at v2.6.21 14 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/sched.h> 14#include <linux/mm.h> 15 16#include <asm/glue.h> 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * Cache Model 23 * =========== 24 */ 25#undef _CACHE 26#undef MULTI_CACHE 27 28#if defined(CONFIG_CPU_CACHE_V3) 29# ifdef _CACHE 30# define MULTI_CACHE 1 31# else 32# define _CACHE v3 33# endif 34#endif 35 36#if defined(CONFIG_CPU_CACHE_V4) 37# ifdef _CACHE 38# define MULTI_CACHE 1 39# else 40# define _CACHE v4 41# endif 42#endif 43 44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46# define MULTI_CACHE 1 47#endif 48 49#if defined(CONFIG_CPU_ARM926T) 50# ifdef _CACHE 51# define MULTI_CACHE 1 52# else 53# define _CACHE arm926 54# endif 55#endif 56 57#if defined(CONFIG_CPU_ARM940T) 58# ifdef _CACHE 59# define MULTI_CACHE 1 60# else 61# define _CACHE arm940 62# endif 63#endif 64 65#if defined(CONFIG_CPU_ARM946E) 66# ifdef _CACHE 67# define MULTI_CACHE 1 68# else 69# define _CACHE arm946 70# endif 71#endif 72 73#if defined(CONFIG_CPU_CACHE_V4WB) 74# ifdef _CACHE 75# define MULTI_CACHE 1 76# else 77# define _CACHE v4wb 78# endif 79#endif 80 81#if defined(CONFIG_CPU_XSCALE) 82# ifdef _CACHE 83# define MULTI_CACHE 1 84# else 85# define _CACHE xscale 86# endif 87#endif 88 89#if defined(CONFIG_CPU_XSC3) 90# ifdef _CACHE 91# define MULTI_CACHE 1 92# else 93# define _CACHE xsc3 94# endif 95#endif 96 97#if defined(CONFIG_CPU_V6) 98//# ifdef _CACHE 99# define MULTI_CACHE 1 100//# else 101//# define _CACHE v6 102//# endif 103#endif 104 105#if !defined(_CACHE) && !defined(MULTI_CACHE) 106#error Unknown cache maintainence model 107#endif 108 109/* 110 * This flag is used to indicate that the page pointed to by a pte 111 * is dirty and requires cleaning before returning it to the user. 112 */ 113#define PG_dcache_dirty PG_arch_1 114 115/* 116 * MM Cache Management 117 * =================== 118 * 119 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 120 * implement these methods. 121 * 122 * Start addresses are inclusive and end addresses are exclusive; 123 * start addresses should be rounded down, end addresses up. 124 * 125 * See Documentation/cachetlb.txt for more information. 126 * Please note that the implementation of these, and the required 127 * effects are cache-type (VIVT/VIPT/PIPT) specific. 128 * 129 * flush_cache_kern_all() 130 * 131 * Unconditionally clean and invalidate the entire cache. 132 * 133 * flush_cache_user_mm(mm) 134 * 135 * Clean and invalidate all user space cache entries 136 * before a change of page tables. 137 * 138 * flush_cache_user_range(start, end, flags) 139 * 140 * Clean and invalidate a range of cache entries in the 141 * specified address space before a change of page tables. 142 * - start - user start address (inclusive, page aligned) 143 * - end - user end address (exclusive, page aligned) 144 * - flags - vma->vm_flags field 145 * 146 * coherent_kern_range(start, end) 147 * 148 * Ensure coherency between the Icache and the Dcache in the 149 * region described by start, end. If you have non-snooping 150 * Harvard caches, you need to implement this function. 151 * - start - virtual start address 152 * - end - virtual end address 153 * 154 * DMA Cache Coherency 155 * =================== 156 * 157 * dma_inv_range(start, end) 158 * 159 * Invalidate (discard) the specified virtual address range. 160 * May not write back any entries. If 'start' or 'end' 161 * are not cache line aligned, those lines must be written 162 * back. 163 * - start - virtual start address 164 * - end - virtual end address 165 * 166 * dma_clean_range(start, end) 167 * 168 * Clean (write back) the specified virtual address range. 169 * - start - virtual start address 170 * - end - virtual end address 171 * 172 * dma_flush_range(start, end) 173 * 174 * Clean and invalidate the specified virtual address range. 175 * - start - virtual start address 176 * - end - virtual end address 177 */ 178 179struct cpu_cache_fns { 180 void (*flush_kern_all)(void); 181 void (*flush_user_all)(void); 182 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 183 184 void (*coherent_kern_range)(unsigned long, unsigned long); 185 void (*coherent_user_range)(unsigned long, unsigned long); 186 void (*flush_kern_dcache_page)(void *); 187 188 void (*dma_inv_range)(const void *, const void *); 189 void (*dma_clean_range)(const void *, const void *); 190 void (*dma_flush_range)(const void *, const void *); 191}; 192 193struct outer_cache_fns { 194 void (*inv_range)(unsigned long, unsigned long); 195 void (*clean_range)(unsigned long, unsigned long); 196 void (*flush_range)(unsigned long, unsigned long); 197}; 198 199/* 200 * Select the calling method 201 */ 202#ifdef MULTI_CACHE 203 204extern struct cpu_cache_fns cpu_cache; 205 206#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 207#define __cpuc_flush_user_all cpu_cache.flush_user_all 208#define __cpuc_flush_user_range cpu_cache.flush_user_range 209#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 210#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 211#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 212 213/* 214 * These are private to the dma-mapping API. Do not use directly. 