at v2.6.21 432 lines 15 kB view raw
1/* 2 * linux/include/asm-xtensa/pgtable.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2005 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#include <asm-generic/pgtable-nopmd.h> 15#include <asm/page.h> 16 17/* 18 * We only use two ring levels, user and kernel space. 19 */ 20 21#define USER_RING 1 /* user ring level */ 22#define KERNEL_RING 0 /* kernel ring level */ 23 24/* 25 * The Xtensa architecture port of Linux has a two-level page table system, 26 * i.e. the logical three-level Linux page table layout are folded. 27 * Each task has the following memory page tables: 28 * 29 * PGD table (page directory), ie. 3rd-level page table: 30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 31 * (Architectures that don't have the PMD folded point to the PMD tables) 32 * 33 * The pointer to the PGD table for a given task can be retrieved from 34 * the task structure (struct task_struct*) t, e.g. current(): 35 * (t->mm ? t->mm : t->active_mm)->pgd 36 * 37 * PMD tables (page middle-directory), ie. 2nd-level page tables: 38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 39 * 40 * PTE tables (page table entry), ie. 1st-level page tables: 41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 42 * invalid_pte_table for absent mappings. 43 * 44 * The individual pages are 4 kB big with special pages for the empty_zero_page. 45 */ 46#define PGDIR_SHIFT 22 47#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 48#define PGDIR_MASK (~(PGDIR_SIZE-1)) 49 50/* 51 * Entries per page directory level: we use two-level, so 52 * we don't really have any PMD directory physically. 53 */ 54#define PTRS_PER_PTE 1024 55#define PTRS_PER_PTE_SHIFT 10 56#define PTRS_PER_PMD 1 57#define PTRS_PER_PGD 1024 58#define PGD_ORDER 0 59#define PMD_ORDER 0 60#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 61#define FIRST_USER_ADDRESS 0 62#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 63 64/* virtual memory area. We keep a distance to other memory regions to be 65 * on the safe side. We also use this area for cache aliasing. 66 */ 67 68// FIXME: virtual memory area must be configuration-dependent 69 70#define VMALLOC_START 0xC0000000 71#define VMALLOC_END 0xC7FF0000 72 73/* Xtensa Linux config PTE layout (when present): 74 * 31-12: PPN 75 * 11-6: Software 76 * 5-4: RING 77 * 3-0: CA 78 * 79 * Similar to the Alpha and MIPS ports, we need to keep track of the ref 80 * and mod bits in software. We have a software "you can read 81 * from this page" bit, and a hardware one which actually lets the 82 * process read from the page. On the same token we have a software 83 * writable bit and the real hardware one which actually lets the 84 * process write to the page. 85 * 86 * See further below for PTE layout for swapped-out pages. 87 */ 88 89#define _PAGE_VALID (1<<0) /* hardware: page is accessible */ 90#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */ 91 92/* None of these cache modes include MP coherency: */ 93#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */ 94#if XCHAL_DCACHE_IS_WRITEBACK 95# define _PAGE_WRITEBACK (1<<2) /* write back */ 96# define _PAGE_WRITETHRU (2<<2) /* write through */ 97#else 98# define _PAGE_WRITEBACK (1<<2) /* assume write through */ 99# define _PAGE_WRITETHRU (1<<2) 100#endif 101#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */ 102#define _CACHE_MASK (3<<2) 103 104#define _PAGE_USER (1<<4) /* user access (ring=1) */ 105#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */ 106 107/* Software */ 108#define _PAGE_RW (1<<6) /* software: page writable */ 109#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 110#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 111#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/ 112 113#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY) 114#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED) 115 116#ifdef CONFIG_MMU 117 118# define PAGE_NONE __pgprot(_PAGE_PRESENT) 119# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW) 120# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 121# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 122# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE) 123# define PAGE_INVALID __pgprot(_PAGE_USER) 124 125# if (DCACHE_WAY_SIZE > PAGE_SIZE) 126# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL) 127# else 128# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL) 129# endif 130 131#else /* no mmu */ 132 133# define PAGE_NONE __pgprot(0) 134# define PAGE_SHARED __pgprot(0) 135# define PAGE_COPY __pgprot(0) 136# define PAGE_READONLY __pgprot(0) 137# define PAGE_KERNEL __pgprot(0) 138 139#endif 140 141/* 142 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 143 * the MMU can't do page protection for execute, and considers that the same as 144 * read. Also, write permissions may imply read permissions. 145 * What follows is the closest we can get by reasonable means.. 