at v2.6.21 29 kB view raw
1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#ifdef __KERNEL__ 5 6#include <linux/stddef.h> 7#include <linux/poison.h> 8#include <linux/prefetch.h> 9#include <asm/system.h> 10 11/* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21struct list_head { 22 struct list_head *next, *prev; 23}; 24 25#define LIST_HEAD_INIT(name) { &(name), &(name) } 26 27#define LIST_HEAD(name) \ 28 struct list_head name = LIST_HEAD_INIT(name) 29 30static inline void INIT_LIST_HEAD(struct list_head *list) 31{ 32 list->next = list; 33 list->prev = list; 34} 35 36/* 37 * Insert a new entry between two known consecutive entries. 38 * 39 * This is only for internal list manipulation where we know 40 * the prev/next entries already! 41 */ 42#ifndef CONFIG_DEBUG_LIST 43static inline void __list_add(struct list_head *new, 44 struct list_head *prev, 45 struct list_head *next) 46{ 47 next->prev = new; 48 new->next = next; 49 new->prev = prev; 50 prev->next = new; 51} 52#else 53extern void __list_add(struct list_head *new, 54 struct list_head *prev, 55 struct list_head *next); 56#endif 57 58/** 59 * list_add - add a new entry 60 * @new: new entry to be added 61 * @head: list head to add it after 62 * 63 * Insert a new entry after the specified head. 64 * This is good for implementing stacks. 65 */ 66#ifndef CONFIG_DEBUG_LIST 67static inline void list_add(struct list_head *new, struct list_head *head) 68{ 69 __list_add(new, head, head->next); 70} 71#else 72extern void list_add(struct list_head *new, struct list_head *head); 73#endif 74 75 76/** 77 * list_add_tail - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it before 80 * 81 * Insert a new entry before the specified head. 82 * This is useful for implementing queues. 83 */ 84static inline void list_add_tail(struct list_head *new, struct list_head *head) 85{ 86 __list_add(new, head->prev, head); 87} 88 89/* 90 * Insert a new entry between two known consecutive entries. 91 * 92 * This is only for internal list manipulation where we know 93 * the prev/next entries already! 94 */ 95static inline void __list_add_rcu(struct list_head * new, 96 struct list_head * prev, struct list_head * next) 97{ 98 new->next = next; 99 new->prev = prev; 100 smp_wmb(); 101 next->prev = new; 102 prev->next = new; 103} 104 105/** 106 * list_add_rcu - add a new entry to rcu-protected list 107 * @new: new entry to be added 108 * @head: list head to add it after 109 * 110 * Insert a new entry after the specified head. 111 * This is good for implementing stacks. 112 * 113 * The caller must take whatever precautions are necessary 114 * (such as holding appropriate locks) to avoid racing 115 * with another list-mutation primitive, such as list_add_rcu() 116 * or list_del_rcu(), running on this same list. 117 * However, it is perfectly legal to run concurrently with 118 * the _rcu list-traversal primitives, such as 119 * list_for_each_entry_rcu(). 120 */ 121static inline void list_add_rcu(struct list_head *new, struct list_head *head) 122{ 123 __list_add_rcu(new, head, head->next); 124} 125 126/** 127 * list_add_tail_rcu - add a new entry to rcu-protected list 128 * @new: new entry to be added 129 * @head: list head to add it before 130 * 131 * Insert a new entry before the specified head. 132 * This is useful for implementing queues. 133 * 134 * The caller must take whatever precautions are necessary 135 * (such as holding appropriate locks) to avoid racing 136 * with another list-mutation primitive, such as list_add_tail_rcu() 137 * or list_del_rcu(), running on this same list. 138 * However, it is perfectly legal to run concurrently with 139 * the _rcu list-traversal primitives, such as 140 * list_for_each_entry_rcu(). 141 */ 142static inline void list_add_tail_rcu(struct list_head *new, 143 struct list_head *head) 144{ 145 __list_add_rcu(new, head->prev, head); 146} 147 148/* 149 * Delete a list entry by making the prev/next entries 150 * point to each other. 151 * 152 * This is only for internal list manipulation where we know 153 * the prev/next entries already! 154 */ 155static inline void __list_del(struct list_head * prev, struct list_head * next) 156{ 157 next->prev = prev; 158 prev->next = next; 159} 160 161/** 162 * list_del - deletes entry from list. 163 * @entry: the element to delete from the list. 164 * Note: list_empty() on entry does not return true after this, the entry is 165 * in an undefined state. 