at v2.6.21 558 lines 18 kB view raw
1/* pgtable.h: FR-V page table mangling 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * Derived from: 12 * include/asm-m68knommu/pgtable.h 13 * include/asm-i386/pgtable.h 14 */ 15 16#ifndef _ASM_PGTABLE_H 17#define _ASM_PGTABLE_H 18 19#include <asm/mem-layout.h> 20#include <asm/setup.h> 21#include <asm/processor.h> 22 23#ifndef __ASSEMBLY__ 24#include <linux/threads.h> 25#include <linux/slab.h> 26#include <linux/list.h> 27#include <linux/spinlock.h> 28struct mm_struct; 29struct vm_area_struct; 30#endif 31 32#ifndef __ASSEMBLY__ 33#if defined(CONFIG_HIGHPTE) 34typedef unsigned long pte_addr_t; 35#else 36typedef pte_t *pte_addr_t; 37#endif 38#endif 39 40/*****************************************************************************/ 41/* 42 * MMU-less operation case first 43 */ 44#ifndef CONFIG_MMU 45 46#define pgd_present(pgd) (1) /* pages are always present on NO_MM */ 47#define pgd_none(pgd) (0) 48#define pgd_bad(pgd) (0) 49#define pgd_clear(pgdp) 50#define kern_addr_valid(addr) (1) 51#define pmd_offset(a, b) ((void *) 0) 52 53#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */ 54#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */ 55#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */ 56#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */ 57#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */ 58 59#define __swp_type(x) (0) 60#define __swp_offset(x) (0) 61#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 62#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 63#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 64 65#ifndef __ASSEMBLY__ 66static inline int pte_file(pte_t pte) { return 0; } 67#endif 68 69#define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 70 71#define swapper_pg_dir ((pgd_t *) NULL) 72 73#define pgtable_cache_init() do {} while (0) 74#define arch_enter_lazy_mmu_mode() do {} while (0) 75#define arch_leave_lazy_mmu_mode() do {} while (0) 76#define arch_enter_lazy_cpu_mode() do {} while (0) 77#define arch_leave_lazy_cpu_mode() do {} while (0) 78 79#else /* !CONFIG_MMU */ 80/*****************************************************************************/ 81/* 82 * then MMU operation 83 */ 84 85/* 86 * ZERO_PAGE is a global shared page that is always zero: used 87 * for zero-mapped memory areas etc.. 88 */ 89#ifndef __ASSEMBLY__ 90extern unsigned long empty_zero_page; 91#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 92#endif 93 94/* 95 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry) 96 * [see Documentation/fujitsu/frv/mmu-layout.txt] 97 * 98 * Page Directory: 99 * - Size: 16KB 100 * - 64 PGEs per PGD 101 * - Each PGE holds 1 PUD and covers 64MB 102 * 103 * Page Upper Directory: 104 * - Size: 256B 105 * - 1 PUE per PUD 106 * - Each PUE holds 1 PMD and covers 64MB 107 * 108 * Page Mid-Level Directory 109 * - Size: 256B 110 * - 1 PME per PMD 111 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table 112 * - All STEs are instantiated at the same time 113 * 114 * Page Table 115 * - Size: 16KB 116 * - 4096 PTEs per PT 117 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries 118 * 119 * Pages 120 * - Size: 4KB 121 * 122 * total PTEs 123 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs 124 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT 125 * = 262144 (or 256 * 1024) 126 */ 127#define PGDIR_SHIFT 26 128#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 129#define PGDIR_MASK (~(PGDIR_SIZE - 1)) 130#define PTRS_PER_PGD 64 131 132#define PUD_SHIFT 26 133#define PTRS_PER_PUD 1 134#define PUD_SIZE (1UL << PUD_SHIFT) 135#define PUD_MASK (~(PUD_SIZE - 1)) 136#define PUE_SIZE 256 137 138#define PMD_SHIFT 26 139#define PMD_SIZE (1UL << PMD_SHIFT) 140#define PMD_MASK (~(PMD_SIZE - 1)) 141#define PTRS_PER_PMD 1 142#define PME_SIZE 256 143 144#define __frv_PT_SIZE 256 145 146#define PTRS_PER_PTE 4096 147 148#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE) 149#define FIRST_USER_ADDRESS 0 150 151#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 152#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) 153 154#define TWOLEVEL_PGDIR_SHIFT 26 155#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) 156#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS) 157 158#ifndef __ASSEMBLY__ 159 160extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 161 162#define pte_ERROR(e) \ 163 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte) 164#define pmd_ERROR(e) \ 165 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 166#define pud_ERROR(e) \ 167 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e))) 168#define pgd_ERROR(e) \ 169 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e)))) 170 171/* 172 * Certain architectures need to do special things when PTEs 173 * within a page table are directly modified. Thus, the following 174 * hook is made available. 