146 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 147 */ 148#define __P000 PAGE_NONE /* private --- */ 149#define __P001 PAGE_READONLY /* private --r */ 150#define __P010 PAGE_COPY /* private -w- */ 151#define __P011 PAGE_COPY /* private -wr */ 152#define __P100 PAGE_READONLY /* private x-- */ 153#define __P101 PAGE_READONLY /* private x-r */ 154#define __P110 PAGE_COPY /* private xw- */ 155#define __P111 PAGE_COPY /* private xwr */ 156 157#define __S000 PAGE_NONE /* shared --- */ 158#define __S001 PAGE_READONLY /* shared --r */ 159#define __S010 PAGE_SHARED /* shared -w- */ 160#define __S011 PAGE_SHARED /* shared -wr */ 161#define __S100 PAGE_READONLY /* shared x-- */ 162#define __S101 PAGE_READONLY /* shared x-r */ 163#define __S110 PAGE_SHARED /* shared xw- */ 164#define __S111 PAGE_SHARED /* shared xwr */ 165 166#ifndef __ASSEMBLY__ 167 168#define pte_ERROR(e) \ 169 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 170#define pgd_ERROR(e) \ 171 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 172 173extern unsigned long empty_zero_page[1024]; 174 175#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 176 177extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 178 179/* 180 * The pmd contains the kernel virtual address of the pte page. 181 */ 182#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 183#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 184 185/* 186 * The following only work if pte_present() is true. 187 */ 188#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER)) 189#define pte_present(pte) (pte_val(pte) & _PAGE_VALID) 190#define pte_clear(mm,addr,ptep) \ 191 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0) 192 193#define pmd_none(pmd) (!pmd_val(pmd)) 194#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 195#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 196#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 197 198/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */ 199 200static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 201static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 202static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 203static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 204static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 205static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; } 206static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } 207static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 208static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 209static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } 210static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 211static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 212static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } 213 214/* 215 * Conversion functions: convert a page and protection to a page entry, 216 * and a page entry and page directory to the page they refer to. 217 */ 218#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 219#define pte_same(a,b) (pte_val(a) == pte_val(b)) 220#define pte_page(x) pfn_to_page(pte_pfn(x)) 221#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 222#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 223 224static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 225{ 226 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 227} 228 229/* 230 * Certain architectures need to do special things when pte's 231 * within a page table are directly modified. Thus, the following 232 * hook is made available. 233 */ 234static inline void update_pte(pte_t *ptep, pte_t pteval) 235{ 236 *ptep = pteval; 237#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 238 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep)); 239#endif 240} 241 242struct mm_struct; 243 244static inline void 245set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 246{ 247 update_pte(ptep, pteval); 248} 249 250 251static inline void 252set_pmd(pmd_t *pmdp, pmd_t pmdval) 253{ 254 *pmdp = pmdval; 255#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 256 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp)); 257#endif 258} 259 260struct vm_area_struct; 261 262static inline int 263ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 264 pte_t *ptep) 265{ 266 pte_t pte = *ptep; 267 if (!pte_young(pte)) 268 return 0; 269 update_pte(ptep, pte_mkold(pte)); 270 return 1; 271} 272 273static inline int 274ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, 275 pte_t *ptep) 276{ 277 pte_t pte = *ptep; 278 if (!pte_dirty(pte)) 279 return 0; 280 update_pte(ptep, pte_mkclean(pte)); 281 return 1; 282} 283 284static inline pte_t 285ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 286{ 287 pte_t pte = *ptep; 288 pte_clear(mm, addr, ptep); 289 return pte; 290} 291 292static inline void 293ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 294{ 295 pte_t pte = *ptep; 296 update_pte(ptep, pte_wrprotect(pte)); 297} 298 299/* to find an entry in a kernel page-table-directory */ 300#define pgd_offset_k(address) pgd_offset(&init_mm, address) 301 302/* to find an entry in a page-table-directory */ 303#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 304 305#define pgd_index(address) ((address) >> PGDIR_SHIFT) 306 307/* Find an entry in the second-level page table.. */ 308#define pmd_offset(dir,address) ((pmd_t*)(dir)) 309 310/* Find an entry in the third-level page table.. */ 311#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 312#define pte_offset_kernel(dir,addr) \ 313 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) 314#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 315#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) 316 317#define pte_unmap(pte) do { } while (0) 318#define pte_unmap_nested(pte) do { } while (0) 319 320 321/* 322 * Encode and decode a swap entry. 