166 */ 167#ifndef CONFIG_DEBUG_LIST 168static inline void list_del(struct list_head *entry) 169{ 170 __list_del(entry->prev, entry->next); 171 entry->next = LIST_POISON1; 172 entry->prev = LIST_POISON2; 173} 174#else 175extern void list_del(struct list_head *entry); 176#endif 177 178/** 179 * list_del_rcu - deletes entry from list without re-initialization 180 * @entry: the element to delete from the list. 181 * 182 * Note: list_empty() on entry does not return true after this, 183 * the entry is in an undefined state. It is useful for RCU based 184 * lockfree traversal. 185 * 186 * In particular, it means that we can not poison the forward 187 * pointers that may still be used for walking the list. 188 * 189 * The caller must take whatever precautions are necessary 190 * (such as holding appropriate locks) to avoid racing 191 * with another list-mutation primitive, such as list_del_rcu() 192 * or list_add_rcu(), running on this same list. 193 * However, it is perfectly legal to run concurrently with 194 * the _rcu list-traversal primitives, such as 195 * list_for_each_entry_rcu(). 196 * 197 * Note that the caller is not permitted to immediately free 198 * the newly deleted entry. Instead, either synchronize_rcu() 199 * or call_rcu() must be used to defer freeing until an RCU 200 * grace period has elapsed. 201 */ 202static inline void list_del_rcu(struct list_head *entry) 203{ 204 __list_del(entry->prev, entry->next); 205 entry->prev = LIST_POISON2; 206} 207 208/** 209 * list_replace - replace old entry by new one 210 * @old : the element to be replaced 211 * @new : the new element to insert 212 * 213 * If @old was empty, it will be overwritten. 214 */ 215static inline void list_replace(struct list_head *old, 216 struct list_head *new) 217{ 218 new->next = old->next; 219 new->next->prev = new; 220 new->prev = old->prev; 221 new->prev->next = new; 222} 223 224static inline void list_replace_init(struct list_head *old, 225 struct list_head *new) 226{ 227 list_replace(old, new); 228 INIT_LIST_HEAD(old); 229} 230 231/** 232 * list_replace_rcu - replace old entry by new one 233 * @old : the element to be replaced 234 * @new : the new element to insert 235 * 236 * The @old entry will be replaced with the @new entry atomically. 237 * Note: @old should not be empty. 238 */ 239static inline void list_replace_rcu(struct list_head *old, 240 struct list_head *new) 241{ 242 new->next = old->next; 243 new->prev = old->prev; 244 smp_wmb(); 245 new->next->prev = new; 246 new->prev->next = new; 247 old->prev = LIST_POISON2; 248} 249 250/** 251 * list_del_init - deletes entry from list and reinitialize it. 252 * @entry: the element to delete from the list. 253 */ 254static inline void list_del_init(struct list_head *entry) 255{ 256 __list_del(entry->prev, entry->next); 257 INIT_LIST_HEAD(entry); 258} 259 260/** 261 * list_move - delete from one list and add as another's head 262 * @list: the entry to move 263 * @head: the head that will precede our entry 264 */ 265static inline void list_move(struct list_head *list, struct list_head *head) 266{ 267 __list_del(list->prev, list->next); 268 list_add(list, head); 269} 270 271/** 272 * list_move_tail - delete from one list and add as another's tail 273 * @list: the entry to move 274 * @head: the head that will follow our entry 275 */ 276static inline void list_move_tail(struct list_head *list, 277 struct list_head *head) 278{ 279 __list_del(list->prev, list->next); 280 list_add_tail(list, head); 281} 282 283/** 284 * list_is_last - tests whether @list is the last entry in list @head 285 * @list: the entry to test 286 * @head: the head of the list 287 */ 288static inline int list_is_last(const struct list_head *list, 289 const struct list_head *head) 290{ 291 return list->next == head; 292} 293 294/** 295 * list_empty - tests whether a list is empty 296 * @head: the list to test. 297 */ 298static inline int list_empty(const struct list_head *head) 299{ 300 return head->next == head; 301} 302 303/** 304 * list_empty_careful - tests whether a list is empty and not being modified 305 * @head: the list to test 306 * 307 * Description: 308 * tests whether a list is empty _and_ checks that no other CPU might be 309 * in the process of modifying either member (next or prev) 310 * 311 * NOTE: using list_empty_careful() without synchronization 312 * can only be safe if the only