at v2.6.21 41 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6#include <linux/capability.h> 7 8#ifdef __KERNEL__ 9 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16#include <linux/mutex.h> 17#include <linux/debug_locks.h> 18#include <linux/backing-dev.h> 19#include <linux/mm_types.h> 20 21struct mempolicy; 22struct anon_vma; 23 24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25extern unsigned long max_mapnr; 26#endif 27 28extern unsigned long num_physpages; 29extern void * high_memory; 30extern unsigned long vmalloc_earlyreserve; 31extern int page_cluster; 32 33#ifdef CONFIG_SYSCTL 34extern int sysctl_legacy_va_layout; 35#else 36#define sysctl_legacy_va_layout 0 37#endif 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* 46 * Linux kernel virtual memory manager primitives. 47 * The idea being to have a "virtual" mm in the same way 48 * we have a virtual fs - giving a cleaner interface to the 49 * mm details, and allowing different kinds of memory mappings 50 * (from shared memory to executable loading to arbitrary 51 * mmap() functions). 52 */ 53 54/* 55 * This struct defines a memory VMM memory area. There is one of these 56 * per VM-area/task. A VM area is any part of the process virtual memory 57 * space that has a special rule for the page-fault handlers (ie a shared 58 * library, the executable area etc). 59 */ 60struct vm_area_struct { 61 struct mm_struct * vm_mm; /* The address space we belong to. */ 62 unsigned long vm_start; /* Our start address within vm_mm. */ 63 unsigned long vm_end; /* The first byte after our end address 64 within vm_mm. */ 65 66 /* linked list of VM areas per task, sorted by address */ 67 struct vm_area_struct *vm_next; 68 69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 70 unsigned long vm_flags; /* Flags, listed below. */ 71 72 struct rb_node vm_rb; 73 74 /* 75 * For areas with an address space and backing store, 76 * linkage into the address_space->i_mmap prio tree, or 77 * linkage to the list of like vmas hanging off its node, or 78 * linkage of vma in the address_space->i_mmap_nonlinear list. 79 */ 80 union { 81 struct { 82 struct list_head list; 83 void *parent; /* aligns with prio_tree_node parent */ 84 struct vm_area_struct *head; 85 } vm_set; 86 87 struct raw_prio_tree_node prio_tree_node; 88 } shared; 89 90 /* 91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 92 * list, after a COW of one of the file pages. A MAP_SHARED vma 93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 94 * or brk vma (with NULL file) can only be in an anon_vma list. 95 */ 96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 98 99 /* Function pointers to deal with this struct. */ 100 struct vm_operations_struct * vm_ops; 101 102 /* Information about our backing store: */ 103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 104 units, *not* PAGE_CACHE_SIZE */ 105 struct file * vm_file; /* File we map to (can be NULL). */ 106 void * vm_private_data; /* was vm_pte (shared mem) */ 107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 108 109#ifndef CONFIG_MMU 110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 111#endif 112#ifdef CONFIG_NUMA 113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 114#endif 115}; 116 117extern struct kmem_cache *vm_area_cachep; 118 119/* 120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 121 * disabled, then there's a single shared list of VMAs maintained by the 122 * system, and mm's subscribe to these individually 123 */ 124struct vm_list_struct { 125 struct vm_list_struct *next; 126 struct vm_area_struct *vma; 127}; 128 129#ifndef CONFIG_MMU 130extern struct rb_root nommu_vma_tree; 131extern struct rw_semaphore nommu_vma_sem; 132 133extern unsigned int kobjsize(const void *objp); 134#endif 135 136/* 137 * vm_flags.. 138 */ 139#define VM_READ 0x00000001 /* currently active flags */ 140#define VM_WRITE 0x00000002 141#define VM_EXEC 0x00000004 142#define VM_SHARED 0x00000008 143 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 146#define VM_MAYWRITE 0x00000020 147#define VM_MAYEXEC 0x00000040 148#define VM_MAYSHARE 0x00000080 149 150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 151#define VM_GROWSUP 0x00000200 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 154 155#define VM_EXECUTABLE 0x00001000 156#define VM_LOCKED 0x00002000 157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 158 159 /* Used by sys_madvise() */ 160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 162 163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 171#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 172 173#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 174#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 175#endif 176 177#ifdef CONFIG_STACK_GROWSUP 178#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 179#else 180#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 181#endif 182 183#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 184#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 185#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 186#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 187#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 188 189/* 190 * mapping from the currently active vm_flags protection bits (the 191 * low four bits) to a page protection mask.. 192 */ 193extern pgprot_t protection_map[16]; 194 195 196/* 197 * These are the virtual MM functions - opening of an area, closing and 198 * unmapping it (needed to keep files on disk up-to-date etc), pointer 199 * to the functions called when a no-page or a wp-page exception occurs. 