at v2.6.21 24 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifdef __KERNEL__ 5#ifndef __ASSEMBLY__ 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/cache.h> 11#include <linux/threads.h> 12#include <linux/numa.h> 13#include <linux/init.h> 14#include <linux/seqlock.h> 15#include <linux/nodemask.h> 16#include <asm/atomic.h> 17#include <asm/page.h> 18 19/* Free memory management - zoned buddy allocator. */ 20#ifndef CONFIG_FORCE_MAX_ZONEORDER 21#define MAX_ORDER 11 22#else 23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 24#endif 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 26 27struct free_area { 28 struct list_head free_list; 29 unsigned long nr_free; 30}; 31 32struct pglist_data; 33 34/* 35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 36 * So add a wild amount of padding here to ensure that they fall into separate 37 * cachelines. There are very few zone structures in the machine, so space 38 * consumption is not a concern here. 39 */ 40#if defined(CONFIG_SMP) 41struct zone_padding { 42 char x[0]; 43} ____cacheline_internodealigned_in_smp; 44#define ZONE_PADDING(name) struct zone_padding name; 45#else 46#define ZONE_PADDING(name) 47#endif 48 49enum zone_stat_item { 50 /* First 128 byte cacheline (assuming 64 bit words) */ 51 NR_FREE_PAGES, 52 NR_INACTIVE, 53 NR_ACTIVE, 54 NR_ANON_PAGES, /* Mapped anonymous pages */ 55 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 56 only modified from process context */ 57 NR_FILE_PAGES, 58 NR_FILE_DIRTY, 59 NR_WRITEBACK, 60 /* Second 128 byte cacheline */ 61 NR_SLAB_RECLAIMABLE, 62 NR_SLAB_UNRECLAIMABLE, 63 NR_PAGETABLE, /* used for pagetables */ 64 NR_UNSTABLE_NFS, /* NFS unstable pages */ 65 NR_BOUNCE, 66 NR_VMSCAN_WRITE, 67#ifdef CONFIG_NUMA 68 NUMA_HIT, /* allocated in intended node */ 69 NUMA_MISS, /* allocated in non intended node */ 70 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 71 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 72 NUMA_LOCAL, /* allocation from local node */ 73 NUMA_OTHER, /* allocation from other node */ 74#endif 75 NR_VM_ZONE_STAT_ITEMS }; 76 77struct per_cpu_pages { 78 int count; /* number of pages in the list */ 79 int high; /* high watermark, emptying needed */ 80 int batch; /* chunk size for buddy add/remove */ 81 struct list_head list; /* the list of pages */ 82}; 83 84struct per_cpu_pageset { 85 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 86#ifdef CONFIG_SMP 87 s8 stat_threshold; 88 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 89#endif 90} ____cacheline_aligned_in_smp; 91 92#ifdef CONFIG_NUMA 93#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 94#else 95#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 96#endif 97 98enum zone_type { 99#ifdef CONFIG_ZONE_DMA 100 /* 101 * ZONE_DMA is used when there are devices that are not able 102 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 103 * carve out the portion of memory that is needed for these devices. 104 * The range is arch specific. 105 * 106 * Some examples 107 * 108 * Architecture Limit 109 * --------------------------- 110 * parisc, ia64, sparc <4G 111 * s390 <2G 112 * arm26 <48M 113 * arm Various 114 * alpha Unlimited or 0-16MB. 115 * 116 * i386, x86_64 and multiple other arches 117 * <16M. 118 */ 119 ZONE_DMA, 120#endif 121#ifdef CONFIG_ZONE_DMA32 122 /* 123 * x86_64 needs two ZONE_DMAs because it supports devices that are 124 * only able to do DMA to the lower 16M but also 32 bit devices that 125 * can only do DMA areas below 4G. 126 */ 127 ZONE_DMA32, 128#endif 129 /* 130 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 131 * performed on pages in ZONE_NORMAL if the DMA devices support 132 * transfers to all addressable memory. 133 */ 134 ZONE_NORMAL, 135#ifdef CONFIG_HIGHMEM 136 /* 137 * A memory area that is only addressable by the kernel through 138 * mapping portions into its own address space. This is for example 139 * used by i386 to allow the kernel to address the memory beyond 140 * 900MB. The kernel will set up special mappings (page 141 * table entries on i386) for each page that the kernel needs to 142 * access. 