activity that can happen 313 * to the list entry is list_del_init(). Eg. it cannot be used 314 * if another CPU could re-list_add() it. 315 */ 316static inline int list_empty_careful(const struct list_head *head) 317{ 318 struct list_head *next = head->next; 319 return (next == head) && (next == head->prev); 320} 321 322static inline void __list_splice(struct list_head *list, 323 struct list_head *head) 324{ 325 struct list_head *first = list->next; 326 struct list_head *last = list->prev; 327 struct list_head *at = head->next; 328 329 first->prev = head; 330 head->next = first; 331 332 last->next = at; 333 at->prev = last; 334} 335 336/** 337 * list_splice - join two lists 338 * @list: the new list to add. 339 * @head: the place to add it in the first list. 340 */ 341static inline void list_splice(struct list_head *list, struct list_head *head) 342{ 343 if (!list_empty(list)) 344 __list_splice(list, head); 345} 346 347/** 348 * list_splice_init - join two lists and reinitialise the emptied list. 349 * @list: the new list to add. 350 * @head: the place to add it in the first list. 351 * 352 * The list at @list is reinitialised 353 */ 354static inline void list_splice_init(struct list_head *list, 355 struct list_head *head) 356{ 357 if (!list_empty(list)) { 358 __list_splice(list, head); 359 INIT_LIST_HEAD(list); 360 } 361} 362 363/** 364 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 365 * @list: the RCU-protected list to splice 366 * @head: the place in the list to splice the first list into 367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 368 * 369 * @head can be RCU-read traversed concurrently with this function. 370 * 371 * Note that this function blocks. 372 * 373 * Important note: the caller must take whatever action is necessary to 374 * prevent any other updates to @head. In principle, it is possible 375 * to modify the list as soon as sync() begins execution. 376 * If this sort of thing becomes necessary, an alternative version 377 * based on call_rcu() could be created. But only if -really- 378 * needed -- there is no shortage of RCU API members. 379 */ 380static inline void list_splice_init_rcu(struct list_head *list, 381 struct list_head *head, 382 void (*sync)(void)) 383{ 384 struct list_head *first = list->next; 385 struct list_head *last = list->prev; 386 struct list_head *at = head->next; 387 388 if (list_empty(head)) 389 return; 390 391 /* "first" and "last" tracking list, so initialize it. */ 392 393 INIT_LIST_HEAD(list); 394 395 /* 396 * At this point, the list body still points to the source list. 397 * Wait for any readers to finish using the list before splicing 398 * the list body into the new list. Any new readers will see 399 * an empty list. 400 */ 401 402 sync(); 403 404 /* 405 * Readers are finished with the source list, so perform splice. 406 * The order is important if the new list is global and accessible 407 * to concurrent RCU readers. Note that RCU readers are not 408 * permitted to traverse the prev pointers without excluding 409 * this function. 410 */ 411 412 last->next = at; 413 smp_wmb(); 414 head->next = first; 415 first->prev = head; 416 at->prev = last; 417} 418 419/** 420 * list_entry - get the struct for this entry 421 * @ptr: the &struct list_head pointer. 422 * @type: the type of the struct this is embedded in. 423 * @member: the name of the list_struct within the struct. 424 */ 425#define list_entry(ptr, type, member) \ 426 container_of(ptr, type, member) 427 428/** 429 * list_for_each - iterate over a list 430 * @pos: the &struct list_head to use as a loop cursor. 431 * @head: the head for your list. 432 */ 433#define list_for_each(pos, head) \ 434 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 435 pos = pos->next) 436 437/** 438 * __list_for_each - iterate over a list 439 * @pos: the &struct list_head to use as a loop cursor. 440 * @head: the head for your list. 441 * 442 * This variant differs from list_for_each() in that it's the 443 * simplest possible list iteration code, no prefetching is done. 444 * Use this for code that knows the list to be very short (empty 445 * or 1 entry) most of the time. 446 */ 447#define __list_for_each(pos, head) \ 448 for (pos = (head)->next; pos != (head); pos = pos->next) 449 450/** 451 * list_for_each_prev - iterate over a list backwards 452 * @pos: the &struct list_head to use as a loop cursor. 