at v2.6.21 19 kB view raw
1/* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6/* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29#include <linux/kernel.h> 30#include <linux/module.h> 31 32#include <linux/hash.h> 33#include <linux/fs.h> 34#include <linux/mm.h> 35#include <linux/slab.h> 36#include <linux/sched.h> 37#include <linux/init.h> 38#include <linux/mbcache.h> 39 40 41#ifdef MB_CACHE_DEBUG 42# define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46#define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49#else 50# define mb_debug(f...) do { } while(0) 51# define mb_assert(c) do { } while(0) 52#endif 53#define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64MODULE_LICENSE("GPL"); 65 66EXPORT_SYMBOL(mb_cache_create); 67EXPORT_SYMBOL(mb_cache_shrink); 68EXPORT_SYMBOL(mb_cache_destroy); 69EXPORT_SYMBOL(mb_cache_entry_alloc); 70EXPORT_SYMBOL(mb_cache_entry_insert); 71EXPORT_SYMBOL(mb_cache_entry_release); 72EXPORT_SYMBOL(mb_cache_entry_free); 73EXPORT_SYMBOL(mb_cache_entry_get); 74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75EXPORT_SYMBOL(mb_cache_entry_find_first); 76EXPORT_SYMBOL(mb_cache_entry_find_next); 77#endif 78 79struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 struct mb_cache_op c_op; 83 atomic_t c_entry_count; 84 int c_bucket_bits; 85#ifndef MB_CACHE_INDEXES_COUNT 86 int c_indexes_count; 87#endif 88 struct kmem_cache *c_entry_cache; 89 struct list_head *c_block_hash; 90 struct list_head *c_indexes_hash[0]; 91}; 92 93 94/* 95 * Global data: list of all mbcache's, lru list, and a spinlock for 96 * accessing cache data structures on SMP machines. The lru list is 97 * global across all mbcaches. 98 */ 99 100static LIST_HEAD(mb_cache_list); 101static LIST_HEAD(mb_cache_lru_list); 102static DEFINE_SPINLOCK(mb_cache_spinlock); 103static struct shrinker *mb_shrinker; 104 105static inline int 106mb_cache_indexes(struct mb_cache *cache) 107{ 108#ifdef MB_CACHE_INDEXES_COUNT 109 return MB_CACHE_INDEXES_COUNT; 110#else 111 return cache->c_indexes_count; 112#endif 113} 114 115/* 116 * What the mbcache registers as to get shrunk dynamically. 117 */ 118 119static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask); 120 121 122static inline int 123__mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 124{ 125 return !list_empty(&ce->e_block_list); 126} 127 128 129static void 130__mb_cache_entry_unhash(struct mb_cache_entry *ce) 131{ 132 int n; 133 134 if (__mb_cache_entry_is_hashed(ce)) { 135 list_del_init(&ce->e_block_list); 136 for (n=0; n<mb_cache_indexes(ce->e_cache); n++) 137 list_del(&ce->e_indexes[n].o_list); 138 } 139} 140 141 142static void 143__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 144{ 145 struct mb_cache *cache = ce->e_cache; 146 147 mb_assert(!(ce->e_used || ce->e_queued)); 148 if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { 149 /* free failed -- put back on the lru list 150 for freeing later. */ 151 spin_lock(&mb_cache_spinlock); 152 list_add(&ce->e_lru_list, &mb_cache_lru_list); 153 spin_unlock(&mb_cache_spinlock); 154 } else { 155 kmem_cache_free(cache->c_entry_cache, ce); 156 atomic_dec(&cache->c_entry_count); 157 } 158} 159 160 161static void 162__mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 163 __releases(mb_cache_spinlock) 164{ 165 /* Wake up all processes queuing for this cache entry. */ 166 if (ce->e_queued) 167 wake_up_all(&mb_cache_queue); 168 if (ce->e_used >= MB_CACHE_WRITER) 169 ce->e_used -= MB_CACHE_WRITER; 170 ce->e_used--; 171 if (!(ce->e_used || ce->e_queued)) { 172 if (!