at v2.6.21 3098 lines 101 kB view raw
1/* 2 3 4 Copyright (C) 1996 Digi International. 5 6 For technical support please email digiLinux@dgii.com or 7 call Digi tech support at (612) 912-3456 8 9 ** This driver is no longer supported by Digi ** 10 11 Much of this design and code came from epca.c which was 12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently 13 modified by David Nugent, Christoph Lameter, Mike McLagan. 14 15 This program is free software; you can redistribute it and/or modify 16 it under the terms of the GNU General Public License as published by 17 the Free Software Foundation; either version 2 of the License, or 18 (at your option) any later version. 19 20 This program is distributed in the hope that it will be useful, 21 but WITHOUT ANY WARRANTY; without even the implied warranty of 22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 GNU General Public License for more details. 24 25 You should have received a copy of the GNU General Public License 26 along with this program; if not, write to the Free Software 27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 28 29--------------------------------------------------------------------------- */ 30/* See README.epca for change history --DAT*/ 31 32 33#include <linux/module.h> 34#include <linux/kernel.h> 35#include <linux/types.h> 36#include <linux/init.h> 37#include <linux/serial.h> 38#include <linux/delay.h> 39#include <linux/ctype.h> 40#include <linux/tty.h> 41#include <linux/tty_flip.h> 42#include <linux/slab.h> 43#include <linux/ioport.h> 44#include <linux/interrupt.h> 45#include <asm/uaccess.h> 46#include <asm/io.h> 47#include <linux/spinlock.h> 48#include <linux/pci.h> 49#include "digiPCI.h" 50 51 52#include "digi1.h" 53#include "digiFep1.h" 54#include "epca.h" 55#include "epcaconfig.h" 56 57/* ---------------------- Begin defines ------------------------ */ 58 59#define VERSION "1.3.0.1-LK2.6" 60 61/* This major needs to be submitted to Linux to join the majors list */ 62 63#define DIGIINFOMAJOR 35 /* For Digi specific ioctl */ 64 65 66#define MAXCARDS 7 67#define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg) 68 69#define PFX "epca: " 70 71/* ----------------- Begin global definitions ------------------- */ 72 73static int nbdevs, num_cards, liloconfig; 74static int digi_poller_inhibited = 1 ; 75 76static int setup_error_code; 77static int invalid_lilo_config; 78 79/* The ISA boards do window flipping into the same spaces so its only sane 80 with a single lock. It's still pretty efficient */ 81 82static DEFINE_SPINLOCK(epca_lock); 83 84/* ----------------------------------------------------------------------- 85 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to 86 7 below. 87--------------------------------------------------------------------------*/ 88static struct board_info boards[MAXBOARDS]; 89 90 91/* ------------- Begin structures used for driver registeration ---------- */ 92 93static struct tty_driver *pc_driver; 94static struct tty_driver *pc_info; 95 96/* ------------------ Begin Digi specific structures -------------------- */ 97 98/* ------------------------------------------------------------------------ 99 digi_channels represents an array of structures that keep track of 100 each channel of the Digi product. Information such as transmit and 101 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...) 102 are stored here. This structure is NOT used to overlay the cards 103 physical channel structure. 104-------------------------------------------------------------------------- */ 105 106static struct channel digi_channels[MAX_ALLOC]; 107 108/* ------------------------------------------------------------------------ 109 card_ptr is an array used to hold the address of the 110 first channel structure of each card. This array will hold 111 the addresses of various channels located in digi_channels. 