453 * @head: the head for your list. 454 */ 455#define list_for_each_prev(pos, head) \ 456 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 457 pos = pos->prev) 458 459/** 460 * list_for_each_safe - iterate over a list safe against removal of list entry 461 * @pos: the &struct list_head to use as a loop cursor. 462 * @n: another &struct list_head to use as temporary storage 463 * @head: the head for your list. 464 */ 465#define list_for_each_safe(pos, n, head) \ 466 for (pos = (head)->next, n = pos->next; pos != (head); \ 467 pos = n, n = pos->next) 468 469/** 470 * list_for_each_entry - iterate over list of given type 471 * @pos: the type * to use as a loop cursor. 472 * @head: the head for your list. 473 * @member: the name of the list_struct within the struct. 474 */ 475#define list_for_each_entry(pos, head, member) \ 476 for (pos = list_entry((head)->next, typeof(*pos), member); \ 477 prefetch(pos->member.next), &pos->member != (head); \ 478 pos = list_entry(pos->member.next, typeof(*pos), member)) 479 480/** 481 * list_for_each_entry_reverse - iterate backwards over list of given type. 482 * @pos: the type * to use as a loop cursor. 483 * @head: the head for your list. 484 * @member: the name of the list_struct within the struct. 485 */ 486#define list_for_each_entry_reverse(pos, head, member) \ 487 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 488 prefetch(pos->member.prev), &pos->member != (head); \ 489 pos = list_entry(pos->member.prev, typeof(*pos), member)) 490 491/** 492 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 493 * @pos: the type * to use as a start point 494 * @head: the head of the list 495 * @member: the name of the list_struct within the struct. 496 * 497 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 498 */ 499#define list_prepare_entry(pos, head, member) \ 500 ((pos) ? : list_entry(head, typeof(*pos), member)) 501 502/** 503 * list_for_each_entry_continue - continue iteration over list of given type 504 * @pos: the type * to use as a loop cursor. 505 * @head: the head for your list. 506 * @member: the name of the list_struct within the struct. 507 * 508 * Continue to iterate over list of given type, continuing after 509 * the current position. 510 */ 511#define list_for_each_entry_continue(pos, head, member) \ 512 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 513 prefetch(pos->member.next), &pos->member != (head); \ 514 pos = list_entry(pos->member.next, typeof(*pos), member)) 515 516/** 517 * list_for_each_entry_from - iterate over list of given type from the current point 518 * @pos: the type * to use as a loop cursor. 519 * @head: the head for your list. 520 * @member: the name of the list_struct within the struct. 521 * 522 * Iterate over list of given type, continuing from current position. 523 */ 524#define list_for_each_entry_from(pos, head, member) \ 525 for (; prefetch(pos->member.next), &pos->member != (head); \ 526 pos = list_entry(pos->member.next, typeof(*pos), member)) 527 528/** 529 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 530 * @pos: the type * to use as a loop cursor. 531 * @n: another type * to use as temporary storage 532 * @head: the head for your list. 533 * @member: the name of the list_struct within the struct. 534 */ 535#define list_for_each_entry_safe(pos, n, head, member) \ 536 for (pos = list_entry((head)->next, typeof(*pos), member), \ 537 n = list_entry(pos->member.next, typeof(*pos), member); \ 538 &pos->member != (head); \ 539 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 540 541/** 542 * list_for_each_entry_safe_continue 543 * @pos: the type * to use as a loop cursor. 544 * @n: another type * to use as temporary storage 545 * @head: the head for your list. 546 * @member: the name of the list_struct within the struct. 547 * 548 * Iterate over list of given type, continuing after current point, 549 * safe against removal of list entry. 550 */ 551#define list_for_each_entry_safe_continue(pos, n, head, member) \ 552 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 553 n = list_entry(pos->member.next, typeof(*pos), member); \ 554 &pos->member != (head); \ 555 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 556 557/** 558 * list_for_each_entry_safe_from 559 * @pos: the type * to use as a loop cursor. 560 * @n: another type * to use as temporary storage 561 * @head: the head for your list. 562 * @member: the name of the list_struct within the struct. 