143 */ 144 ZONE_HIGHMEM, 145#endif 146 MAX_NR_ZONES 147}; 148 149/* 150 * When a memory allocation must conform to specific limitations (such 151 * as being suitable for DMA) the caller will pass in hints to the 152 * allocator in the gfp_mask, in the zone modifier bits. These bits 153 * are used to select a priority ordered list of memory zones which 154 * match the requested limits. See gfp_zone() in include/linux/gfp.h 155 */ 156 157/* 158 * Count the active zones. Note that the use of defined(X) outside 159 * #if and family is not necessarily defined so ensure we cannot use 160 * it later. Use __ZONE_COUNT to work out how many shift bits we need. 161 */ 162#define __ZONE_COUNT ( \ 163 defined(CONFIG_ZONE_DMA) \ 164 + defined(CONFIG_ZONE_DMA32) \ 165 + 1 \ 166 + defined(CONFIG_HIGHMEM) \ 167) 168#if __ZONE_COUNT < 2 169#define ZONES_SHIFT 0 170#elif __ZONE_COUNT <= 2 171#define ZONES_SHIFT 1 172#elif __ZONE_COUNT <= 4 173#define ZONES_SHIFT 2 174#else 175#error ZONES_SHIFT -- too many zones configured adjust calculation 176#endif 177#undef __ZONE_COUNT 178 179struct zone { 180 /* Fields commonly accessed by the page allocator */ 181 unsigned long pages_min, pages_low, pages_high; 182 /* 183 * We don't know if the memory that we're going to allocate will be freeable 184 * or/and it will be released eventually, so to avoid totally wasting several 185 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 186 * to run OOM on the lower zones despite there's tons of freeable ram 187 * on the higher zones). This array is recalculated at runtime if the 188 * sysctl_lowmem_reserve_ratio sysctl changes. 189 */ 190 unsigned long lowmem_reserve[MAX_NR_ZONES]; 191 192#ifdef CONFIG_NUMA 193 int node; 194 /* 195 * zone reclaim becomes active if more unmapped pages exist. 196 */ 197 unsigned long min_unmapped_pages; 198 unsigned long min_slab_pages; 199 struct per_cpu_pageset *pageset[NR_CPUS]; 200#else 201 struct per_cpu_pageset pageset[NR_CPUS]; 202#endif 203 /* 204 * free areas of different sizes 205 */ 206 spinlock_t lock; 207#ifdef CONFIG_MEMORY_HOTPLUG 208 /* see spanned/present_pages for more description */ 209 seqlock_t span_seqlock; 210#endif 211 struct free_area free_area[MAX_ORDER]; 212 213 214 ZONE_PADDING(_pad1_) 215 216 /* Fields commonly accessed by the page reclaim scanner */ 217 spinlock_t lru_lock; 218 struct list_head active_list; 219 struct list_head inactive_list; 220 unsigned long nr_scan_active; 221 unsigned long nr_scan_inactive; 222 unsigned long pages_scanned; /* since last reclaim */ 223 int all_unreclaimable; /* All pages pinned */ 224 225 /* A count of how many reclaimers are scanning this zone */ 226 atomic_t reclaim_in_progress; 227 228 /* Zone statistics */ 229 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 230 231 /* 232 * prev_priority holds the scanning priority for this zone. It is 233 * defined as the scanning priority at which we achieved our reclaim 234 * target at the previous try_to_free_pages() or balance_pgdat() 235 * invokation. 236 * 237 * We use prev_priority as a measure of how much stress page reclaim is 238 * under - it drives the swappiness decision: whether to unmap mapped 239 * pages. 240 * 241 * Access to both this field is quite racy even on uniprocessor. But 242 * it is expected to average out OK. 243 */ 244 int prev_priority; 245 246 247 ZONE_PADDING(_pad2_) 248 /* Rarely used or read-mostly fields */ 249 250 /* 251 * wait_table -- the array holding the hash table 252 * wait_table_hash_nr_entries -- the size of the hash table array 253 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 254 * 255 * The purpose of all these is to keep track of the people 256 * waiting for a page to become available and make them 257 * runnable again when possible. The trouble is that this 258 * consumes a lot of space, especially when so few things 259 * wait on pages at a given time. So instead of using 260 * per-page waitqueues, we use a waitqueue hash table. 261 * 262 * The bucket discipline is to sleep on the same queue when 263 * colliding and wake all in that wait queue when removing. 264 * When something wakes, it must check to be sure its page is 265 * truly available, a la thundering herd. The cost of a 266 * collision is great, but given the expected load of the 267 * table, they should be so rare as to be outweighed by the 268 * benefits from the saved space. 