at v2.6.21 408 lines 14 kB view raw
1/* 2 * linux/include/asm-arm/pgtable.h 3 * 4 * Copyright (C) 1995-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_PGTABLE_H 11#define _ASMARM_PGTABLE_H 12 13#include <asm-generic/4level-fixup.h> 14#include <asm/proc-fns.h> 15 16#ifndef CONFIG_MMU 17 18#include "pgtable-nommu.h" 19 20#else 21 22#include <asm/memory.h> 23#include <asm/arch/vmalloc.h> 24#include <asm/pgtable-hwdef.h> 25 26/* 27 * Just any arbitrary offset to the start of the vmalloc VM area: the 28 * current 8MB value just means that there will be a 8MB "hole" after the 29 * physical memory until the kernel virtual memory starts. That means that 30 * any out-of-bounds memory accesses will hopefully be caught. 31 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 32 * area for the same reason. ;) 33 * 34 * Note that platforms may override VMALLOC_START, but they must provide 35 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, 36 * which may not overlap IO space. 37 */ 38#ifndef VMALLOC_START 39#define VMALLOC_OFFSET (8*1024*1024) 40#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 41#endif 42 43/* 44 * Hardware-wise, we have a two level page table structure, where the first 45 * level has 4096 entries, and the second level has 256 entries. Each entry 46 * is one 32-bit word. Most of the bits in the second level entry are used 47 * by hardware, and there aren't any "accessed" and "dirty" bits. 48 * 49 * Linux on the other hand has a three level page table structure, which can 50 * be wrapped to fit a two level page table structure easily - using the PGD 51 * and PTE only. However, Linux also expects one "PTE" table per page, and 52 * at least a "dirty" bit. 53 * 54 * Therefore, we tweak the implementation slightly - we tell Linux that we 55 * have 2048 entries in the first level, each of which is 8 bytes (iow, two 56 * hardware pointers to the second level.) The second level contains two 57 * hardware PTE tables arranged contiguously, followed by Linux versions 58 * which contain the state information Linux needs. We, therefore, end up 59 * with 512 entries in the "PTE" level. 60 * 61 * This leads to the page tables having the following layout: 62 * 63 * pgd pte 64 * | | 65 * +--------+ +0 66 * | |-----> +------------+ +0 67 * +- - - - + +4 | h/w pt 0 | 68 * | |-----> +------------+ +1024 69 * +--------+ +8 | h/w pt 1 | 70 * | | +------------+ +2048 71 * +- - - - + | Linux pt 0 | 72 * | | +------------+ +3072 73 * +--------+ | Linux pt 1 | 74 * | | +------------+ +4096 75 * 76 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and 77 * PTE_xxx for definitions of bits appearing in the "h/w pt". 78 * 79 * PMD_xxx definitions refer to bits in the first level page table. 80 * 81 * The "dirty" bit is emulated by only granting hardware write permission 82 * iff the page is marked "writable" and "dirty" in the Linux PTE. This 83 * means that a write to a clean page will cause a permission fault, and 84 * the Linux MM layer will mark the page dirty via handle_pte_fault(). 85 * For the hardware to notice the permission change, the TLB entry must 86 * be flushed, and ptep_establish() does that for us. 87 * 88 * The "accessed" or "young" bit is emulated by a similar method; we only 89 * allow accesses to the page if the "young" bit is set. Accesses to the 90 * page will cause a fault, and handle_pte_fault() will set the young bit 91 * for us as long as the page is marked present in the corresponding Linux 92 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to 93 * date. 94 * 95 * However, when the "young" bit is cleared, we deny access to the page 96 * by clearing the hardware PTE. Currently Linux does not flush the TLB 97 * for us in this case, which means the TLB will retain the transation 98 * until either the TLB entry is evicted under pressure, or a context 99 * switch which changes the user space mapping occurs. 100 */ 101#define PTRS_PER_PTE 512 102#define PTRS_PER_PMD 1 103#define PTRS_PER_PGD 2048 104 105/* 106 * PMD_SHIFT determines the size of the area a second-level page table can map 107 * PGDIR_SHIFT determines what a third-level page table entry can map 108 */ 109#define PMD_SHIFT 21 110#define PGDIR_SHIFT 21 111 112#define LIBRARY_TEXT_START 0x0c000000 113 114#ifndef __ASSEMBLY__ 115extern void __pte_error(const char *file, int line, unsigned long val); 116extern void __pmd_error(const char *file, int line, unsigned long val); 117extern void __pgd_error(const char *file, int line, unsigned long val); 118 119#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 120#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 121#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 122#endif /* !