200 */ 201struct vm_operations_struct { 202 void (*open)(struct vm_area_struct * area); 203 void (*close)(struct vm_area_struct * area); 204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); 206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 207 208 /* notification that a previously read-only page is about to become 209 * writable, if an error is returned it will cause a SIGBUS */ 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 211#ifdef CONFIG_NUMA 212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 214 unsigned long addr); 215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 216 const nodemask_t *to, unsigned long flags); 217#endif 218}; 219 220struct mmu_gather; 221struct inode; 222 223#define page_private(page) ((page)->private) 224#define set_page_private(page, v) ((page)->private = (v)) 225 226/* 227 * FIXME: take this include out, include page-flags.h in 228 * files which need it (119 of them) 229 */ 230#include <linux/page-flags.h> 231 232#ifdef CONFIG_DEBUG_VM 233#define VM_BUG_ON(cond) BUG_ON(cond) 234#else 235#define VM_BUG_ON(condition) do { } while(0) 236#endif 237 238/* 239 * Methods to modify the page usage count. 240 * 241 * What counts for a page usage: 242 * - cache mapping (page->mapping) 243 * - private data (page->private) 244 * - page mapped in a task's page tables, each mapping 245 * is counted separately 246 * 247 * Also, many kernel routines increase the page count before a critical 248 * routine so they can be sure the page doesn't go away from under them. 249 */ 250 251/* 252 * Drop a ref, return true if the refcount fell to zero (the page has no users) 253 */ 254static inline int put_page_testzero(struct page *page) 255{ 256 VM_BUG_ON(atomic_read(&page->_count) == 0); 257 return atomic_dec_and_test(&page->_count); 258} 259 260/* 261 * Try to grab a ref unless the page has a refcount of zero, return false if 262 * that is the case. 263 */ 264static inline int get_page_unless_zero(struct page *page) 265{ 266 VM_BUG_ON(PageCompound(page)); 267 return atomic_inc_not_zero(&page->_count); 268} 269 270static inline int page_count(struct page *page) 271{ 272 if (unlikely(PageCompound(page))) 273 page = (struct page *)page_private(page); 274 return atomic_read(&page->_count); 275} 276 277static inline void get_page(struct page *page) 278{ 279 if (unlikely(PageCompound(page))) 280 page = (struct page *)page_private(page); 281 VM_BUG_ON(atomic_read(&page->_count) == 0); 282 atomic_inc(&page->_count); 283} 284 285/* 286 * Setup the page count before being freed into the page allocator for 287 * the first time (boot or memory hotplug) 288 */ 289static inline void init_page_count(struct page *page) 290{ 291 atomic_set(&page->_count, 1); 292} 293 294void put_page(struct page *page); 295void put_pages_list(struct list_head *pages); 296 297void split_page(struct page *page, unsigned int order); 298 299/* 300 * Compound pages have a destructor function. Provide a 301 * prototype for that function and accessor functions. 302 * These are _only_ valid on the head of a PG_compound page. 303 */ 304typedef void compound_page_dtor(struct page *); 305 306static inline void set_compound_page_dtor(struct page *page, 307 compound_page_dtor *dtor) 308{ 309 page[1].lru.next = (void *)dtor; 310} 311 312static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 313{ 314 return (compound_page_dtor *)page[1].lru.next; 315} 316 317/* 318 * Multiple processes may "see" the same page. E.g. for untouched 319 * mappings of /dev/null, all processes see the same page full of 320 * zeroes, and text pages of executables and shared libraries have 321 * only one copy in memory, at most, normally. 322 * 323 * For the non-reserved pages, page_count(page) denotes a reference count. 324 * page_count() == 0 means the page is free. page->lru is then used for 325 * freelist management in the buddy allocator. 326 * page_count() > 0 means the page has been allocated. 327 * 328 * Pages are allocated by the slab allocator in order to provide memory 329 * to kmalloc and kmem_cache_alloc. In this case, the management of the 330 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 331 * unless a particular usage is carefully commented. (the responsibility of 332 * freeing the kmalloc memory is the caller's, of course). 333 * 334 * A page may be used by anyone else who does a __get_free_page(). 