269 * 270 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 271 * primary users of these fields, and in mm/page_alloc.c 272 * free_area_init_core() performs the initialization of them. 273 */ 274 wait_queue_head_t * wait_table; 275 unsigned long wait_table_hash_nr_entries; 276 unsigned long wait_table_bits; 277 278 /* 279 * Discontig memory support fields. 280 */ 281 struct pglist_data *zone_pgdat; 282 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 283 unsigned long zone_start_pfn; 284 285 /* 286 * zone_start_pfn, spanned_pages and present_pages are all 287 * protected by span_seqlock. It is a seqlock because it has 288 * to be read outside of zone->lock, and it is done in the main 289 * allocator path. But, it is written quite infrequently. 290 * 291 * The lock is declared along with zone->lock because it is 292 * frequently read in proximity to zone->lock. It's good to 293 * give them a chance of being in the same cacheline. 294 */ 295 unsigned long spanned_pages; /* total size, including holes */ 296 unsigned long present_pages; /* amount of memory (excluding holes) */ 297 298 /* 299 * rarely used fields: 300 */ 301 const char *name; 302} ____cacheline_internodealigned_in_smp; 303 304/* 305 * The "priority" of VM scanning is how much of the queues we will scan in one 306 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 307 * queues ("queue_length >> 12") during an aging round. 308 */ 309#define DEF_PRIORITY 12 310 311/* Maximum number of zones on a zonelist */ 312#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 313 314#ifdef CONFIG_NUMA 315/* 316 * We cache key information from each zonelist for smaller cache 317 * footprint when scanning for free pages in get_page_from_freelist(). 318 * 319 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 320 * up short of free memory since the last time (last_fullzone_zap) 321 * we zero'd fullzones. 322 * 2) The array z_to_n[] maps each zone in the zonelist to its node 323 * id, so that we can efficiently evaluate whether that node is 324 * set in the current tasks mems_allowed. 325 * 326 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 327 * indexed by a zones offset in the zonelist zones[] array. 328 * 329 * The get_page_from_freelist() routine does two scans. During the 330 * first scan, we skip zones whose corresponding bit in 'fullzones' 331 * is set or whose corresponding node in current->mems_allowed (which 332 * comes from cpusets) is not set. During the second scan, we bypass 333 * this zonelist_cache, to ensure we look methodically at each zone. 334 * 335 * Once per second, we zero out (zap) fullzones, forcing us to 336 * reconsider nodes that might have regained more free memory. 337 * The field last_full_zap is the time we last zapped fullzones. 338 * 339 * This mechanism reduces the amount of time we waste repeatedly 340 * reexaming zones for free memory when they just came up low on 341 * memory momentarilly ago. 342 * 343 * The zonelist_cache struct members logically belong in struct 344 * zonelist. However, the mempolicy zonelists constructed for 345 * MPOL_BIND are intentionally variable length (and usually much 346 * shorter). A general purpose mechanism for handling structs with 347 * multiple variable length members is more mechanism than we want 348 * here. We resort to some special case hackery instead. 349 * 350 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 351 * part because they are shorter), so we put the fixed length stuff 352 * at the front of the zonelist struct, ending in a variable length 353 * zones[], as is needed by MPOL_BIND. 354 * 355 * Then we put the optional zonelist cache on the end of the zonelist 356 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 357 * the fixed length portion at the front of the struct. This pointer 358 * both enables us to find the zonelist cache, and in the case of 359 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 360 * to know that the zonelist cache is not there. 