175 */ 176#define set_pte(pteptr, pteval) \ 177do { \ 178 *(pteptr) = (pteval); \ 179 asm volatile("dcf %M0" :: "U"(*pteptr)); \ 180} while(0) 181#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 182 183/* 184 * pgd_offset() returns a (pgd_t *) 185 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 186 */ 187#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 188 189/* 190 * a shortcut which implies the use of the kernel's pgd, instead 191 * of a process's 192 */ 193#define pgd_offset_k(address) pgd_offset(&init_mm, address) 194 195/* 196 * The "pgd_xxx()" functions here are trivial for a folded two-level 197 * setup: the pud is never bad, and a pud always exists (as it's folded 198 * into the pgd entry) 199 */ 200static inline int pgd_none(pgd_t pgd) { return 0; } 201static inline int pgd_bad(pgd_t pgd) { return 0; } 202static inline int pgd_present(pgd_t pgd) { return 1; } 203static inline void pgd_clear(pgd_t *pgd) { } 204 205#define pgd_populate(mm, pgd, pud) do { } while (0) 206/* 207 * (puds are folded into pgds so this doesn't get actually called, 208 * but the define is needed for a generic inline function.) 209 */ 210#define set_pgd(pgdptr, pgdval) \ 211do { \ 212 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \ 213 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \ 214} while(0) 215 216static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 217{ 218 return (pud_t *) pgd; 219} 220 221#define pgd_page(pgd) (pud_page((pud_t){ pgd })) 222#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd })) 223 224/* 225 * allocating and freeing a pud is trivial: the 1-entry pud is 226 * inside the pgd, so has no extra memory associated with it. 227 */ 228#define pud_alloc_one(mm, address) NULL 229#define pud_free(x) do { } while (0) 230#define __pud_free_tlb(tlb, x) do { } while (0) 231 232/* 233 * The "pud_xxx()" functions here are trivial for a folded two-level 234 * setup: the pmd is never bad, and a pmd always exists (as it's folded 235 * into the pud entry) 236 */ 237static inline int pud_none(pud_t pud) { return 0; } 238static inline int pud_bad(pud_t pud) { return 0; } 239static inline int pud_present(pud_t pud) { return 1; } 240static inline void pud_clear(pud_t *pud) { } 241 242#define pud_populate(mm, pmd, pte) do { } while (0) 243 244/* 245 * (pmds are folded into puds so this doesn't get actually called, 246 * but the define is needed for a generic inline function.) 247 */ 248#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval }) 249 250#define pud_page(pud) (pmd_page((pmd_t){ pud })) 251#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud })) 252 253/* 254 * (pmds are folded into pgds so this doesn't get actually called, 255 * but the define is needed for a generic inline function.) 256 */ 257extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd); 258 259#define set_pmd(pmdptr, pmdval) \ 260do { \ 261 __set_pmd((pmdptr), (pmdval).ste[0]); \ 262} while(0) 263 264#define __pmd_index(address) 0 265 266static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address) 267{ 268 return (pmd_t *) dir + __pmd_index(address); 269} 270 271#define pte_same(a, b) ((a).pte == (b).pte) 272#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT)))) 273#define pte_none(x) (!(x).pte) 274#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT))) 275#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 276#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 277 278#define VMALLOC_VMADDR(x) ((unsigned long) (x)) 279 280#endif /* !