335 * In this case, page_count still tracks the references, and should only 336 * be used through the normal accessor functions. The top bits of page->flags 337 * and page->virtual store page management information, but all other fields 338 * are unused and could be used privately, carefully. The management of this 339 * page is the responsibility of the one who allocated it, and those who have 340 * subsequently been given references to it. 341 * 342 * The other pages (we may call them "pagecache pages") are completely 343 * managed by the Linux memory manager: I/O, buffers, swapping etc. 344 * The following discussion applies only to them. 345 * 346 * A pagecache page contains an opaque `private' member, which belongs to the 347 * page's address_space. Usually, this is the address of a circular list of 348 * the page's disk buffers. PG_private must be set to tell the VM to call 349 * into the filesystem to release these pages. 350 * 351 * A page may belong to an inode's memory mapping. In this case, page->mapping 352 * is the pointer to the inode, and page->index is the file offset of the page, 353 * in units of PAGE_CACHE_SIZE. 354 * 355 * If pagecache pages are not associated with an inode, they are said to be 356 * anonymous pages. These may become associated with the swapcache, and in that 357 * case PG_swapcache is set, and page->private is an offset into the swapcache. 358 * 359 * In either case (swapcache or inode backed), the pagecache itself holds one 360 * reference to the page. Setting PG_private should also increment the 361 * refcount. The each user mapping also has a reference to the page. 362 * 363 * The pagecache pages are stored in a per-mapping radix tree, which is 364 * rooted at mapping->page_tree, and indexed by offset. 365 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 366 * lists, we instead now tag pages as dirty/writeback in the radix tree. 367 * 368 * All pagecache pages may be subject to I/O: 369 * - inode pages may need to be read from disk, 370 * - inode pages which have been modified and are MAP_SHARED may need 371 * to be written back to the inode on disk, 372 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 373 * modified may need to be swapped out to swap space and (later) to be read 374 * back into memory. 375 */ 376 377/* 378 * The zone field is never updated after free_area_init_core() 379 * sets it, so none of the operations on it need to be atomic. 380 */ 381 382 383/* 384 * page->flags layout: 385 * 386 * There are three possibilities for how page->flags get 387 * laid out. The first is for the normal case, without 388 * sparsemem. The second is for sparsemem when there is 389 * plenty of space for node and section. The last is when 390 * we have run out of space and have to fall back to an 391 * alternate (slower) way of determining the node. 392 * 393 * No sparsemem: | NODE | ZONE | ... | FLAGS | 394 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 395 * no space for node: | SECTION | ZONE | ... | FLAGS | 396 */ 397#ifdef CONFIG_SPARSEMEM 398#define SECTIONS_WIDTH SECTIONS_SHIFT 399#else 400#define SECTIONS_WIDTH 0 401#endif 402 403#define ZONES_WIDTH ZONES_SHIFT 404 405#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 406#define NODES_WIDTH NODES_SHIFT 407#else 408#define NODES_WIDTH 0 409#endif 410 411/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 412#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 413#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 414#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 415 416/* 417 * We are going to use the flags for the page to node mapping if its in 418 * there. This includes the case where there is no node, so it is implicit. 419 */ 420#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 421#define NODE_NOT_IN_PAGE_FLAGS 422#endif 423 424#ifndef PFN_SECTION_SHIFT 425#define PFN_SECTION_SHIFT 0 426#endif 427 428/* 429 * Define the bit shifts to access each section. For non-existant 430 * sections we define the shift as 0; that plus a 0 mask ensures 431 * the compiler will optimise away reference to them. 432 */ 433#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 434#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 435#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 436 437/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 438#ifdef NODE_NOT_IN_PAGEFLAGS 439#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 440#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 441 SECTIONS_PGOFF : ZONES_PGOFF) 442#else 443#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 444#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 445 NODES_PGOFF : ZONES_PGOFF) 446#endif 447 448#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 449 450#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 451#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 452#endif 453 454#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 455#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 456#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 457#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 458 459static inline enum zone_type page_zonenum(struct page *page) 460{ 461 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 462} 463 464/* 465 * The identification function is only used by the buddy allocator for 466 * determining if two pages could be buddies. We are not really 467 * identifying a zone since we could be using a the section number 468 * id if we have not node id available in page flags. 