563 * 564 * Iterate over list of given type from current point, safe against 565 * removal of list entry. 566 */ 567#define list_for_each_entry_safe_from(pos, n, head, member) \ 568 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 569 &pos->member != (head); \ 570 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 571 572/** 573 * list_for_each_entry_safe_reverse 574 * @pos: the type * to use as a loop cursor. 575 * @n: another type * to use as temporary storage 576 * @head: the head for your list. 577 * @member: the name of the list_struct within the struct. 578 * 579 * Iterate backwards over list of given type, safe against removal 580 * of list entry. 581 */ 582#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 583 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 584 n = list_entry(pos->member.prev, typeof(*pos), member); \ 585 &pos->member != (head); \ 586 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 587 588/** 589 * list_for_each_rcu - iterate over an rcu-protected list 590 * @pos: the &struct list_head to use as a loop cursor. 591 * @head: the head for your list. 592 * 593 * This list-traversal primitive may safely run concurrently with 594 * the _rcu list-mutation primitives such as list_add_rcu() 595 * as long as the traversal is guarded by rcu_read_lock(). 596 */ 597#define list_for_each_rcu(pos, head) \ 598 for (pos = (head)->next; \ 599 prefetch(rcu_dereference(pos)->next), pos != (head); \ 600 pos = pos->next) 601 602#define __list_for_each_rcu(pos, head) \ 603 for (pos = (head)->next; \ 604 rcu_dereference(pos) != (head); \ 605 pos = pos->next) 606 607/** 608 * list_for_each_safe_rcu 609 * @pos: the &struct list_head to use as a loop cursor. 610 * @n: another &struct list_head to use as temporary storage 611 * @head: the head for your list. 612 * 613 * Iterate over an rcu-protected list, safe against removal of list entry. 614 * 615 * This list-traversal primitive may safely run concurrently with 616 * the _rcu list-mutation primitives such as list_add_rcu() 617 * as long as the traversal is guarded by rcu_read_lock(). 618 */ 619#define list_for_each_safe_rcu(pos, n, head) \ 620 for (pos = (head)->next; \ 621 n = rcu_dereference(pos)->next, pos != (head); \ 622 pos = n) 623 624/** 625 * list_for_each_entry_rcu - iterate over rcu list of given type 626 * @pos: the type * to use as a loop cursor. 627 * @head: the head for your list. 628 * @member: the name of the list_struct within the struct. 629 * 630 * This list-traversal primitive may safely run concurrently with 631 * the _rcu list-mutation primitives such as list_add_rcu() 632 * as long as the traversal is guarded by rcu_read_lock(). 633 */ 634#define list_for_each_entry_rcu(pos, head, member) \ 635 for (pos = list_entry((head)->next, typeof(*pos), member); \ 636 prefetch(rcu_dereference(pos)->member.next), \ 637 &pos->member != (head); \ 638 pos = list_entry(pos->member.next, typeof(*pos), member)) 639 640 641/** 642 * list_for_each_continue_rcu 643 * @pos: the &struct list_head to use as a loop cursor. 644 * @head: the head for your list. 645 * 646 * Iterate over an rcu-protected list, continuing after current point. 647 * 648 * This list-traversal primitive may safely run concurrently with 649 * the _rcu list-mutation primitives such as list_add_rcu() 650 * as long as the traversal is guarded by rcu_read_lock(). 651 */ 652#define list_for_each_continue_rcu(pos, head) \ 653 for ((pos) = (pos)->next; \ 654 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 655 (pos) = (pos)->next) 656 657/* 658 * Double linked lists with a single pointer list head. 659 * Mostly useful for hash tables where the two pointer list head is 660 * too wasteful. 661 * You lose the ability to access the tail in O(1). 