__ASSEMBLY__ */ 281 282/* 283 * control flags in AMPR registers and TLB entries 284 */ 285#define _PAGE_BIT_PRESENT xAMPRx_V_BIT 286#define _PAGE_BIT_WP DAMPRx_WP_BIT 287#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT 288#define _PAGE_BIT_SUPER xAMPRx_S_BIT 289#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT 290#define _PAGE_BIT_DIRTY xAMPRx_M_BIT 291#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT 292 293#define _PAGE_PRESENT xAMPRx_V 294#define _PAGE_WP DAMPRx_WP 295#define _PAGE_NOCACHE xAMPRx_C 296#define _PAGE_SUPER xAMPRx_S 297#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */ 298#define _PAGE_DIRTY xAMPRx_M 299#define _PAGE_NOTGLOBAL xAMPRx_NG 300 301#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13) 302 303#define _PAGE_FILE 0x002 /* set:pagecache unset:swap */ 304#define _PAGE_PROTNONE 0x000 /* If not present */ 305 306#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 307 308#define __PGPROT_BASE \ 309 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED) 310 311#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 312#define PAGE_SHARED __pgprot(__PGPROT_BASE) 313#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP) 314#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP) 315 316#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY) 317#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE) 318#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP) 319 320#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL) 321 322#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) 323#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) 324#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) 325 326#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb) 327 328#ifndef __ASSEMBLY__ 329 330/* 331 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for 332 * instruction access and for data access. However, we don't have enough reserved bits to say 333 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa. 334 */ 335#define __P000 PAGE_NONE 336#define __P001 PAGE_READONLY 337#define __P010 PAGE_COPY 338#define __P011 PAGE_COPY 339#define __P100 PAGE_READONLY 340#define __P101 PAGE_READONLY 341#define __P110 PAGE_COPY 342#define __P111 PAGE_COPY 343 344#define __S000 PAGE_NONE 345#define __S001 PAGE_READONLY 346#define __S010 PAGE_SHARED 347#define __S011 PAGE_SHARED 348#define __S100 PAGE_READONLY 349#define __S101 PAGE_READONLY 350#define __S110 PAGE_SHARED 351#define __S111 PAGE_SHARED 352 353/* 354 * Define this to warn about kernel memory accesses that are 355 * done without a 'access_ok(VERIFY_WRITE,..)' 356 */ 357#undef TEST_ACCESS_OK 358 359#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 360#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) 361 362#define pmd_none(x) (!pmd_val(x)) 363#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 364#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS) 365#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0) 366 367#define pmd_page_vaddr(pmd) \ 368 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 369 370#ifndef CONFIG_DISCONTIGMEM 371#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 372#endif 373 374#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 375 376/* 377 * The following only work if pte_present() is true. 378 * Undefined behaviour if not.. 379 */ 380static inline int pte_read(pte_t pte) { return !((pte).pte & _PAGE_SUPER); } 381static inline int pte_exec(pte_t pte) { return !((pte).pte & _PAGE_SUPER); } 382static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; } 383static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; } 384static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); } 385 386static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; } 387static inline pte_t pte_exprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; } 388static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; } 389static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; } 390static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; } 391static inline pte_t pte_mkread(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; } 392static inline pte_t pte_mkexec(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; } 393static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; } 394static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; } 395static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; } 396 397static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 398{ 399 int i = test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); 400 asm volatile("dcf %M0" :: "U"(*ptep)); 401 return i; 402} 403 404static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 405{ 406 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); 407 asm volatile("dcf %M0" :: "U"(*ptep)); 408 return i; 409} 410 411static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 412{ 413 unsigned long x = xchg(&ptep->pte, 0); 414 asm volatile("dcf %M0" :: "U"(*ptep)); 415 return __pte(x); 416} 417 418static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 