469 * We guarantee only that it will return the same value for two 470 * combinable pages in a zone. 471 */ 472static inline int page_zone_id(struct page *page) 473{ 474 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 475} 476 477static inline int zone_to_nid(struct zone *zone) 478{ 479#ifdef CONFIG_NUMA 480 return zone->node; 481#else 482 return 0; 483#endif 484} 485 486#ifdef NODE_NOT_IN_PAGE_FLAGS 487extern int page_to_nid(struct page *page); 488#else 489static inline int page_to_nid(struct page *page) 490{ 491 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 492} 493#endif 494 495static inline struct zone *page_zone(struct page *page) 496{ 497 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 498} 499 500static inline unsigned long page_to_section(struct page *page) 501{ 502 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 503} 504 505static inline void set_page_zone(struct page *page, enum zone_type zone) 506{ 507 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 508 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 509} 510 511static inline void set_page_node(struct page *page, unsigned long node) 512{ 513 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 514 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 515} 516 517static inline void set_page_section(struct page *page, unsigned long section) 518{ 519 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 520 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 521} 522 523static inline void set_page_links(struct page *page, enum zone_type zone, 524 unsigned long node, unsigned long pfn) 525{ 526 set_page_zone(page, zone); 527 set_page_node(page, node); 528 set_page_section(page, pfn_to_section_nr(pfn)); 529} 530 531/* 532 * Some inline functions in vmstat.h depend on page_zone() 533 */ 534#include <linux/vmstat.h> 535 536static __always_inline void *lowmem_page_address(struct page *page) 537{ 538 return __va(page_to_pfn(page) << PAGE_SHIFT); 539} 540 541#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 542#define HASHED_PAGE_VIRTUAL 543#endif 544 545#if defined(WANT_PAGE_VIRTUAL) 546#define page_address(page) ((page)->virtual) 547#define set_page_address(page, address) \ 548 do { \ 549 (page)->virtual = (address); \ 550 } while(0) 551#define page_address_init() do { } while(0) 552#endif 553 554#if defined(HASHED_PAGE_VIRTUAL) 555void *page_address(struct page *page); 556void set_page_address(struct page *page, void *virtual); 557void page_address_init(void); 558#endif 559 560#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 561#define page_address(page) lowmem_page_address(page) 562#define set_page_address(page, address) do { } while(0) 563#define page_address_init() do { } while(0) 564#endif 565 566/* 567 * On an anonymous page mapped into a user virtual memory area, 568 * page->mapping points to its anon_vma, not to a struct address_space; 569 * with the PAGE_MAPPING_ANON bit set to distinguish it. 570 * 571 * Please note that, confusingly, "page_mapping" refers to the inode 572 * address_space which maps the page from disk; whereas "page_mapped" 573 * refers to user virtual address space into which the page is mapped. 574 */ 575#define PAGE_MAPPING_ANON 1 576 577extern struct address_space swapper_space; 578static inline struct address_space *page_mapping(struct page *page) 579{ 580 struct address_space *mapping = page->mapping; 581 582 if (unlikely(PageSwapCache(page))) 583 mapping = &swapper_space; 584 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 585 mapping = NULL; 586 return mapping; 587} 588 589static inline int PageAnon(struct page *page) 590{ 591 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 592} 593 594/* 595 * Return the pagecache index of the passed page. Regular pagecache pages 596 * use ->index whereas swapcache pages use ->private 597 */ 598static inline pgoff_t page_index(struct page *page) 599{ 600 if (unlikely(PageSwapCache(page))) 601 return page_private(page); 602 return page->index; 603} 604 605/* 606 * The atomic page->_mapcount, like _count, starts from -1: 607 * so that transitions both from it and to it can be tracked, 608 * using atomic_inc_and_test and atomic_add_negative(-1). 609 */ 610static inline void reset_page_mapcount(struct page *page) 611{ 612 atomic_set(&(page)->_mapcount, -1); 613} 614 615static inline int page_mapcount(struct page *page) 616{ 617 return atomic_read(&(page)->_mapcount) + 1; 618} 619 620/* 621 * Return true if this page is mapped into pagetables. 622 */ 623static inline int page_mapped(struct page *page) 624{ 625 return atomic_read(&(page)->_mapcount) >= 0; 626} 627 628/* 629 * Error return values for the *_nopage functions 630 */ 631#define NOPAGE_SIGBUS (NULL) 632#define NOPAGE_OOM ((struct page *) (-1)) 633#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */ 634 635/* 636 * Error return values for the *_nopfn functions 637 */ 638#define NOPFN_SIGBUS ((unsigned long) -1) 639#define NOPFN_OOM ((unsigned long) -2) 640#define NOPFN_REFAULT ((unsigned long) -3) 641 642/* 643 * Different kinds of faults, as returned by handle_mm_fault(). 