215 * Their sole purpose is to ensure that data held in the cache 216 * is visible to DMA, or data written by DMA to system memory is 217 * visible to the CPU. 218 */ 219#define dmac_inv_range cpu_cache.dma_inv_range 220#define dmac_clean_range cpu_cache.dma_clean_range 221#define dmac_flush_range cpu_cache.dma_flush_range 222 223#else 224 225#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 226#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 227#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 228#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 229#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 230#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 231 232extern void __cpuc_flush_kern_all(void); 233extern void __cpuc_flush_user_all(void); 234extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 235extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 236extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 237extern void __cpuc_flush_dcache_page(void *); 238 239/* 240 * These are private to the dma-mapping API. Do not use directly. 241 * Their sole purpose is to ensure that data held in the cache 242 * is visible to DMA, or data written by DMA to system memory is 243 * visible to the CPU. 244 */ 245#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 246#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 247#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 248 249extern void dmac_inv_range(const void *, const void *); 250extern void dmac_clean_range(const void *, const void *); 251extern void dmac_flush_range(const void *, const void *); 252 253#endif 254 255#ifdef CONFIG_OUTER_CACHE 256 257extern struct outer_cache_fns outer_cache; 258 259static inline void outer_inv_range(unsigned long start, unsigned long end) 260{ 261 if (outer_cache.inv_range) 262 outer_cache.inv_range(start, end); 263} 264static inline void outer_clean_range(unsigned long start, unsigned long end) 265{ 266 if (outer_cache.clean_range) 267 outer_cache.clean_range(start, end); 268} 269static inline void outer_flush_range(unsigned long start, unsigned long end) 270{ 271 if (outer_cache.flush_range) 272 outer_cache.flush_range(start, end); 273} 274 275#else 276 277static inline void outer_inv_range(unsigned long start, unsigned long end) 278{ } 279static inline void outer_clean_range(unsigned long start, unsigned long end) 280{ } 281static inline void outer_flush_range(unsigned long start, unsigned long end) 282{ } 283 284#endif 285 286/* 287 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 288 * vmalloc, ioremap etc) in kernel space for pages. Since the 289 * direct-mappings of these pages may contain cached data, we need 290 * to do a full cache flush to ensure that writebacks don't corrupt 291 * data placed into these pages via the new mappings. 292 */ 293#define flush_cache_vmap(start, end) flush_cache_all() 294#define flush_cache_vunmap(start, end) flush_cache_all() 295 296/* 297 * Copy user data from/to a page which is mapped into a different 298 * processes address space. Really, we want to allow our "user 299 * space" model to handle this. 300 */ 301#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 302 do { \ 303 memcpy(dst, src, len); \ 304 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 305 } while (0) 306 307#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 308 do { \ 309 memcpy(dst, src, len); \ 310 } while (0) 311 312/* 313 * Convert calls to our calling convention. 