361 * 362 * The end result is that struct zonelists come in two flavors: 363 * 1) The full, fixed length version, shown below, and 364 * 2) The custom zonelists for MPOL_BIND. 365 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 366 * 367 * Even though there may be multiple CPU cores on a node modifying 368 * fullzones or last_full_zap in the same zonelist_cache at the same 369 * time, we don't lock it. This is just hint data - if it is wrong now 370 * and then, the allocator will still function, perhaps a bit slower. 371 */ 372 373 374struct zonelist_cache { 375 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 376 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 377 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 378}; 379#else 380struct zonelist_cache; 381#endif 382 383/* 384 * One allocation request operates on a zonelist. A zonelist 385 * is a list of zones, the first one is the 'goal' of the 386 * allocation, the other zones are fallback zones, in decreasing 387 * priority. 388 * 389 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 390 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 391 */ 392 393struct zonelist { 394 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 395 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited 396#ifdef CONFIG_NUMA 397 struct zonelist_cache zlcache; // optional ... 398#endif 399}; 400 401#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 402struct node_active_region { 403 unsigned long start_pfn; 404 unsigned long end_pfn; 405 int nid; 406}; 407#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 408 409#ifndef CONFIG_DISCONTIGMEM 410/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 411extern struct page *mem_map; 412#endif 413 414/* 415 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 416 * (mostly NUMA machines?) to denote a higher-level memory zone than the 417 * zone denotes. 418 * 419 * On NUMA machines, each NUMA node would have a pg_data_t to describe 420 * it's memory layout. 421 * 422 * Memory statistics and page replacement data structures are maintained on a 423 * per-zone basis. 424 */ 425struct bootmem_data; 426typedef struct pglist_data { 427 struct zone node_zones[MAX_NR_ZONES]; 428 struct zonelist node_zonelists[MAX_NR_ZONES]; 429 int nr_zones; 430#ifdef CONFIG_FLAT_NODE_MEM_MAP 431 struct page *node_mem_map; 432#endif 433 struct bootmem_data *bdata; 434#ifdef CONFIG_MEMORY_HOTPLUG 435 /* 436 * Must be held any time you expect node_start_pfn, node_present_pages 437 * or node_spanned_pages stay constant. Holding this will also 438 * guarantee that any pfn_valid() stays that way. 439 * 440 * Nests above zone->lock and zone->size_seqlock. 441 */ 442 spinlock_t node_size_lock; 443#endif 444 unsigned long node_start_pfn; 445 unsigned long node_present_pages; /* total number of physical pages */ 446 unsigned long node_spanned_pages; /* total size of physical page 447 range, including holes */ 448 int node_id; 449 wait_queue_head_t kswapd_wait; 450 struct task_struct *kswapd; 451 int kswapd_max_order; 452} pg_data_t; 453 454#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 455#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 456#ifdef CONFIG_FLAT_NODE_MEM_MAP 457#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 458#else 459#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 460#endif 461#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 462 463#include <linux/memory_hotplug.h> 464 465void get_zone_counts(unsigned long *active, unsigned long *inactive, 466 unsigned long *free); 467void build_all_zonelists(void); 468void wakeup_kswapd(struct zone *zone, int order); 469int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 470 int classzone_idx, int alloc_flags); 471enum memmap_context { 472 MEMMAP_EARLY, 473 MEMMAP_HOTPLUG, 474}; 475extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 476 unsigned long size, 477 enum memmap_context context); 478 479#ifdef CONFIG_HAVE_MEMORY_PRESENT 480void memory_present(int nid, unsigned long start, unsigned long end); 481#else 482static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 483#endif 484 485#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 486unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 487#endif 488 489/* 490 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 491 */ 492#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 493 494static inline int populated_zone(struct