644 * Used to decide whether a process gets delivered SIGBUS or 645 * just gets major/minor fault counters bumped up. 646 */ 647#define VM_FAULT_OOM 0x00 648#define VM_FAULT_SIGBUS 0x01 649#define VM_FAULT_MINOR 0x02 650#define VM_FAULT_MAJOR 0x03 651 652/* 653 * Special case for get_user_pages. 654 * Must be in a distinct bit from the above VM_FAULT_ flags. 655 */ 656#define VM_FAULT_WRITE 0x10 657 658#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 659 660extern void show_free_areas(void); 661 662#ifdef CONFIG_SHMEM 663int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 664struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 665 unsigned long addr); 666int shmem_lock(struct file *file, int lock, struct user_struct *user); 667#else 668static inline int shmem_lock(struct file *file, int lock, 669 struct user_struct *user) 670{ 671 return 0; 672} 673 674static inline int shmem_set_policy(struct vm_area_struct *vma, 675 struct mempolicy *new) 676{ 677 return 0; 678} 679 680static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 681 unsigned long addr) 682{ 683 return NULL; 684} 685#endif 686struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 687 688int shmem_zero_setup(struct vm_area_struct *); 689 690#ifndef CONFIG_MMU 691extern unsigned long shmem_get_unmapped_area(struct file *file, 692 unsigned long addr, 693 unsigned long len, 694 unsigned long pgoff, 695 unsigned long flags); 696#endif 697 698static inline int can_do_mlock(void) 699{ 700 if (capable(CAP_IPC_LOCK)) 701 return 1; 702 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 703 return 1; 704 return 0; 705} 706extern int user_shm_lock(size_t, struct user_struct *); 707extern void user_shm_unlock(size_t, struct user_struct *); 708 709/* 710 * Parameter block passed down to zap_pte_range in exceptional cases. 711 */ 712struct zap_details { 713 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 714 struct address_space *check_mapping; /* Check page->mapping if set */ 715 pgoff_t first_index; /* Lowest page->index to unmap */ 716 pgoff_t last_index; /* Highest page->index to unmap */ 717 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 718 unsigned long truncate_count; /* Compare vm_truncate_count */ 719}; 720 721struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 722unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 723 unsigned long size, struct zap_details *); 724unsigned long unmap_vmas(struct mmu_gather **tlb, 725 struct vm_area_struct *start_vma, unsigned long start_addr, 726 unsigned long end_addr, unsigned long *nr_accounted, 727 struct zap_details *); 728void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 729 unsigned long end, unsigned long floor, unsigned long ceiling); 730void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 731 unsigned long floor, unsigned long ceiling); 732int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 733 struct vm_area_struct *vma); 734int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 735 unsigned long size, pgprot_t prot); 736void unmap_mapping_range(struct address_space *mapping, 737 loff_t const holebegin, loff_t const holelen, int even_cows); 738 739static inline void unmap_shared_mapping_range(struct address_space *mapping, 740 loff_t const holebegin, loff_t const holelen) 741{ 742 unmap_mapping_range(mapping, holebegin, holelen, 0); 743} 744 745extern int vmtruncate(struct inode * inode, loff_t offset); 746extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 747extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 748extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 749 750#ifdef CONFIG_MMU 751extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 752 unsigned long address, int write_access); 753 754static inline int handle_mm_fault(struct mm_struct *mm, 755 struct vm_area_struct *vma, unsigned long address, 756 int write_access) 757{ 758 return __handle_mm_fault(mm, vma, address, write_access) & 759 (~VM_FAULT_WRITE); 760} 761#else 762static inline int handle_mm_fault(struct mm_struct *mm, 763 struct vm_area_struct *vma, unsigned long address, 764 int write_access) 765{ 766 /* should never happen if there's no MMU */ 767 BUG(); 768 return VM_FAULT_SIGBUS; 769} 770#endif 771 772extern int make_pages_present(unsigned long addr, unsigned long end); 773extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 774void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 775 776int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 777 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 778void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 779 780extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 781extern void do_invalidatepage(struct page *page, unsigned long offset); 782 783int __set_page_dirty_nobuffers(struct page *page); 784int __set_page_dirty_no_writeback(struct page *page); 785int redirty_page_for_writepage(struct writeback_control *wbc, 786 struct page *page); 787int FASTCALL(set_page_dirty(struct page *page)); 788int set_page_dirty_lock(struct page *page); 789int clear_page_dirty_for_io(struct page *page); 790 791extern unsigned long do_mremap(unsigned long addr, 792 unsigned long old_len, unsigned long new_len, 793 unsigned long flags, unsigned long new_addr); 794 795/* 796 * Prototype to add a shrinker callback for ageable caches. 