662 */ 663 664struct hlist_head { 665 struct hlist_node *first; 666}; 667 668struct hlist_node { 669 struct hlist_node *next, **pprev; 670}; 671 672#define HLIST_HEAD_INIT { .first = NULL } 673#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 674#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 675static inline void INIT_HLIST_NODE(struct hlist_node *h) 676{ 677 h->next = NULL; 678 h->pprev = NULL; 679} 680 681static inline int hlist_unhashed(const struct hlist_node *h) 682{ 683 return !h->pprev; 684} 685 686static inline int hlist_empty(const struct hlist_head *h) 687{ 688 return !h->first; 689} 690 691static inline void __hlist_del(struct hlist_node *n) 692{ 693 struct hlist_node *next = n->next; 694 struct hlist_node **pprev = n->pprev; 695 *pprev = next; 696 if (next) 697 next->pprev = pprev; 698} 699 700static inline void hlist_del(struct hlist_node *n) 701{ 702 __hlist_del(n); 703 n->next = LIST_POISON1; 704 n->pprev = LIST_POISON2; 705} 706 707/** 708 * hlist_del_rcu - deletes entry from hash list without re-initialization 709 * @n: the element to delete from the hash list. 710 * 711 * Note: list_unhashed() on entry does not return true after this, 712 * the entry is in an undefined state. It is useful for RCU based 713 * lockfree traversal. 714 * 715 * In particular, it means that we can not poison the forward 716 * pointers that may still be used for walking the hash list. 717 * 718 * The caller must take whatever precautions are necessary 719 * (such as holding appropriate locks) to avoid racing 720 * with another list-mutation primitive, such as hlist_add_head_rcu() 721 * or hlist_del_rcu(), running on this same list. 722 * However, it is perfectly legal to run concurrently with 723 * the _rcu list-traversal primitives, such as 724 * hlist_for_each_entry(). 725 */ 726static inline void hlist_del_rcu(struct hlist_node *n) 727{ 728 __hlist_del(n); 729 n->pprev = LIST_POISON2; 730} 731 732static inline void hlist_del_init(struct hlist_node *n) 733{ 734 if (!hlist_unhashed(n)) { 735 __hlist_del(n); 736 INIT_HLIST_NODE(n); 737 } 738} 739 740/** 741 * hlist_replace_rcu - replace old entry by new one 742 * @old : the element to be replaced 743 * @new : the new element to insert 744 * 745 * The @old entry will be replaced with the @new entry atomically. 746 */ 747static inline void hlist_replace_rcu(struct hlist_node *old, 748 struct hlist_node *new) 749{ 750 struct hlist_node *next = old->next; 751 752 new->next = next; 753 new->pprev = old->pprev; 754 smp_wmb(); 755 if (next) 756 new->next->pprev = &new->next; 757 *new->pprev = new; 758 old->pprev = LIST_POISON2; 759} 760 761static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 762{ 763 struct hlist_node *first = h->first; 764 n->next = first; 765 if (first) 766 first->pprev = &n->next; 767 h->first = n; 768 n->pprev = &h->first; 769} 770 771 772/** 773 * hlist_add_head_rcu 774 * @n: the element to add to the hash list. 775 * @h: the list to add to. 776 * 777 * Description: 778 * Adds the specified element to the specified hlist, 779 * while permitting racing traversals. 780 * 781 * The caller must take whatever precautions are necessary 782 * (such as holding appropriate locks) to avoid racing 783 * with another list-mutation primitive, such as hlist_add_head_rcu() 784 * or hlist_del_rcu(), running on this same list. 785 * However, it is perfectly legal to run concurrently with 786 * the _rcu list-traversal primitives, such as 787 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 788 * problems on Alpha CPUs. Regardless of the type of CPU, the 789 * list-traversal primitive must be guarded by rcu_read_lock(). 790 */ 791static inline void hlist_add_head_rcu(struct hlist_node *n, 792 struct hlist_head *h) 793{ 794 struct hlist_node *first = h->first; 795 n->next = first; 796 n->pprev = &h->first; 797 smp_wmb(); 798 if (first) 799 first->pprev = &n->next; 800 h->first = n; 801} 802 803/* next must be != NULL */ 804static inline void hlist_add_before(struct hlist_node *n, 805 struct hlist_node *next) 806{ 807 n->pprev = next->pprev; 808 n->next = next; 809 next->pprev = &n->next; 810 *(n->pprev) = n; 811} 812 813static inline void hlist_add_after(struct hlist_node *n, 814 struct hlist_node *next) 815{ 816 next->next = n->next; 817 n->next = next; 818 next->pprev = &n->next; 819 820 if(next->next) 821 next->next->pprev = &next->next; 822} 823 824/** 825 * hlist_add_before_rcu 826 * @n: the new element to add to the hash list. 827 * @next: the existing element to add the new element before. 828 * 829 * Description: 830 * Adds the specified element to the specified hlist 831 * before the specified node while permitting racing traversals. 