zone *zone) 495{ 496 return (!!zone->present_pages); 497} 498 499static inline int is_highmem_idx(enum zone_type idx) 500{ 501#ifdef CONFIG_HIGHMEM 502 return (idx == ZONE_HIGHMEM); 503#else 504 return 0; 505#endif 506} 507 508static inline int is_normal_idx(enum zone_type idx) 509{ 510 return (idx == ZONE_NORMAL); 511} 512 513/** 514 * is_highmem - helper function to quickly check if a struct zone is a 515 * highmem zone or not. This is an attempt to keep references 516 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 517 * @zone - pointer to struct zone variable 518 */ 519static inline int is_highmem(struct zone *zone) 520{ 521#ifdef CONFIG_HIGHMEM 522 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 523#else 524 return 0; 525#endif 526} 527 528static inline int is_normal(struct zone *zone) 529{ 530 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 531} 532 533static inline int is_dma32(struct zone *zone) 534{ 535#ifdef CONFIG_ZONE_DMA32 536 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 537#else 538 return 0; 539#endif 540} 541 542static inline int is_dma(struct zone *zone) 543{ 544#ifdef CONFIG_ZONE_DMA 545 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 546#else 547 return 0; 548#endif 549} 550 551/* These two functions are used to setup the per zone pages min values */ 552struct ctl_table; 553struct file; 554int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 555 void __user *, size_t *, loff_t *); 556extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 557int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 558 void __user *, size_t *, loff_t *); 559int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 560 void __user *, size_t *, loff_t *); 561int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 562 struct file *, void __user *, size_t *, loff_t *); 563int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 564 struct file *, void __user *, size_t *, loff_t *); 565 566#include <linux/topology.h> 567/* Returns the number of the current Node. */ 568#ifndef numa_node_id 569#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 570#endif 571 572#ifndef CONFIG_NEED_MULTIPLE_NODES 573 574extern struct pglist_data contig_page_data; 575#define NODE_DATA(nid) (&contig_page_data) 576#define NODE_MEM_MAP(nid) mem_map 577#define MAX_NODES_SHIFT 1 578 579#else /* CONFIG_NEED_MULTIPLE_NODES */ 580 581#include <asm/mmzone.h> 582 583#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 584 585extern struct pglist_data *first_online_pgdat(void); 586extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 587extern struct zone *next_zone(struct zone *zone); 588 589/** 590 * for_each_pgdat - helper macro to iterate over all nodes 591 * @pgdat - pointer to a pg_data_t variable 592 */ 593#define for_each_online_pgdat(pgdat) \ 594 for (pgdat = first_online_pgdat(); \ 595 pgdat; \ 596 pgdat = next_online_pgdat(pgdat)) 597/** 598 * for_each_zone - helper macro to iterate over all memory zones 599 * @zone - pointer to struct zone variable 600 * 601 * The user only needs to declare the zone variable, for_each_zone 602 * fills it in. 603 */ 604#define for_each_zone(zone) \ 605 for (zone = (first_online_pgdat())->node_zones; \ 606 zone; \ 607 zone = next_zone(zone)) 608 609#ifdef CONFIG_SPARSEMEM 610#include <asm/sparsemem.h> 611#endif 612 613#if BITS_PER_LONG == 32 614/* 615 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 616 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 617 */ 618#define FLAGS_RESERVED 9 619 620#elif BITS_PER_LONG == 64 621/* 622 * with 64 bit flags field, there's plenty of room. 623 */ 624#define FLAGS_RESERVED 32 625 626#else 627 628#error BITS_PER_LONG not defined 629 630#endif 631 632#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 633 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 634#define early_pfn_to_nid(nid) (0UL) 635#endif 636 637#ifdef CONFIG_FLATMEM 638#define pfn_to_nid(pfn) (0) 639#endif 640 641#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 642#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 643 644#ifdef CONFIG_SPARSEMEM 645 646/* 647 * SECTION_SHIFT #bits space required to store a section # 648 * 649 * PA_SECTION_SHIFT physical address to/from section