797 * 798 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 799 * scan `nr_to_scan' objects, attempting to free them. 800 * 801 * The callback must return the number of objects which remain in the cache. 802 * 803 * The callback will be passed nr_to_scan == 0 when the VM is querying the 804 * cache size, so a fastpath for that case is appropriate. 805 */ 806typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 807 808/* 809 * Add an aging callback. The int is the number of 'seeks' it takes 810 * to recreate one of the objects that these functions age. 811 */ 812 813#define DEFAULT_SEEKS 2 814struct shrinker; 815extern struct shrinker *set_shrinker(int, shrinker_t); 816extern void remove_shrinker(struct shrinker *shrinker); 817 818/* 819 * Some shared mappigns will want the pages marked read-only 820 * to track write events. If so, we'll downgrade vm_page_prot 821 * to the private version (using protection_map[] without the 822 * VM_SHARED bit). 823 */ 824static inline int vma_wants_writenotify(struct vm_area_struct *vma) 825{ 826 unsigned int vm_flags = vma->vm_flags; 827 828 /* If it was private or non-writable, the write bit is already clear */ 829 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 830 return 0; 831 832 /* The backer wishes to know when pages are first written to? */ 833 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 834 return 1; 835 836 /* The open routine did something to the protections already? */ 837 if (pgprot_val(vma->vm_page_prot) != 838 pgprot_val(protection_map[vm_flags & 839 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) 840 return 0; 841 842 /* Specialty mapping? */ 843 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 844 return 0; 845 846 /* Can the mapping track the dirty pages? */ 847 return vma->vm_file && vma->vm_file->f_mapping && 848 mapping_cap_account_dirty(vma->vm_file->f_mapping); 849} 850 851extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 852 853int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 854int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 855int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 856int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 857 858/* 859 * The following ifdef needed to get the 4level-fixup.h header to work. 860 * Remove it when 4level-fixup.h has been removed. 861 */ 862#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 863static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 864{ 865 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 866 NULL: pud_offset(pgd, address); 867} 868 869static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 870{ 871 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 872 NULL: pmd_offset(pud, address); 873} 874#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 875 876#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 877/* 878 * We tuck a spinlock to guard each pagetable page into its struct page, 879 * at page->private, with BUILD_BUG_ON to make sure that this will not 880 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 881 * When freeing, reset page->mapping so free_pages_check won't complain. 882 */ 883#define __pte_lockptr(page) &((page)->ptl) 884#define pte_lock_init(_page) do { \ 885 spin_lock_init(__pte_lockptr(_page)); \ 886} while (0) 887#define pte_lock_deinit(page) ((page)->mapping = NULL) 888#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 889#else 890/* 891 * We use mm->page_table_lock to guard all pagetable pages of the mm. 892 */ 893#define pte_lock_init(page) do {} while (0) 894#define pte_lock_deinit(page) do {} while (0) 895#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 896#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 897 898#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 899({ \ 900 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 901 pte_t *__pte = pte_offset_map(pmd, address); \ 902 *(ptlp) = __ptl; \ 903 spin_lock(__ptl); \ 904 __pte; \ 905}) 906 907#define pte_unmap_unlock(pte, ptl) do { \ 908 spin_unlock(ptl); \ 909 pte_unmap(pte); \ 910} while (0) 911 912#define pte_alloc_map(mm, pmd, address) \ 913 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 914 NULL: pte_offset_map(pmd, address)) 915 916#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 917 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 918 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 919 920#define pte_alloc_kernel(pmd, address) \ 921 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 922 NULL: pte_offset_kernel(pmd, address)) 923 924extern void free_area_init(unsigned long * zones_size); 925extern void free_area_init_node(int nid, pg_data_t *pgdat, 926 unsigned long * zones_size, unsigned long zone_start_pfn, 927 unsigned long *zholes_size); 928#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 929/* 930 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 931 * zones, allocate the backing mem_map and account for memory holes in a more 932 * architecture independent manner. This is a substitute for creating the 933 * zone_sizes[] and zholes_size[] arrays and passing them to 934 * free_area_init_node() 935 * 936 * An architecture is expected to register range of page frames backed by 937 * physical memory with add_active_range() before calling 938 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 939 * usage, an architecture is expected to do something like 940 * 941 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 942 * max_highmem_pfn}; 943 * for_each_valid_physical_page_range() 944 * add_active_range(node_id, start_pfn, end_pfn) 945 * free_area_init_nodes(max_zone_pfns); 946 * 947 * If the architecture guarantees that there are no holes in the ranges 948 * registered with add_active_range(), free_bootmem_active_regions() 949 * will call free_bootmem_node() for each registered physical page range. 950 * Similarly sparse_memory_present_with_active_regions() calls 951 * memory_present() for each range when SPARSEMEM is enabled. 952 * 953 * See mm/page_alloc.c for more information on each function exposed by 954 * CONFIG_ARCH_POPULATES_NODE_MAP 955 */ 956extern void free_area_init_nodes(unsigned long *max_zone_pfn); 957extern void add_active_range(unsigned int nid, unsigned long start_pfn, 958 unsigned long end_pfn); 959extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 960 unsigned long new_end_pfn); 961extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 962 unsigned long end_pfn); 963extern void remove_all_active_ranges(void); 964extern unsigned long absent_pages_in_range(unsigned long start_pfn, 965 unsigned long end_pfn); 966extern void get_pfn_range_for_nid(unsigned int nid, 967 unsigned long *start_pfn, unsigned long *end_pfn); 968extern unsigned long find_min_pfn_with_active_regions(void); 969extern unsigned long find_max_pfn_with_active_regions(void); 970extern void free_bootmem_with_active_regions(int nid, 971 unsigned long max_low_pfn); 972extern void sparse_memory_present_with_active_regions(int nid); 973#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 974extern int early_pfn_to_nid(unsigned long pfn); 975#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 976#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 977extern void set_dma_reserve(unsigned long new_dma_reserve); 978extern void memmap_init_zone(unsigned long, int, unsigned long, 979 unsigned long, enum memmap_context); 980extern void setup_per_zone_pages_min(void); 981extern void mem_init(void); 982extern void show_mem(void); 983extern void si_meminfo(struct sysinfo * val); 984extern void si_meminfo_node(struct sysinfo *val, int nid); 985 986#ifdef CONFIG_NUMA 987extern void setup_per_cpu_pageset(void); 988#else 989static inline void setup_per_cpu_pageset(void) {} 990#endif 991 992/* prio_tree.c */ 993void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 994void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 995void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 996struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 997 struct prio_tree_iter *iter); 998 999#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1000 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1001 (vma = vma_prio_tree_next(vma, iter)); ) 1002 1003static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1004 struct list_head *list) 1005{ 1006 vma->shared.vm_set.parent = NULL; 1007 list_add_tail(&vma->shared.vm_set.list, list); 1008} 1009 1010/* mmap.c */ 1011extern int __vm_enough_memory(long pages, int cap_sys_admin); 1012extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1013 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1014extern struct vm_area_struct *vma_merge(struct mm_struct *, 1015 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1016 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1017 struct mempolicy *); 1018extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1019extern int split_vma(struct mm_struct *, 1020 struct vm_area_struct *, unsigned long addr, int new_below); 1021extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1022extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1023 struct rb_node **, struct rb_node *); 1024extern void unlink_file_vma(struct vm_area_struct *); 1025extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1026 unsigned long addr, unsigned long len, pgoff_t pgoff); 1027extern void exit_mmap(struct mm_struct *); 1028extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1029extern int install_special_mapping(struct mm_struct *mm, 1030 unsigned long addr, unsigned long len, 1031 unsigned long flags, struct page **pages); 1032 1033extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1034 1035extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1036 unsigned long len, unsigned long prot, 1037 unsigned long flag, unsigned long pgoff); 1038 1039static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1040 unsigned long len, unsigned long prot, 1041 unsigned long flag, unsigned long offset) 1042{ 1043 unsigned long ret = -EINVAL; 1044 if ((offset + PAGE_ALIGN(len)) < offset) 1045 goto out; 1046 if (!