112-------------------------------------------------------------------------- */ 113static struct channel *card_ptr[MAXCARDS]; 114 115static struct timer_list epca_timer; 116 117/* ---------------------- Begin function prototypes --------------------- */ 118 119/* ---------------------------------------------------------------------- 120 Begin generic memory functions. These functions will be alias 121 (point at) more specific functions dependent on the board being 122 configured. 123----------------------------------------------------------------------- */ 124 125static void memwinon(struct board_info *b, unsigned int win); 126static void memwinoff(struct board_info *b, unsigned int win); 127static void globalwinon(struct channel *ch); 128static void rxwinon(struct channel *ch); 129static void txwinon(struct channel *ch); 130static void memoff(struct channel *ch); 131static void assertgwinon(struct channel *ch); 132static void assertmemoff(struct channel *ch); 133 134/* ---- Begin more 'specific' memory functions for cx_like products --- */ 135 136static void pcxem_memwinon(struct board_info *b, unsigned int win); 137static void pcxem_memwinoff(struct board_info *b, unsigned int win); 138static void pcxem_globalwinon(struct channel *ch); 139static void pcxem_rxwinon(struct channel *ch); 140static void pcxem_txwinon(struct channel *ch); 141static void pcxem_memoff(struct channel *ch); 142 143/* ------ Begin more 'specific' memory functions for the pcxe ------- */ 144 145static void pcxe_memwinon(struct board_info *b, unsigned int win); 146static void pcxe_memwinoff(struct board_info *b, unsigned int win); 147static void pcxe_globalwinon(struct channel *ch); 148static void pcxe_rxwinon(struct channel *ch); 149static void pcxe_txwinon(struct channel *ch); 150static void pcxe_memoff(struct channel *ch); 151 152/* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */ 153/* Note : pc64xe and pcxi share the same windowing routines */ 154 155static void pcxi_memwinon(struct board_info *b, unsigned int win); 156static void pcxi_memwinoff(struct board_info *b, unsigned int win); 157static void pcxi_globalwinon(struct channel *ch); 158static void pcxi_rxwinon(struct channel *ch); 159static void pcxi_txwinon(struct channel *ch); 160static void pcxi_memoff(struct channel *ch); 161 162/* - Begin 'specific' do nothing memory functions needed for some cards - */ 163 164static void dummy_memwinon(struct board_info *b, unsigned int win); 165static void dummy_memwinoff(struct board_info *b, unsigned int win); 166static void dummy_globalwinon(struct channel *ch); 167static void dummy_rxwinon(struct channel *ch); 168static void dummy_txwinon(struct channel *ch); 169static void dummy_memoff(struct channel *ch); 170static void dummy_assertgwinon(struct channel *ch); 171static void dummy_assertmemoff(struct channel *ch); 172 173/* ------------------- Begin declare functions ----------------------- */ 174 175static struct channel *verifyChannel(struct tty_struct *); 176static void pc_sched_event(struct channel *, int); 177static void epca_error(int, char *); 178static void pc_close(struct tty_struct *, struct file *); 179static void shutdown(struct channel *); 180static void pc_hangup(struct tty_struct *); 181static void pc_put_char(struct tty_struct *, unsigned char); 182static int pc_write_room(struct tty_struct *); 183static int pc_chars_in_buffer(struct tty_struct *); 184static void pc_flush_buffer(struct tty_struct *); 185static void pc_flush_chars(struct tty_struct *); 186static int block_til_ready(struct tty_struct *, struct file *, 187 struct channel *); 188static int pc_open(struct tty_struct *, struct file *); 189static void post_fep_init(unsigned int crd); 190static void epcapoll(unsigned long); 191static void doevent(int); 192static void fepcmd(struct channel *, int, int, int, int, int); 193static unsigned termios2digi_h(struct channel *ch, unsigned); 194static unsigned termios2digi_i(struct channel *ch, unsigned); 195static unsigned termios2digi_c(struct channel *ch, unsigned); 196static void epcaparam(struct tty_struct *, struct channel *); 197static void receive_data(struct channel *); 198static int pc_ioctl(struct tty_struct *, struct file *, 199 unsigned int, unsigned long); 200static int info_ioctl(struct tty_struct *, struct file *, 201 unsigned int, unsigned long); 202static void pc_set_termios(struct tty_struct *, struct ktermios *); 203static void do_softint(struct work_struct *work); 204static void pc_stop(struct tty_struct *); 205static void pc_start(struct tty_struct *); 206static void pc_throttle(struct tty_struct * tty); 207static void pc_unthrottle(struct tty_struct *tty); 208static void digi_send_break(struct channel *ch, int msec); 209static void setup_empty_event(struct tty_struct *tty, struct channel *ch); 210void epca_setup(char *, int *); 211 212static int pc_write(struct tty_struct *, const unsigned char *, int); 213static int pc_init(void); 214static int init_PCI(void); 215 216 217/* ------------------------------------------------------------------ 218 Table of functions for each board to handle memory. Mantaining 219 parallelism is a *very* good idea here. The idea is for the 220 runtime code to blindly call these functions, not knowing/caring 221 about the underlying hardware. This stuff should contain no 222 conditionals; if more functionality is needed a different entry 223 should be established. These calls are the interface calls and 224 are the only functions that should be accessed. Anyone caught 225 making direct calls deserves what they get. 226-------------------------------------------------------------------- */ 227 228static void memwinon(struct board_info *b, unsigned int win) 229{ 230 (b->memwinon)(b, win); 231} 232 233static void memwinoff(struct board_info *b, unsigned int win) 234{ 235 (b->memwinoff)(b, win); 236} 237 238static void globalwinon(struct channel *ch) 239{ 240 (ch->board->globalwinon)(ch); 241} 242 243static void rxwinon(struct channel *ch) 244{ 245 (ch->board->rxwinon)(ch); 246} 247 248static void txwinon(struct channel *ch) 249{ 250 (ch->board->txwinon)(ch); 251} 252 253static void memoff(struct channel *ch) 254{ 255 (ch->board->memoff)(ch); 256} 257static void assertgwinon(struct channel *ch) 258{ 259 (ch->board->assertgwinon)(ch); 260} 261 262static void assertmemoff(struct channel *ch) 263{ 264 (ch->board->assertmemoff)(ch); 265} 266 267/* --------------------------------------------------------- 268 PCXEM windowing is the same as that used in the PCXR 269 and CX series cards. 270------------------------------------------------------------ */ 271 272static void pcxem_memwinon(struct board_info *b, unsigned int win) 273{ 274 outb_p(FEPWIN|win, b->port + 1); 275} 276 277static void pcxem_memwinoff(struct board_info *b, unsigned int win) 278{ 279 outb_p(0, b->port + 1); 280} 281 282static void pcxem_globalwinon(struct channel *ch) 283{ 284 outb_p( FEPWIN, (int)ch->board->port + 1); 285} 286 287static void pcxem_rxwinon(struct channel *ch) 288{ 289 outb_p(ch->rxwin, (int)ch->board->port + 1); 290} 291 292static void pcxem_txwinon(struct channel *ch) 293{ 294 outb_p(ch->txwin, (int)ch->board->port + 1); 295} 296 297static void pcxem_memoff(struct channel *ch) 298{ 299 outb_p(0, (int)ch->board->port + 1); 300} 301 302/* ----------------- Begin pcxe memory window stuff ------------------ */ 303 304static void pcxe_memwinon(struct board_info *b, unsigned int win) 305{ 306 outb_p(FEPWIN | win, b->port + 1); 307} 308 309static void pcxe_memwinoff(struct board_info *b, unsigned int win) 310{ 311 outb_p(inb(b->port) & ~FEPMEM, 312 b->port + 1); 313 outb_p(0, b->port + 1); 314} 315 316static void pcxe_globalwinon(struct channel *ch) 317{ 318 outb_p( FEPWIN, (int)ch->board->port + 1); 319} 320 321static void pcxe_rxwinon(struct channel *ch) 322{ 323 outb_p(ch->rxwin, (int)ch->board->port + 1); 324} 325 326static void pcxe_txwinon(struct channel *ch) 327{ 328 outb_p(ch->txwin, (int)ch->board->port + 1); 