *dev, 1361 unsigned pipe, 1362 unsigned period, 1363 struct scatterlist *sg, 1364 int nents, 1365 size_t length, 1366 gfp_t mem_flags 1367); 1368void usb_sg_cancel (struct usb_sg_request *io); 1369void usb_sg_wait (struct usb_sg_request *io); 1370 1371 1372/* ----------------------------------------------------------------------- */ 1373 1374/* 1375 * For various legacy reasons, Linux has a small cookie that's paired with 1376 * a struct usb_device to identify an endpoint queue. Queue characteristics 1377 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1378 * an unsigned int encoded as: 1379 * 1380 * - direction: bit 7 (0 = Host-to-Device [Out], 1381 * 1 = Device-to-Host [In] ... 1382 * like endpoint bEndpointAddress) 1383 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1384 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1385 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1386 * 10 = control, 11 = bulk) 1387 * 1388 * Given the device address and endpoint descriptor, pipes are redundant. 1389 */ 1390 1391/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1392/* (yet ... they're the values used by usbfs) */ 1393#define PIPE_ISOCHRONOUS 0 1394#define PIPE_INTERRUPT 1 1395#define PIPE_CONTROL 2 1396#define PIPE_BULK 3 1397 1398#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1399#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1400 1401#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1402#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1403 1404#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1405#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1406#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1407#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1408#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1409 1410/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1411#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1412#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1413#define usb_settoggle(dev, ep, out, bit) \ 1414 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1415 ((bit) << (ep))) 1416 1417 1418static inline unsigned int __create_pipe(struct usb_device *dev, 1419 unsigned int endpoint) 1420{ 1421 return (dev->devnum << 8) | (endpoint << 15); 1422} 1423 1424/* Create various pipes... */ 1425#define usb_sndctrlpipe(dev,endpoint) \ 1426 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1427#define usb_rcvctrlpipe(dev,endpoint) \ 1428 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1429#define usb_sndisocpipe(dev,endpoint) \ 1430 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1431#define usb_rcvisocpipe(dev,endpoint) \ 1432 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1433#define usb_sndbulkpipe(dev,endpoint) \ 1434 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1435#define usb_rcvbulkpipe(dev,endpoint) \ 1436 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1437#define usb_sndintpipe(dev,endpoint) \ 1438 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1439#define usb_rcvintpipe(dev,endpoint) \ 1440 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1441 1442/*-------------------------------------------------------------------------*/ 1443 1444static inline __u16 1445usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1446{ 1447 struct usb_host_endpoint *ep; 1448 unsigned epnum = usb_pipeendpoint(pipe); 1449 1450 if (is_out) { 1451 WARN_ON(usb_pipein(pipe)); 1452 ep = udev->ep_out[epnum]; 1453 } else { 1454 WARN_ON(usb_pipeout(pipe)); 1455 ep = udev->ep_in[epnum]; 1456 } 1457 if (!ep) 1458 return 0; 1459 1460 /* NOTE: only 0x07ff bits are for packet size... */ 1461 return le16_to_cpu(ep->desc.wMaxPacketSize); 1462} 1463 1464/* ----------------------------------------------------------------------- */ 1465 1466/* Events from the usb core */ 1467#define USB_DEVICE_ADD 0x0001 1468#define USB_DEVICE_REMOVE 0x0002 1469#define USB_BUS_ADD 0x0003 1470#define USB_BUS_REMOVE 0x0004 1471extern void usb_register_notify(struct notifier_block *nb); 1472extern void usb_unregister_notify(struct notifier_block *nb); 1473 1474#ifdef DEBUG 1475#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1476 __FILE__ , ## arg) 1477#else 1478#define dbg(format, arg...) do {} while (0) 1479#endif 1480 1481#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1482 __FILE__ , ## arg) 1483#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1484 __FILE__ , ## arg) 1485#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1486 __FILE__ , ## arg) 1487 1488 1489#endif /* __KERNEL__ */ 1490 1491#endif