832 * 833 * The caller must take whatever precautions are necessary 834 * (such as holding appropriate locks) to avoid racing 835 * with another list-mutation primitive, such as hlist_add_head_rcu() 836 * or hlist_del_rcu(), running on this same list. 837 * However, it is perfectly legal to run concurrently with 838 * the _rcu list-traversal primitives, such as 839 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 840 * problems on Alpha CPUs. 841 */ 842static inline void hlist_add_before_rcu(struct hlist_node *n, 843 struct hlist_node *next) 844{ 845 n->pprev = next->pprev; 846 n->next = next; 847 smp_wmb(); 848 next->pprev = &n->next; 849 *(n->pprev) = n; 850} 851 852/** 853 * hlist_add_after_rcu 854 * @prev: the existing element to add the new element after. 855 * @n: the new element to add to the hash list. 856 * 857 * Description: 858 * Adds the specified element to the specified hlist 859 * after the specified node while permitting racing traversals. 860 * 861 * The caller must take whatever precautions are necessary 862 * (such as holding appropriate locks) to avoid racing 863 * with another list-mutation primitive, such as hlist_add_head_rcu() 864 * or hlist_del_rcu(), running on this same list. 865 * However, it is perfectly legal to run concurrently with 866 * the _rcu list-traversal primitives, such as 867 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 868 * problems on Alpha CPUs. 869 */ 870static inline void hlist_add_after_rcu(struct hlist_node *prev, 871 struct hlist_node *n) 872{ 873 n->next = prev->next; 874 n->pprev = &prev->next; 875 smp_wmb(); 876 prev->next = n; 877 if (n->next) 878 n->next->pprev = &n->next; 879} 880 881#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 882 883#define hlist_for_each(pos, head) \ 884 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 885 pos = pos->next) 886 887#define hlist_for_each_safe(pos, n, head) \ 888 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 889 pos = n) 890 891/** 892 * hlist_for_each_entry - iterate over list of given type 893 * @tpos: the type * to use as a loop cursor. 894 * @pos: the &struct hlist_node to use as a loop cursor. 895 * @head: the head for your list. 896 * @member: the name of the hlist_node within the struct. 897 */ 898#define hlist_for_each_entry(tpos, pos, head, member) \ 899 for (pos = (head)->first; \ 900 pos && ({ prefetch(pos->next); 1;}) && \ 901 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 902 pos = pos->next) 903 904/** 905 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 906 * @tpos: the type * to use as a loop cursor. 907 * @pos: the &struct hlist_node to use as a loop cursor. 908 * @member: the name of the hlist_node within the struct. 909 */ 910#define hlist_for_each_entry_continue(tpos, pos, member) \ 911 for (pos = (pos)->next; \ 912 pos && ({ prefetch(pos->next); 1;}) && \ 913 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 914 pos = pos->next) 915 916/** 917 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 918 * @tpos: the type * to use as a loop cursor. 919 * @pos: the &struct hlist_node to use as a loop cursor. 920 * @member: the name of the hlist_node within the struct. 921 */ 922#define hlist_for_each_entry_from(tpos, pos, member) \ 923 for (; pos && ({ prefetch(pos->next); 1;}) && \ 924 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 925 pos = pos->next) 926 927/** 928 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 929 * @tpos: the type * to use as a loop cursor. 930 * @pos: the &struct hlist_node to use as a loop cursor. 931 * @n: another &struct hlist_node to use as temporary storage 932 * @head: the head for your list. 933 * @member: the name of the hlist_node within the struct. 934 */ 935#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 936 for (pos = (head)->first; \ 937 pos && ({ n = pos->next; 1; }) && \ 938 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 939 pos = n) 940 941/** 942 * hlist_for_each_entry_rcu - iterate over rcu list of given type 943 * @tpos: the type * to use as a loop cursor. 944 * @pos: the &struct hlist_node to use as a loop cursor. 945 * @head: the head for your list. 946 * @member: the name of the hlist_node within the struct. 947 * 948 * This list-traversal primitive may safely run concurrently with 949 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 950 * as long as the traversal is guarded by rcu_read_lock(). 951 */ 952#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 953 for (pos = (head)->first; \ 954 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 955 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 956 pos = pos->next) 957 958#else 959#warning "don't include kernel headers in userspace" 960#endif /* __KERNEL__ */ 961#endif