329} 330 331static void pcxe_memoff(struct channel *ch) 332{ 333 outb_p(0, (int)ch->board->port); 334 outb_p(0, (int)ch->board->port + 1); 335} 336 337/* ------------- Begin pc64xe and pcxi memory window stuff -------------- */ 338 339static void pcxi_memwinon(struct board_info *b, unsigned int win) 340{ 341 outb_p(inb(b->port) | FEPMEM, b->port); 342} 343 344static void pcxi_memwinoff(struct board_info *b, unsigned int win) 345{ 346 outb_p(inb(b->port) & ~FEPMEM, b->port); 347} 348 349static void pcxi_globalwinon(struct channel *ch) 350{ 351 outb_p(FEPMEM, ch->board->port); 352} 353 354static void pcxi_rxwinon(struct channel *ch) 355{ 356 outb_p(FEPMEM, ch->board->port); 357} 358 359static void pcxi_txwinon(struct channel *ch) 360{ 361 outb_p(FEPMEM, ch->board->port); 362} 363 364static void pcxi_memoff(struct channel *ch) 365{ 366 outb_p(0, ch->board->port); 367} 368 369static void pcxi_assertgwinon(struct channel *ch) 370{ 371 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off"); 372} 373 374static void pcxi_assertmemoff(struct channel *ch) 375{ 376 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on"); 377} 378 379 380/* ---------------------------------------------------------------------- 381 Not all of the cards need specific memory windowing routines. Some 382 cards (Such as PCI) needs no windowing routines at all. We provide 383 these do nothing routines so that the same code base can be used. 384 The driver will ALWAYS call a windowing routine if it thinks it needs 385 to; regardless of the card. However, dependent on the card the routine 386 may or may not do anything. 387---------------------------------------------------------------------------*/ 388 389static void dummy_memwinon(struct board_info *b, unsigned int win) 390{ 391} 392 393static void dummy_memwinoff(struct board_info *b, unsigned int win) 394{ 395} 396 397static void dummy_globalwinon(struct channel *ch) 398{ 399} 400 401static void dummy_rxwinon(struct channel *ch) 402{ 403} 404 405static void dummy_txwinon(struct channel *ch) 406{ 407} 408 409static void dummy_memoff(struct channel *ch) 410{ 411} 412 413static void dummy_assertgwinon(struct channel *ch) 414{ 415} 416 417static void dummy_assertmemoff(struct channel *ch) 418{ 419} 420 421/* ----------------- Begin verifyChannel function ----------------------- */ 422static struct channel *verifyChannel(struct tty_struct *tty) 423{ /* Begin verifyChannel */ 424 /* -------------------------------------------------------------------- 425 This routine basically provides a sanity check. It insures that 426 the channel returned is within the proper range of addresses as 427 well as properly initialized. If some bogus info gets passed in 428 through tty->driver_data this should catch it. 429 --------------------------------------------------------------------- */ 430 if (tty) { 431 struct channel *ch = (struct channel *)tty->driver_data; 432 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) { 433 if (ch->magic == EPCA_MAGIC) 434 return ch; 435 } 436 } 437 return NULL; 438 439} /* End verifyChannel */ 440 441/* ------------------ Begin pc_sched_event ------------------------- */ 442 443static void pc_sched_event(struct channel *ch, int event) 444{ 445 /* ---------------------------------------------------------------------- 446 We call this to schedule interrupt processing on some event. The 447 kernel sees our request and calls the related routine in OUR driver. 448 -------------------------------------------------------------------------*/ 449 ch->event |= 1 << event; 450 schedule_work(&ch->tqueue); 451} /* End pc_sched_event */ 452 453/* ------------------ Begin epca_error ------------------------- */ 454 455static void epca_error(int line, char *msg) 456{ 457 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg); 458} 459 460/* ------------------ Begin pc_close ------------------------- */ 461static void pc_close(struct tty_struct * tty, struct file * filp) 462{ 463 struct channel *ch; 464 unsigned long flags; 465 /* --------------------------------------------------------- 466 verifyChannel returns the channel from the tty struct 467 if it is valid. This serves as a sanity check. 