__ASSEMBLY__ */ 123 124#define PMD_SIZE (1UL << PMD_SHIFT) 125#define PMD_MASK (~(PMD_SIZE-1)) 126#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 127#define PGDIR_MASK (~(PGDIR_SIZE-1)) 128 129/* 130 * This is the lowest virtual address we can permit any user space 131 * mapping to be mapped at. This is particularly important for 132 * non-high vector CPUs. 133 */ 134#define FIRST_USER_ADDRESS PAGE_SIZE 135 136#define FIRST_USER_PGD_NR 1 137#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) 138 139/* 140 * section address mask and size definitions. 141 */ 142#define SECTION_SHIFT 20 143#define SECTION_SIZE (1UL << SECTION_SHIFT) 144#define SECTION_MASK (~(SECTION_SIZE-1)) 145 146/* 147 * ARMv6 supersection address mask and size definitions. 148 */ 149#define SUPERSECTION_SHIFT 24 150#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) 151#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) 152 153/* 154 * "Linux" PTE definitions. 155 * 156 * We keep two sets of PTEs - the hardware and the linux version. 157 * This allows greater flexibility in the way we map the Linux bits 158 * onto the hardware tables, and allows us to have YOUNG and DIRTY 159 * bits. 160 * 161 * The PTE table pointer refers to the hardware entries; the "Linux" 162 * entries are stored 1024 bytes below. 163 */ 164#define L_PTE_PRESENT (1 << 0) 165#define L_PTE_FILE (1 << 1) /* only when !PRESENT */ 166#define L_PTE_YOUNG (1 << 1) 167#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ 168#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ 169#define L_PTE_USER (1 << 4) 170#define L_PTE_WRITE (1 << 5) 171#define L_PTE_EXEC (1 << 6) 172#define L_PTE_DIRTY (1 << 7) 173#define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */ 174 175#ifndef __ASSEMBLY__ 176 177/* 178 * The pgprot_* and protection_map entries will be fixed up in runtime 179 * to include the cachable and bufferable bits based on memory policy, 180 * as well as any architecture dependent bits like global/ASID and SMP 181 * shared mapping bits. 182 */ 183#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE 184#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC 185 186extern pgprot_t pgprot_user; 187extern pgprot_t pgprot_kernel; 188 189#define PAGE_NONE pgprot_user 190#define PAGE_COPY __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ) 191#define PAGE_SHARED __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ | \ 192 L_PTE_WRITE) 193#define PAGE_READONLY __pgprot(pgprot_val(pgprot_user) | _L_PTE_READ) 194#define PAGE_KERNEL pgprot_kernel 195 196#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT) 197#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 198#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) 199#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 200 201#endif /* __ASSEMBLY__ */ 202 203/* 204 * The table below defines the page protection levels that we insert into our 205 * Linux page table version. These get translated into the best that the 206 * architecture can perform. Note that on most ARM hardware: 207 * 1) We cannot do execute protection 208 * 2) If we could do execute protection, then read is implied 209 * 3) write implies read permissions 210 */ 211#define __P000 __PAGE_NONE 212#define __P001 __PAGE_READONLY 213#define __P010 __PAGE_COPY 214#define __P011 __PAGE_COPY 215#define __P100 __PAGE_READONLY 216#define __P101 __PAGE_READONLY 217#define __P110 __PAGE_COPY 218#define __P111 __PAGE_COPY 219 220#define __S000 __PAGE_NONE 221#define __S001 __PAGE_READONLY 222#define __S010 __PAGE_SHARED 223#define __S011 __PAGE_SHARED 224#define __S100 __PAGE_READONLY 225#define __S101 __PAGE_READONLY 226#define __S110 __PAGE_SHARED 227#define __S111 __PAGE_SHARED 228 229#ifndef __ASSEMBLY__ 230/* 231 * ZERO_PAGE is a global shared page that is always zero: used 232 * for zero-mapped memory areas etc.. 233 */ 234extern struct page *empty_zero_page; 235#define ZERO_PAGE(vaddr) (empty_zero_page) 236 237#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 238#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) 239 240#define pte_none(pte) (!pte_val(pte)) 241#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0) 242#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 243#define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) 244#define pte_offset_map(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) 245#define pte_offset_map_nested(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) 246#define pte_unmap(pte) do { } while (0) 247#define pte_unmap_nested(pte) do { } while (0) 248 249#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) 250 251#define set_pte_at(mm,addr,ptep,pteval) do { \ 252 set_pte_ext(ptep, pteval, (addr) >= PAGE_OFFSET ? 