314 */ 315#define flush_cache_all() __cpuc_flush_kern_all() 316#ifndef CONFIG_CPU_CACHE_VIPT 317static inline void flush_cache_mm(struct mm_struct *mm) 318{ 319 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 320 __cpuc_flush_user_all(); 321} 322 323static inline void 324flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 325{ 326 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 327 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 328 vma->vm_flags); 329} 330 331static inline void 332flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 333{ 334 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 335 unsigned long addr = user_addr & PAGE_MASK; 336 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 337 } 338} 339 340static inline void 341flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 342 unsigned long uaddr, void *kaddr, 343 unsigned long len, int write) 344{ 345 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 346 unsigned long addr = (unsigned long)kaddr; 347 __cpuc_coherent_kern_range(addr, addr + len); 348 } 349} 350#else 351extern void flush_cache_mm(struct mm_struct *mm); 352extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 353extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 354extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 355 unsigned long uaddr, void *kaddr, 356 unsigned long len, int write); 357#endif 358 359#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 360 361/* 362 * flush_cache_user_range is used when we want to ensure that the 363 * Harvard caches are synchronised for the user space address range. 364 * This is used for the ARM private sys_cacheflush system call. 365 */ 366#define flush_cache_user_range(vma,start,end) \ 367 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 368 369/* 370 * Perform necessary cache operations to ensure that data previously 371 * stored within this range of addresses can be executed by the CPU. 372 */ 373#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 374 375/* 376 * Perform necessary cache operations to ensure that the TLB will 377 * see data written in the specified area. 378 */ 379#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 380 381/* 382 * flush_dcache_page is used when the kernel has written to the page 383 * cache page at virtual address page->virtual. 384 * 385 * If this page isn't mapped (ie, page_mapping == NULL), or it might 386 * have userspace mappings, then we _must_ always clean + invalidate 387 * the dcache entries associated with the kernel mapping. 388 * 389 * Otherwise we can defer the operation, and clean the cache when we are 390 * about to change to user space. This is the same method as used on SPARC64. 391 * See update_mmu_cache for the user space part. 392 */ 393extern void flush_dcache_page(struct page *); 394 395extern void __flush_dcache_page(struct address_space *mapping, struct page *page); 396 397#define ARCH_HAS_FLUSH_ANON_PAGE 398static inline void flush_anon_page(struct vm_area_struct *vma, 399 struct page *page, unsigned long vmaddr) 400{ 401 extern void __flush_anon_page(struct vm_area_struct *vma, 402 struct page *, unsigned long); 403 if (PageAnon(page)) 404 __flush_anon_page(vma, page, vmaddr); 405} 406 407#define flush_dcache_mmap_lock(mapping) \ 408 write_lock_irq(&(mapping)->tree_lock) 409#define flush_dcache_mmap_unlock(mapping) \ 410 write_unlock_irq(&(mapping)->tree_lock) 411 412#define flush_icache_user_range(vma,page,addr,len) \ 413 flush_dcache_page(page) 414 415/* 416 * We don't appear to need to do anything here. In fact, if we did, we'd 417 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 418 */ 419#define flush_icache_page(vma,page) do { } while (0) 420 421#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 422#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 423#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 424#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 425#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 426 427#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 428 429#define cache_is_vivt() 1 430#define cache_is_vipt() 0 431#define cache_is_vipt_nonaliasing() 0 432#define cache_is_vipt_aliasing() 0 433 434#elif defined(CONFIG_CPU_CACHE_VIPT) 435 436#define cache_is_vivt() 0 437#define cache_is_vipt() 1 438#define cache_is_vipt_nonaliasing() \ 439 ({ \ 440 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 441 __cacheid_vipt_nonaliasing(__val); \ 442 }) 443 444#define cache_is_vipt_aliasing() \ 445 ({ \ 446 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 447 __cacheid_vipt_aliasing(__val); \ 448 }) 449 450#else 451 452#define cache_is_vivt() \ 453 ({ \ 454 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 455 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 456 }) 457 458#define cache_is_vipt() \ 459 ({ \ 460 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 461 __cacheid_present(__val) && __cacheid_vipt(__val); \ 462 }) 463 464#define cache_is_vipt_nonaliasing() \ 465 ({ \ 466 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 467 __cacheid_present(__val) && \ 468 __cacheid_vipt_nonaliasing(__val); \ 469 }) 470 471#define cache_is_vipt_aliasing() \ 472 ({ \ 473 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 474 __cacheid_present(__val) && \ 475 __cacheid_vipt_aliasing(__val); \ 476 }) 477 478#endif 479 480#endif