468 ------------------------------------------------------------- */ 469 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */ 470 spin_lock_irqsave(&epca_lock, flags); 471 if (tty_hung_up_p(filp)) { 472 spin_unlock_irqrestore(&epca_lock, flags); 473 return; 474 } 475 /* Check to see if the channel is open more than once */ 476 if (ch->count-- > 1) { 477 /* Begin channel is open more than once */ 478 /* ------------------------------------------------------------- 479 Return without doing anything. Someone might still be using 480 the channel. 481 ---------------------------------------------------------------- */ 482 spin_unlock_irqrestore(&epca_lock, flags); 483 return; 484 } /* End channel is open more than once */ 485 486 /* Port open only once go ahead with shutdown & reset */ 487 BUG_ON(ch->count < 0); 488 489 /* --------------------------------------------------------------- 490 Let the rest of the driver know the channel is being closed. 491 This becomes important if an open is attempted before close 492 is finished. 493 ------------------------------------------------------------------ */ 494 ch->asyncflags |= ASYNC_CLOSING; 495 tty->closing = 1; 496 497 spin_unlock_irqrestore(&epca_lock, flags); 498 499 if (ch->asyncflags & ASYNC_INITIALIZED) { 500 /* Setup an event to indicate when the transmit buffer empties */ 501 setup_empty_event(tty, ch); 502 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */ 503 } 504 if (tty->driver->flush_buffer) 505 tty->driver->flush_buffer(tty); 506 507 tty_ldisc_flush(tty); 508 shutdown(ch); 509 510 spin_lock_irqsave(&epca_lock, flags); 511 tty->closing = 0; 512 ch->event = 0; 513 ch->tty = NULL; 514 spin_unlock_irqrestore(&epca_lock, flags); 515 516 if (ch->blocked_open) { /* Begin if blocked_open */ 517 if (ch->close_delay) 518 msleep_interruptible(jiffies_to_msecs(ch->close_delay)); 519 wake_up_interruptible(&ch->open_wait); 520 } /* End if blocked_open */ 521 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED | 522 ASYNC_CLOSING); 523 wake_up_interruptible(&ch->close_wait); 524 } /* End if ch != NULL */ 525} /* End pc_close */ 526 527/* ------------------ Begin shutdown ------------------------- */ 528 529static void shutdown(struct channel *ch) 530{ /* Begin shutdown */ 531 532 unsigned long flags; 533 struct tty_struct *tty; 534 struct board_chan __iomem *bc; 535 536 if (!(ch->asyncflags & ASYNC_INITIALIZED)) 537 return; 538 539 spin_lock_irqsave(&epca_lock, flags); 540 541 globalwinon(ch); 542 bc = ch->brdchan; 543 544 /* ------------------------------------------------------------------ 545 In order for an event to be generated on the receipt of data the 546 idata flag must be set. Since we are shutting down, this is not 547 necessary clear this flag. 548 --------------------------------------------------------------------- */ 549 550 if (bc) 551 writeb(0, &bc->idata); 552 tty = ch->tty; 553 554 /* ---------------------------------------------------------------- 555 If we're a modem control device and HUPCL is on, drop RTS & DTR. 556 ------------------------------------------------------------------ */ 557 558 if (tty->termios->c_cflag & HUPCL) { 559 ch->omodem &= ~(ch->m_rts | ch->m_dtr); 560 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1); 561 } 562 memoff(ch); 563 564 /* ------------------------------------------------------------------ 565 The channel has officialy been closed. The next time it is opened 566 it will have to reinitialized. Set a flag to indicate this. 567 ---------------------------------------------------------------------- */ 568 569 /* Prevent future Digi programmed interrupts from coming active */ 570 571 ch->asyncflags &= ~ASYNC_INITIALIZED; 572 spin_unlock_irqrestore(&epca_lock, flags); 573 574} /* End shutdown */ 575 576/* ------------------ Begin pc_hangup ------------------------- */ 577 578static void pc_hangup(struct tty_struct *tty) 579{ /* Begin pc_hangup */ 580 struct channel *ch; 581 582 /* --------------------------------------------------------- 583 verifyChannel returns the channel from the tty struct 584 if it is valid. This serves as a sanity check. 