number 650 * PFN_SECTION_SHIFT pfn to/from section number 651 */ 652#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 653 654#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 655#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 656 657#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 658 659#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 660#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 661 662#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 663#error Allocator MAX_ORDER exceeds SECTION_SIZE 664#endif 665 666struct page; 667struct mem_section { 668 /* 669 * This is, logically, a pointer to an array of struct 670 * pages. However, it is stored with some other magic. 671 * (see sparse.c::sparse_init_one_section()) 672 * 673 * Additionally during early boot we encode node id of 674 * the location of the section here to guide allocation. 675 * (see sparse.c::memory_present()) 676 * 677 * Making it a UL at least makes someone do a cast 678 * before using it wrong. 679 */ 680 unsigned long section_mem_map; 681}; 682 683#ifdef CONFIG_SPARSEMEM_EXTREME 684#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 685#else 686#define SECTIONS_PER_ROOT 1 687#endif 688 689#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 690#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 691#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 692 693#ifdef CONFIG_SPARSEMEM_EXTREME 694extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 695#else 696extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 697#endif 698 699static inline struct mem_section *__nr_to_section(unsigned long nr) 700{ 701 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 702 return NULL; 703 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 704} 705extern int __section_nr(struct mem_section* ms); 706 707/* 708 * We use the lower bits of the mem_map pointer to store 709 * a little bit of information. There should be at least 710 * 3 bits here due to 32-bit alignment. 711 */ 712#define SECTION_MARKED_PRESENT (1UL<<0) 713#define SECTION_HAS_MEM_MAP (1UL<<1) 714#define SECTION_MAP_LAST_BIT (1UL<<2) 715#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 716#define SECTION_NID_SHIFT 2 717 718static inline struct page *__section_mem_map_addr(struct mem_section *section) 719{ 720 unsigned long map = section->section_mem_map; 721 map &= SECTION_MAP_MASK; 722 return (struct page *)map; 723} 724 725static inline int valid_section(struct mem_section *section) 726{ 727 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 728} 729 730static inline int section_has_mem_map(struct mem_section *section) 731{ 732 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 733} 734 735static inline int valid_section_nr(unsigned long nr) 736{ 737 return valid_section(__nr_to_section(nr)); 738} 739 740static inline struct mem_section *__pfn_to_section(unsigned long pfn) 741{ 742 return __nr_to_section(pfn_to_section_nr(pfn)); 743} 744 745static inline int pfn_valid(unsigned long pfn) 746{ 747 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 748 return 0; 749 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 750} 751 752/* 753 * These are _only_ used during initialisation, therefore they 754 * can use __initdata ... They could have names to indicate 755 * this restriction. 756 */ 757#ifdef CONFIG_NUMA 758#define pfn_to_nid(pfn) \ 759({ \ 760 unsigned long __pfn_to_nid_pfn = (pfn); \ 761 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 762}) 763#else 764#define pfn_to_nid(pfn) (0) 765#endif 766 767#define early_pfn_valid(pfn) pfn_valid(pfn) 768void sparse_init(void); 769#else 770#define sparse_init() do {} while (0) 771#define sparse_index_init(_sec, _nid) do {} while (0) 772#endif /* CONFIG_SPARSEMEM */ 773 774#ifdef CONFIG_NODES_SPAN_OTHER_NODES 775#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 776#else 777#define early_pfn_in_nid(pfn, nid) (1) 778#endif 779 780#ifndef early_pfn_valid 781#define early_pfn_valid(pfn) (1) 782#endif 783 784void memory_present(int nid, unsigned long start, unsigned long end); 785unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 786 787#endif /* !__ASSEMBLY__ */ 788#endif /* __KERNEL__ */ 789#endif /* _LINUX_MMZONE_H */