__mb_cache_entry_is_hashed(ce)) 173 goto forget; 174 mb_assert(list_empty(&ce->e_lru_list)); 175 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 176 } 177 spin_unlock(&mb_cache_spinlock); 178 return; 179forget: 180 spin_unlock(&mb_cache_spinlock); 181 __mb_cache_entry_forget(ce, GFP_KERNEL); 182} 183 184 185/* 186 * mb_cache_shrink_fn() memory pressure callback 187 * 188 * This function is called by the kernel memory management when memory 189 * gets low. 190 * 191 * @nr_to_scan: Number of objects to scan 192 * @gfp_mask: (ignored) 193 * 194 * Returns the number of objects which are present in the cache. 195 */ 196static int 197mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask) 198{ 199 LIST_HEAD(free_list); 200 struct list_head *l, *ltmp; 201 int count = 0; 202 203 spin_lock(&mb_cache_spinlock); 204 list_for_each(l, &mb_cache_list) { 205 struct mb_cache *cache = 206 list_entry(l, struct mb_cache, c_cache_list); 207 mb_debug("cache %s (%d)", cache->c_name, 208 atomic_read(&cache->c_entry_count)); 209 count += atomic_read(&cache->c_entry_count); 210 } 211 mb_debug("trying to free %d entries", nr_to_scan); 212 if (nr_to_scan == 0) { 213 spin_unlock(&mb_cache_spinlock); 214 goto out; 215 } 216 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 217 struct mb_cache_entry *ce = 218 list_entry(mb_cache_lru_list.next, 219 struct mb_cache_entry, e_lru_list); 220 list_move_tail(&ce->e_lru_list, &free_list); 221 __mb_cache_entry_unhash(ce); 222 } 223 spin_unlock(&mb_cache_spinlock); 224 list_for_each_safe(l, ltmp, &free_list) { 225 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 226 e_lru_list), gfp_mask); 227 } 228out: 229 return (count / 100) * sysctl_vfs_cache_pressure; 230} 231 232 233/* 234 * mb_cache_create() create a new cache 235 * 236 * All entries in one cache are equal size. Cache entries may be from 237 * multiple devices. If this is the first mbcache created, registers 238 * the cache with kernel memory management. Returns NULL if no more 239 * memory was available. 240 * 241 * @name: name of the cache (informal) 242 * @cache_op: contains the callback called when freeing a cache entry 243 * @entry_size: The size of a cache entry, including 244 * struct mb_cache_entry 245 * @indexes_count: number of additional indexes in the cache. Must equal 246 * MB_CACHE_INDEXES_COUNT if the number of indexes is 247 * hardwired. 248 * @bucket_bits: log2(number of hash buckets) 249 */ 250struct mb_cache * 251mb_cache_create(const char *name, struct mb_cache_op *cache_op, 252 size_t entry_size, int indexes_count, int bucket_bits) 253{ 254 int m=0, n, bucket_count = 1 << bucket_bits; 255 struct mb_cache *cache = NULL; 256 257 if(entry_size < sizeof(struct mb_cache_entry) + 258 indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) 259 return NULL; 260 261 cache = kmalloc(sizeof(struct mb_cache) + 262 indexes_count * sizeof(struct list_head), GFP_KERNEL); 263 if (!cache) 264 goto fail; 265 cache->c_name = name; 266 cache->c_op.free = NULL; 267 if (cache_op) 268 cache->c_op.free = cache_op->free; 269 atomic_set(&cache->c_entry_count, 0); 270 cache->c_bucket_bits = bucket_bits; 271#ifdef MB_CACHE_INDEXES_COUNT 272 mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); 273#else 274 cache->c_indexes_count = indexes_count; 275#endif 276 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 277 GFP_KERNEL); 278 if (!cache->c_block_hash) 279 goto fail; 280 for (n=0; n<bucket_count; n++) 281 INIT_LIST_HEAD(&cache->c_block_hash[n]); 282 for (m=0; m<indexes_count; m++) { 283 cache->c_indexes_hash[m] = kmalloc(bucket_count * 284 sizeof(struct list_head), 285 GFP_KERNEL); 286 if (!cache->c_indexes_hash[m]) 287 goto fail; 288 for (n=0; n<bucket_count; n++) 289 INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); 290 } 291 cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, 292 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL, NULL); 293 if (!cache->c_entry_cache) 294 goto fail; 295 296 spin_lock(&mb_cache_spinlock); 297 list_add(&cache->c_cache_list, &mb_cache_list); 298 spin_unlock(&mb_cache_spinlock); 299 return cache; 300 301fail: 302 if (cache) { 303 while (--m >= 0) 304 kfree(cache->c_indexes_hash[m]); 305 kfree(cache->c_block_hash); 306 kfree(cache); 307 } 308 return NULL; 309} 310 311 312/* 313 * mb_cache_shrink() 314 * 315 * Removes all cache entries of a device from the cache. All cache entries 316 * currently in use cannot be freed, and thus remain in the cache. All others 317 * are freed. 318 * 319 * @bdev: which device's cache entries to shrink 320 */ 321void 322mb_cache_shrink(struct block_device *bdev) 323{ 324 LIST_HEAD(free_list); 325 struct list_head *l, *ltmp; 326 327 spin_lock(&mb_cache_spinlock); 328 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 329 struct mb_cache_entry *ce = 330 list_entry(l, struct mb_cache_entry, e_lru_list); 331 if (ce->e_bdev == bdev) { 332 list_move_tail(&ce->e_lru_list, &free_list); 333 __mb_cache_entry_unhash(ce); 334 } 335 } 336 spin_unlock(&mb_cache_spinlock); 337 list_for_each_safe(l, ltmp, &free_list) { 338 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 339 e_lru_list), GFP_KERNEL); 340 } 341} 342 343 344/* 345 * mb_cache_destroy() 346 * 347 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 348 * and then destroys it. If this was the last mbcache, un-registers the 349 * mbcache from kernel memory management. 350 */ 351void 352mb_cache_destroy(struct mb_cache *cache) 353{ 354 LIST_HEAD(free_list); 355 struct list_head *l, *ltmp; 356 int n; 357 358 spin_lock(&mb_cache_spinlock); 359 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 360 struct mb_cache_entry *ce = 361 list_entry(l, struct mb_cache_entry, e_lru_list); 362 if (ce->e_cache == cache) { 363 list_move_tail(&ce->e_lru_list, &free_list); 364 __mb_cache_entry_unhash(ce); 365 } 366 } 367 list_del(&cache->c_cache_list); 368 spin_unlock(&mb_cache_spinlock); 369 370 list_for_each_safe(l, ltmp, &free_list) { 371 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 372 e_lru_list), GFP_KERNEL); 373 } 374 375 if (atomic_read(&cache->c_entry_count) > 0) { 376 mb_error("cache %s: %d orphaned entries", 377 cache->c_name, 378 atomic_read(&cache->c_entry_count)); 379 } 380 381 kmem_cache_destroy(cache->c_entry_cache); 382 383 for (n=0; n < mb_cache_indexes(cache); n++) 384 kfree(cache->c_indexes_hash[n]); 385 kfree(cache->c_block_hash); 386 kfree(cache); 387} 388 389 390/* 391 * mb_cache_entry_alloc() 392 * 393 * Allocates a new cache entry. The new entry will not be valid initially, 394 * and thus cannot be looked up yet. It should be filled with data, and 395 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 396 * if no more memory was available. 397 */ 398struct mb_cache_entry * 399mb_cache_entry_alloc(struct mb_cache *cache) 400{ 401 struct mb_cache_entry *ce; 402 403 atomic_inc(&cache->c_entry_count); 404 ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL); 405 if (ce) { 406 INIT_LIST_HEAD(&ce->e_lru_list); 407 INIT_LIST_HEAD(&ce->e_block_list); 408 ce->e_cache = cache; 409 ce->e_used = 1 + MB_CACHE_WRITER; 410 ce->e_queued = 0; 411 } 412 return ce; 413} 414 415 416/* 417 * mb_cache_entry_insert() 418 * 419 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 420 * the cache. After this, the cache entry can be looked up, but is not yet 421 * in the lru list as the caller still holds a handle to it. Returns 0 on 422 * success, or -EBUSY if a cache entry for that device + inode exists 423 * already (this may happen after a failed lookup, but when another process 424 * has inserted the same cache entry in the meantime). 