585 ------------------------------------------------------------- */ 586 587 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */ 588 unsigned long flags; 589 590 if (tty->driver->flush_buffer) 591 tty->driver->flush_buffer(tty); 592 tty_ldisc_flush(tty); 593 shutdown(ch); 594 595 spin_lock_irqsave(&epca_lock, flags); 596 ch->tty = NULL; 597 ch->event = 0; 598 ch->count = 0; 599 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED); 600 spin_unlock_irqrestore(&epca_lock, flags); 601 wake_up_interruptible(&ch->open_wait); 602 } /* End if ch != NULL */ 603 604} /* End pc_hangup */ 605 606/* ------------------ Begin pc_write ------------------------- */ 607 608static int pc_write(struct tty_struct * tty, 609 const unsigned char *buf, int bytesAvailable) 610{ /* Begin pc_write */ 611 unsigned int head, tail; 612 int dataLen; 613 int size; 614 int amountCopied; 615 struct channel *ch; 616 unsigned long flags; 617 int remain; 618 struct board_chan __iomem *bc; 619 620 /* ---------------------------------------------------------------- 621 pc_write is primarily called directly by the kernel routine 622 tty_write (Though it can also be called by put_char) found in 623 tty_io.c. pc_write is passed a line discipline buffer where 624 the data to be written out is stored. The line discipline 625 implementation itself is done at the kernel level and is not 626 brought into the driver. 627 ------------------------------------------------------------------- */ 628 629 /* --------------------------------------------------------- 630 verifyChannel returns the channel from the tty struct 631 if it is valid. This serves as a sanity check. 632 ------------------------------------------------------------- */ 633 634 if ((ch = verifyChannel(tty)) == NULL) 635 return 0; 636 637 /* Make a pointer to the channel data structure found on the board. */ 638 639 bc = ch->brdchan; 640 size = ch->txbufsize; 641 amountCopied = 0; 642 643 spin_lock_irqsave(&epca_lock, flags); 644 globalwinon(ch); 645 646 head = readw(&bc->tin) & (size - 1); 647 tail = readw(&bc->tout); 648 649 if (tail != readw(&bc->tout)) 650 tail = readw(&bc->tout); 651 tail &= (size - 1); 652 653 /* If head >= tail, head has not wrapped around. */ 654 if (head >= tail) { /* Begin head has not wrapped */ 655 /* --------------------------------------------------------------- 656 remain (much like dataLen above) represents the total amount of 657 space available on the card for data. Here dataLen represents 658 the space existing between the head pointer and the end of 659 buffer. This is important because a memcpy cannot be told to 660 automatically wrap around when it hits the buffer end. 661 ------------------------------------------------------------------ */ 662 dataLen = size - head; 663 remain = size - (head - tail) - 1; 664 } else { /* Begin head has wrapped around */ 665 666 remain = tail - head - 1; 667 dataLen = remain; 668 669 } /* End head has wrapped around */ 670 /* ------------------------------------------------------------------- 671 Check the space on the card. If we have more data than 672 space; reduce the amount of data to fit the space. 673 ---------------------------------------------------------------------- */ 674 bytesAvailable = min(remain, bytesAvailable); 675 txwinon(ch); 676 while (bytesAvailable > 0) 677 { /* Begin while there is data to copy onto card */ 678 679 /* ----------------------------------------------------------------- 680 If head is not wrapped, the below will make sure the first 681 data copy fills to the end of card buffer. 