419{ 420 set_bit(_PAGE_BIT_WP, ptep); 421 asm volatile("dcf %M0" :: "U"(*ptep)); 422} 423 424/* 425 * Macro to mark a page protection value as "uncacheable" 426 */ 427#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE)) 428 429/* 430 * Conversion functions: convert a page and protection to a page entry, 431 * and a page entry and page directory to the page they refer to. 432 */ 433 434#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 435#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE) 436 437/* This takes a physical page address that is used by the remapping functions */ 438#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot) 439 440static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 441{ 442 pte.pte &= _PAGE_CHG_MASK; 443 pte.pte |= pgprot_val(newprot); 444 return pte; 445} 446 447/* to find an entry in a page-table-directory. */ 448#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 449#define pgd_index_k(addr) pgd_index(addr) 450 451/* Find an entry in the bottom-level page table.. */ 452#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 453 454/* 455 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 456 * 457 * this macro returns the index of the entry in the pte page which would 458 * control the given virtual address 459 */ 460#define pte_index(address) \ 461 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 462#define pte_offset_kernel(dir, address) \ 463 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 464 465#if defined(CONFIG_HIGHPTE) 466#define pte_offset_map(dir, address) \ 467 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) 468#define pte_offset_map_nested(dir, address) \ 469 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) 470#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 471#define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1) 472#else 473#define pte_offset_map(dir, address) \ 474 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 475#define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address)) 476#define pte_unmap(pte) do { } while (0) 477#define pte_unmap_nested(pte) do { } while (0) 478#endif 479 480/* 481 * Handle swap and file entries 482 * - the PTE is encoded in the following format: 483 * bit 0: Must be 0 (!_PAGE_PRESENT) 484 * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE) 485 * bits 2-7: Swap type 486 * bits 8-31: Swap offset 487 * bits 2-31: File pgoff 488 */ 489#define __swp_type(x) (((x).val >> 2) & 0x1f) 490#define __swp_offset(x) ((x).val >> 8) 491#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) 492#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte }) 493#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 494 495static inline int pte_file(pte_t pte) 496{ 497 return pte.pte & _PAGE_FILE; 498} 499 500#define PTE_FILE_MAX_BITS 29 501 502#define pte_to_pgoff(PTE) ((PTE).pte >> 2) 503#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE) 504 505/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 506#define PageSkip(page) (0) 507#define kern_addr_valid(addr) (1) 508 509#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 510 remap_pfn_range(vma, vaddr, pfn, size, prot) 511 512#define MK_IOSPACE_PFN(space, pfn) (pfn) 513#define GET_IOSPACE(pfn) 0 514#define GET_PFN(pfn) (pfn) 515 516#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 517#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 518#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 519#define __HAVE_ARCH_PTEP_SET_WRPROTECT 520#define __HAVE_ARCH_PTE_SAME 521#include <asm-generic/pgtable.h> 522 523/* 524 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache 525 */ 526static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) 527{ 528 unsigned long ampr; 529 pgd_t *pge = pgd_offset(current->mm, address); 530 pud_t *pue = pud_offset(pge, address); 531 pmd_t *pme = pmd_offset(pue, address); 532 533 ampr = pme->ste[0] & 0xffffff00; 534 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | xAMPRx_V; 535 536 asm volatile("movgs %0,scr0\n" 537 "movgs %0,scr1\n" 538 "movgs %1,dampr4\n" 539 "movgs %1,dampr5\n" 540 : 541 : "r"(address), "r"(ampr) 542 ); 543} 544 545#ifdef CONFIG_PROC_FS 546extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer); 547#endif 548 549extern void __init pgtable_cache_init(void); 550 551#endif /* !__ASSEMBLY__ */ 552#endif /* !CONFIG_MMU */ 553 554#ifndef __ASSEMBLY__ 555extern void __init paging_init(void); 556#endif /* !__ASSEMBLY__ */ 557 558#endif /* _ASM_PGTABLE_H */