(offset & ~PAGE_MASK)) 1047 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1048out: 1049 return ret; 1050} 1051 1052extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1053 1054extern unsigned long do_brk(unsigned long, unsigned long); 1055 1056/* filemap.c */ 1057extern unsigned long page_unuse(struct page *); 1058extern void truncate_inode_pages(struct address_space *, loff_t); 1059extern void truncate_inode_pages_range(struct address_space *, 1060 loff_t lstart, loff_t lend); 1061 1062/* generic vm_area_ops exported for stackable file systems */ 1063extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 1064extern int filemap_populate(struct vm_area_struct *, unsigned long, 1065 unsigned long, pgprot_t, unsigned long, int); 1066 1067/* mm/page-writeback.c */ 1068int write_one_page(struct page *page, int wait); 1069 1070/* readahead.c */ 1071#define VM_MAX_READAHEAD 128 /* kbytes */ 1072#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1073#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 1074 * turning readahead off */ 1075 1076int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1077 pgoff_t offset, unsigned long nr_to_read); 1078int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1079 pgoff_t offset, unsigned long nr_to_read); 1080unsigned long page_cache_readahead(struct address_space *mapping, 1081 struct file_ra_state *ra, 1082 struct file *filp, 1083 pgoff_t offset, 1084 unsigned long size); 1085void handle_ra_miss(struct address_space *mapping, 1086 struct file_ra_state *ra, pgoff_t offset); 1087unsigned long max_sane_readahead(unsigned long nr); 1088 1089/* Do stack extension */ 1090extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1091#ifdef CONFIG_IA64 1092extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1093#endif 1094 1095/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1096extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1097extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1098 struct vm_area_struct **pprev); 1099 1100/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1101 NULL if none. Assume start_addr < end_addr. */ 1102static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1103{ 1104 struct vm_area_struct * vma = find_vma(mm,start_addr); 1105 1106 if (vma && end_addr <= vma->vm_start) 1107 vma = NULL; 1108 return vma; 1109} 1110 1111static inline unsigned long vma_pages(struct vm_area_struct *vma) 1112{ 1113 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1114} 1115 1116pgprot_t vm_get_page_prot(unsigned long vm_flags); 1117struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1118struct page *vmalloc_to_page(void *addr); 1119unsigned long vmalloc_to_pfn(void *addr); 1120int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1121 unsigned long pfn, unsigned long size, pgprot_t); 1122int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1123int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1124 unsigned long pfn); 1125 1126struct page *follow_page(struct vm_area_struct *, unsigned long address, 1127 unsigned int foll_flags); 1128#define FOLL_WRITE 0x01 /* check pte is writable */ 1129#define FOLL_TOUCH 0x02 /* mark page accessed */ 1130#define FOLL_GET 0x04 /* do get_page on page */ 1131#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1132 1133#ifdef CONFIG_PROC_FS 1134void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1135#else 1136static inline void vm_stat_account(struct mm_struct *mm, 1137 unsigned long flags, struct file *file, long pages) 1138{ 1139} 1140#endif /* CONFIG_PROC_FS */ 1141 1142#ifndef CONFIG_DEBUG_PAGEALLOC 1143static inline void 1144kernel_map_pages(struct page *page, int numpages, int enable) {} 1145#endif 1146 1147extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1148#ifdef __HAVE_ARCH_GATE_AREA 1149int in_gate_area_no_task(unsigned long addr); 1150int in_gate_area(struct task_struct *task, unsigned long addr); 1151#else 1152int in_gate_area_no_task(unsigned long addr); 1153#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1154#endif /* __HAVE_ARCH_GATE_AREA */ 1155 1156int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1157 void __user *, size_t *, loff_t *); 1158unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1159 unsigned long lru_pages); 1160void drop_pagecache(void); 1161void drop_slab(void); 1162 1163#ifndef CONFIG_MMU 1164#define randomize_va_space 0 1165#else 1166extern int randomize_va_space; 1167#endif 1168 1169__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); 1170 1171#endif /* __KERNEL__ */ 1172#endif /* _LINUX_MM_H */