425 * 426 * @bdev: device the cache entry belongs to 427 * @block: block number 428 * @keys: array of additional keys. There must be indexes_count entries 429 * in the array (as specified when creating the cache). 430 */ 431int 432mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 433 sector_t block, unsigned int keys[]) 434{ 435 struct mb_cache *cache = ce->e_cache; 436 unsigned int bucket; 437 struct list_head *l; 438 int error = -EBUSY, n; 439 440 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 441 cache->c_bucket_bits); 442 spin_lock(&mb_cache_spinlock); 443 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 444 struct mb_cache_entry *ce = 445 list_entry(l, struct mb_cache_entry, e_block_list); 446 if (ce->e_bdev == bdev && ce->e_block == block) 447 goto out; 448 } 449 __mb_cache_entry_unhash(ce); 450 ce->e_bdev = bdev; 451 ce->e_block = block; 452 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 453 for (n=0; n<mb_cache_indexes(cache); n++) { 454 ce->e_indexes[n].o_key = keys[n]; 455 bucket = hash_long(keys[n], cache->c_bucket_bits); 456 list_add(&ce->e_indexes[n].o_list, 457 &cache->c_indexes_hash[n][bucket]); 458 } 459 error = 0; 460out: 461 spin_unlock(&mb_cache_spinlock); 462 return error; 463} 464 465 466/* 467 * mb_cache_entry_release() 468 * 469 * Release a handle to a cache entry. When the last handle to a cache entry 470 * is released it is either freed (if it is invalid) or otherwise inserted 471 * in to the lru list. 472 */ 473void 474mb_cache_entry_release(struct mb_cache_entry *ce) 475{ 476 spin_lock(&mb_cache_spinlock); 477 __mb_cache_entry_release_unlock(ce); 478} 479 480 481/* 482 * mb_cache_entry_free() 483 * 484 * This is equivalent to the sequence mb_cache_entry_takeout() -- 485 * mb_cache_entry_release(). 486 */ 487void 488mb_cache_entry_free(struct mb_cache_entry *ce) 489{ 490 spin_lock(&mb_cache_spinlock); 491 mb_assert(list_empty(&ce->e_lru_list)); 492 __mb_cache_entry_unhash(ce); 493 __mb_cache_entry_release_unlock(ce); 494} 495 496 497/* 498 * mb_cache_entry_get() 499 * 500 * Get a cache entry by device / block number. (There can only be one entry 501 * in the cache per device and block.) Returns NULL if no such cache entry 502 * exists. The returned cache entry is locked for exclusive access ("single 503 * writer"). 504 */ 505struct mb_cache_entry * 506mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 507 sector_t block) 508{ 509 unsigned int bucket; 510 struct list_head *l; 511 struct mb_cache_entry *ce; 512 513 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 514 cache->c_bucket_bits); 515 spin_lock(&mb_cache_spinlock); 516 list_for_each(l, &cache->c_block_hash[bucket]) { 517 ce = list_entry(l, struct mb_cache_entry, e_block_list); 518 if (ce->e_bdev == bdev && ce->e_block == block) { 519 DEFINE_WAIT(wait); 520 521 if (!list_empty(&ce->e_lru_list)) 522 list_del_init(&ce->e_lru_list); 523 524 while (ce->e_used > 0) { 525 ce->e_queued++; 526 prepare_to_wait(&mb_cache_queue, &wait, 527 TASK_UNINTERRUPTIBLE); 528 spin_unlock(&mb_cache_spinlock); 529 schedule(); 530 spin_lock(&mb_cache_spinlock); 531 ce->e_queued--; 532 } 533 finish_wait(&mb_cache_queue, &wait); 534 ce->e_used += 1 + MB_CACHE_WRITER; 535 536 if (!