323 * Each PTE in a process VM's page table is either: 324 * "present" -- valid and not swapped out, protection bits are meaningful; 325 * "not present" -- which further subdivides in these two cases: 326 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear( 327 * "swapped out" -- the page is swapped out, and the SWP macros below 328 * are used to store swap file info in the PTE itself. 329 * 330 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere 331 * in virtual memory that can map differently across address spaces) 332 * must have a correct ring value that represents the RASID field that 333 * is changed when switching address spaces. Eg. such PTE entries cannot 334 * be set to ring zero, because that can cause a (global) kernel ASID 335 * entry to be created in the TLBs (even with invalid cache attribute), 336 * potentially causing a multihit exception when going back to another 337 * address space that mapped the same virtual address at another ring. 338 * 339 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs. 340 * We also avoid using the _PAGE_VALID bit which must be zero for non-present 341 * pages. 342 * 343 * We end up with the following available bits: 1..3 and 7..31. 344 * We don't bother with 1..3 for now (we can use them later if needed), 345 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits 346 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it 347 * is currently implemented as an index into swap_info[MAX_SWAPFILES] 348 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>. 349 * However, for some reason all other architectures in the 2.4 kernel 350 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :) 351 * SWP_OFFSET is an offset into the swap file in page-size units, so 352 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB. 353 * 354 * FIXME: 2 GB isn't very big. Other bits can be used to allow 355 * larger swap sizes. In the meantime, it appears relatively easy to get 356 * around the 2 GB limitation by simply using multiple swap files. 357 */ 358 359#define __swp_type(entry) (((entry).val >> 7) & 0x3f) 360#define __swp_offset(entry) ((entry).val >> 13) 361#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)}) 362#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 363#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 364 365#define PTE_FILE_MAX_BITS 29 366#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 367#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 368 369 370#endif /* !defined (__ASSEMBLY__) */ 371 372 373#ifdef __ASSEMBLY__ 374 375/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 376 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 377 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 378 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 379 * 380 * Note: We require an additional temporary register which can be the same as 381 * the register that holds the address. 382 * 383 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 384 * 385 */ 386#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 387#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 388 389#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 390 _PGD_INDEX(tmp, adr); \ 391 addx4 mm, tmp, mm 392 393#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 394 srli pmd, pmd, PAGE_SHIFT; \ 395 slli pmd, pmd, PAGE_SHIFT; \ 396 addx4 pmd, tmp, pmd 397 398#else 399 400extern void paging_init(void); 401 402#define kern_addr_valid(addr) (1) 403 404extern void update_mmu_cache(struct vm_area_struct * vma, 405 unsigned long address, pte_t pte); 406 407/* 408 * remap a physical page `pfn' of size `size' with page protection `prot' 409 * into virtual address `from' 410 */ 411#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 412 remap_pfn_range(vma, from, pfn, size, prot) 413 414 415/* No page table caches to init */ 416 417#define pgtable_cache_init() do { } while (0) 418 419typedef pte_t *pte_addr_t; 420 421#endif /* !defined (__ASSEMBLY__) */ 422 423#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 424#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 425#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 426#define __HAVE_ARCH_PTEP_SET_WRPROTECT 427#define __HAVE_ARCH_PTEP_MKDIRTY 428#define __HAVE_ARCH_PTE_SAME 429 430#include <asm-generic/pgtable.h> 431 432#endif /* _XTENSA_PGTABLE_H */