682 ------------------------------------------------------------------- */ 683 684 dataLen = min(bytesAvailable, dataLen); 685 memcpy_toio(ch->txptr + head, buf, dataLen); 686 buf += dataLen; 687 head += dataLen; 688 amountCopied += dataLen; 689 bytesAvailable -= dataLen; 690 691 if (head >= size) { 692 head = 0; 693 dataLen = tail; 694 } 695 } /* End while there is data to copy onto card */ 696 ch->statusflags |= TXBUSY; 697 globalwinon(ch); 698 writew(head, &bc->tin); 699 700 if ((ch->statusflags & LOWWAIT) == 0) { 701 ch->statusflags |= LOWWAIT; 702 writeb(1, &bc->ilow); 703 } 704 memoff(ch); 705 spin_unlock_irqrestore(&epca_lock, flags); 706 return(amountCopied); 707 708} /* End pc_write */ 709 710/* ------------------ Begin pc_put_char ------------------------- */ 711 712static void pc_put_char(struct tty_struct *tty, unsigned char c) 713{ /* Begin pc_put_char */ 714 pc_write(tty, &c, 1); 715} /* End pc_put_char */ 716 717/* ------------------ Begin pc_write_room ------------------------- */ 718 719static int pc_write_room(struct tty_struct *tty) 720{ /* Begin pc_write_room */ 721 722 int remain; 723 struct channel *ch; 724 unsigned long flags; 725 unsigned int head, tail; 726 struct board_chan __iomem *bc; 727 728 remain = 0; 729 730 /* --------------------------------------------------------- 731 verifyChannel returns the channel from the tty struct 732 if it is valid. This serves as a sanity check. 733 ------------------------------------------------------------- */ 734 735 if ((ch = verifyChannel(tty)) != NULL) { 736 spin_lock_irqsave(&epca_lock, flags); 737 globalwinon(ch); 738 739 bc = ch->brdchan; 740 head = readw(&bc->tin) & (ch->txbufsize - 1); 741 tail = readw(&bc->tout); 742 743 if (tail != readw(&bc->tout)) 744 tail = readw(&bc->tout); 745 /* Wrap tail if necessary */ 746 tail &= (ch->txbufsize - 1); 747 748 if ((remain = tail - head - 1) < 0 ) 749 remain += ch->txbufsize; 750 751 if (remain && (ch->statusflags & LOWWAIT) == 0) { 752 ch->statusflags |= LOWWAIT; 753 writeb(1, &bc->ilow); 754 } 755 memoff(ch); 756 spin_unlock_irqrestore(&epca_lock, flags); 757 } 758 /* Return how much room is left on card */ 759 return remain; 760 761} /* End pc_write_room */ 762 763/* ------------------ Begin pc_chars_in_buffer ---------------------- */ 764 765static int pc_chars_in_buffer(struct tty_struct *tty) 766{ /* Begin pc_chars_in_buffer */ 767 768 int chars; 769 unsigned int ctail, head, tail; 770 int remain; 771 unsigned long flags; 772 struct channel *ch; 773 struct board_chan __iomem *bc; 774 775 /* --------------------------------------------------------- 776 verifyChannel returns the channel from the tty struct 777 if it is valid. This serves as a sanity check. 778 ------------------------------------------------------------- */ 779 780 if ((ch = verifyChannel(tty)) == NULL) 781 return(0); 782 783 spin_lock_irqsave(&epca_lock, flags); 784 globalwinon(ch); 785 786 bc = ch->brdchan; 787 tail = readw(&bc->tout); 788 head = readw(&bc->tin); 789 ctail = readw(&ch->mailbox->cout); 790 791 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0) 792 chars = 0; 793 else { /* Begin if some space on the card has been used */ 794 head = readw(&bc->tin) & (ch->txbufsize - 1); 795 tail &= (ch->txbufsize - 1); 796 /* -------------------------------------------------------------- 797 The logic here is basically opposite of the above pc_write_room 798 here we are finding the amount of bytes in the buffer filled. 799 Not the amount of bytes empty. 800 ------------------------------------------------------------------- */ 801 if ((remain = tail - head - 1) < 0 ) 802 remain += ch->txbufsize; 803 chars = (int)(ch->txbufsize - remain); 804 /* ------------------------------------------------------------- 805 Make it possible to wakeup anything waiting for output 806 in tty_ioctl.c, etc. 807 808 If not already set. Setup an event to indicate when the 809 transmit buffer empties 810 ----------------------------------------------------------------- */ 811 if (!