__mb_cache_entry_is_hashed(ce)) { 537 __mb_cache_entry_release_unlock(ce); 538 return NULL; 539 } 540 goto cleanup; 541 } 542 } 543 ce = NULL; 544 545cleanup: 546 spin_unlock(&mb_cache_spinlock); 547 return ce; 548} 549 550#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 551 552static struct mb_cache_entry * 553__mb_cache_entry_find(struct list_head *l, struct list_head *head, 554 int index, struct block_device *bdev, unsigned int key) 555{ 556 while (l != head) { 557 struct mb_cache_entry *ce = 558 list_entry(l, struct mb_cache_entry, 559 e_indexes[index].o_list); 560 if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { 561 DEFINE_WAIT(wait); 562 563 if (!list_empty(&ce->e_lru_list)) 564 list_del_init(&ce->e_lru_list); 565 566 /* Incrementing before holding the lock gives readers 567 priority over writers. */ 568 ce->e_used++; 569 while (ce->e_used >= MB_CACHE_WRITER) { 570 ce->e_queued++; 571 prepare_to_wait(&mb_cache_queue, &wait, 572 TASK_UNINTERRUPTIBLE); 573 spin_unlock(&mb_cache_spinlock); 574 schedule(); 575 spin_lock(&mb_cache_spinlock); 576 ce->e_queued--; 577 } 578 finish_wait(&mb_cache_queue, &wait); 579 580 if (!__mb_cache_entry_is_hashed(ce)) { 581 __mb_cache_entry_release_unlock(ce); 582 spin_lock(&mb_cache_spinlock); 583 return ERR_PTR(-EAGAIN); 584 } 585 return ce; 586 } 587 l = l->next; 588 } 589 return NULL; 590} 591 592 593/* 594 * mb_cache_entry_find_first() 595 * 596 * Find the first cache entry on a given device with a certain key in 597 * an additional index. Additonal matches can be found with 598 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 599 * returned cache entry is locked for shared access ("multiple readers"). 600 * 601 * @cache: the cache to search 602 * @index: the number of the additonal index to search (0<=index<indexes_count) 603 * @bdev: the device the cache entry should belong to 604 * @key: the key in the index 605 */ 606struct mb_cache_entry * 607mb_cache_entry_find_first(struct mb_cache *cache, int index, 608 struct block_device *bdev, unsigned int key) 609{ 610 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 611 struct list_head *l; 612 struct mb_cache_entry *ce; 613 614 mb_assert(index < mb_cache_indexes(cache)); 615 spin_lock(&mb_cache_spinlock); 616 l = cache->c_indexes_hash[index][bucket].next; 617 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 618 index, bdev, key); 619 spin_unlock(&mb_cache_spinlock); 620 return ce; 621} 622 623 624/* 625 * mb_cache_entry_find_next() 626 * 627 * Find the next cache entry on a given device with a certain key in an 628 * additional index. Returns NULL if no match could be found. The previous 629 * entry is atomatically released, so that mb_cache_entry_find_next() can 630 * be called like this: 631 * 632 * entry = mb_cache_entry_find_first(); 633 * while (entry) { 634 * ... 635 * entry = mb_cache_entry_find_next(entry, ...); 636 * } 637 * 638 * @prev: The previous match 639 * @index: the number of the additonal index to search (0<=index<indexes_count) 640 * @bdev: the device the cache entry should belong to 641 * @key: the key in the index 642 */ 643struct mb_cache_entry * 644mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, 645 struct block_device *bdev, unsigned int key) 646{ 647 struct mb_cache *cache = prev->e_cache; 648 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 649 struct list_head *l; 650 struct mb_cache_entry *ce; 651 652 mb_assert(index < mb_cache_indexes(cache)); 653 spin_lock(&mb_cache_spinlock); 654 l = prev->e_indexes[index].o_list.next; 655 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 656 index, bdev, key); 657 __mb_cache_entry_release_unlock(prev); 658 return ce; 659} 660 661#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 662 663static int __init init_mbcache(void) 664{ 665 mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn); 666 return 0; 667} 668 669static void __exit exit_mbcache(void) 670{ 671 remove_shrinker(mb_shrinker); 672} 673 674module_init(init_mbcache) 675module_exit(exit_mbcache) 676