0 : PTE_EXT_NG); \ 253 } while (0) 254 255/* 256 * The following only work if pte_present() is true. 257 * Undefined behaviour if not.. 258 */ 259#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) 260#define pte_read(pte) (pte_val(pte) & L_PTE_USER) 261#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) 262#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC) 263#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) 264#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) 265 266/* 267 * The following only works if pte_present() is not true. 268 */ 269#define pte_file(pte) (pte_val(pte) & L_PTE_FILE) 270#define pte_to_pgoff(x) (pte_val(x) >> 2) 271#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) 272 273#define PTE_FILE_MAX_BITS 30 274 275#define PTE_BIT_FUNC(fn,op) \ 276static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } 277 278/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/ 279/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/ 280PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); 281PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); 282PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC); 283PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC); 284PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); 285PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); 286PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); 287PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); 288 289/* 290 * Mark the prot value as uncacheable and unbufferable. 291 */ 292#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) 293#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) 294 295#define pmd_none(pmd) (!pmd_val(pmd)) 296#define pmd_present(pmd) (pmd_val(pmd)) 297#define pmd_bad(pmd) (pmd_val(pmd) & 2) 298 299#define copy_pmd(pmdpd,pmdps) \ 300 do { \ 301 pmdpd[0] = pmdps[0]; \ 302 pmdpd[1] = pmdps[1]; \ 303 flush_pmd_entry(pmdpd); \ 304 } while (0) 305 306#define pmd_clear(pmdp) \ 307 do { \ 308 pmdp[0] = __pmd(0); \ 309 pmdp[1] = __pmd(0); \ 310 clean_pmd_entry(pmdp); \ 311 } while (0) 312 313static inline pte_t *pmd_page_vaddr(pmd_t pmd) 314{ 315 unsigned long ptr; 316 317 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); 318 ptr += PTRS_PER_PTE * sizeof(void *); 319 320 return __va(ptr); 321} 322 323#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) 324 325/* 326 * Permanent address of a page. We never have highmem, so this is trivial. 327 */ 328#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) 329 330/* 331 * Conversion functions: convert a page and protection to a page entry, 332 * and a page entry and page directory to the page they refer to. 333 */ 334#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 335 336/* 337 * The "pgd_xxx()" functions here are trivial for a folded two-level 338 * setup: the pgd is never bad, and a pmd always exists (as it's folded 339 * into the pgd entry) 340 */ 341#define pgd_none(pgd) (0) 342#define pgd_bad(pgd) (0) 343#define pgd_present(pgd) (1) 344#define pgd_clear(pgdp) do { } while (0) 345#define set_pgd(pgd,pgdp) do { } while (0) 346 347/* to find an entry in a page-table-directory */ 348#define pgd_index(addr) ((addr) >> PGDIR_SHIFT) 349 350#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) 351 352/* to find an entry in a kernel page-table-directory */ 353#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 354 355/* Find an entry in the second-level page table.. */ 356#define pmd_offset(dir, addr) ((pmd_t *)(dir)) 357 358/* Find an entry in the third-level page table.. */ 359#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 360 361static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 362{ 363 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; 364 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 365 return pte; 366} 367 368extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 369 370/* Encode and decode a swap entry. 371 * 372 * We support up to 32GB of swap on 4k machines 373 */ 374#define __swp_type(x) (((x).val >> 2) & 0x7f) 375#define __swp_offset(x) ((x).val >> 9) 376#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) 377#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 378#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 379 380/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 381/* FIXME: this is not correct */ 382#define kern_addr_valid(addr) (1) 383 384#include <asm-generic/pgtable.h> 385 386/* 387 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 388 */ 389#define HAVE_ARCH_UNMAPPED_AREA 390 391/* 392 * remap a physical page `pfn' of size `size' with page protection `prot' 393 * into virtual address `from' 394 */ 395#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 396 remap_pfn_range(vma, from, pfn, size, prot) 397 398#define MK_IOSPACE_PFN(space, pfn) (pfn) 399#define GET_IOSPACE(pfn) 0 400#define GET_PFN(pfn) (pfn) 401 402#define pgtable_cache_init() do { } while (0) 403 404#endif /* !__ASSEMBLY__ */ 405 406#endif /* CONFIG_MMU */ 407 408#endif /* _ASMARM_PGTABLE_H */