(ch->statusflags & EMPTYWAIT)) 812 setup_empty_event(tty,ch); 813 814 } /* End if some space on the card has been used */ 815 memoff(ch); 816 spin_unlock_irqrestore(&epca_lock, flags); 817 /* Return number of characters residing on card. */ 818 return(chars); 819 820} /* End pc_chars_in_buffer */ 821 822/* ------------------ Begin pc_flush_buffer ---------------------- */ 823 824static void pc_flush_buffer(struct tty_struct *tty) 825{ /* Begin pc_flush_buffer */ 826 827 unsigned int tail; 828 unsigned long flags; 829 struct channel *ch; 830 struct board_chan __iomem *bc; 831 /* --------------------------------------------------------- 832 verifyChannel returns the channel from the tty struct 833 if it is valid. This serves as a sanity check. 834 ------------------------------------------------------------- */ 835 if ((ch = verifyChannel(tty)) == NULL) 836 return; 837 838 spin_lock_irqsave(&epca_lock, flags); 839 globalwinon(ch); 840 bc = ch->brdchan; 841 tail = readw(&bc->tout); 842 /* Have FEP move tout pointer; effectively flushing transmit buffer */ 843 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0); 844 memoff(ch); 845 spin_unlock_irqrestore(&epca_lock, flags); 846 tty_wakeup(tty); 847} /* End pc_flush_buffer */ 848 849/* ------------------ Begin pc_flush_chars ---------------------- */ 850 851static void pc_flush_chars(struct tty_struct *tty) 852{ /* Begin pc_flush_chars */ 853 struct channel * ch; 854 /* --------------------------------------------------------- 855 verifyChannel returns the channel from the tty struct 856 if it is valid. This serves as a sanity check. 857 ------------------------------------------------------------- */ 858 if ((ch = verifyChannel(tty)) != NULL) { 859 unsigned long flags; 860 spin_lock_irqsave(&epca_lock, flags); 861 /* ---------------------------------------------------------------- 862 If not already set and the transmitter is busy setup an event 863 to indicate when the transmit empties. 864 ------------------------------------------------------------------- */ 865 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT)) 866 setup_empty_event(tty,ch); 867 spin_unlock_irqrestore(&epca_lock, flags); 868 } 869} /* End pc_flush_chars */ 870 871/* ------------------ Begin block_til_ready ---------------------- */ 872 873static int block_til_ready(struct tty_struct *tty, 874 struct file *filp, struct channel *ch) 875{ /* Begin block_til_ready */ 876 DECLARE_WAITQUEUE(wait,current); 877 int retval, do_clocal = 0; 878 unsigned long flags; 879 880 if (tty_hung_up_p(filp)) { 881 if (ch->asyncflags & ASYNC_HUP_NOTIFY) 882 retval = -EAGAIN; 883 else 884 retval = -ERESTARTSYS; 885 return(retval); 886 } 887 888 /* ----------------------------------------------------------------- 889 If the device is in the middle of being closed, then block 890 until it's done, and then try again. 891 -------------------------------------------------------------------- */ 892 if (ch->asyncflags & ASYNC_CLOSING) { 893 interruptible_sleep_on(&ch->close_wait); 894 895 if (ch->asyncflags & ASYNC_HUP_NOTIFY) 896 return -EAGAIN; 897 else 898 return -ERESTARTSYS; 899 } 900 901 if (filp->f_flags & O_NONBLOCK) { 902 /* ----------------------------------------------------------------- 903 If non-blocking mode is set, then make the check up front 904 and then exit. 905 -------------------------------------------------------------------- */ 906 ch->asyncflags |= ASYNC_NORMAL_ACTIVE; 907 return 0; 908 } 909 if (tty->termios->c_cflag & CLOCAL) 910 do_clocal = 1; 911 /* Block waiting for the carrier detect and the line to become free */ 912 913 retval = 0; 914 add_wait_queue(&ch->open_wait, &wait); 915 916 spin_lock_irqsave(&epca_lock, flags); 917 /* We dec count so that pc_close will know when to free things */ 918 if (!tty_hung_up_p(filp)) 919 ch->count--; 920 ch->blocked_open++; 921 while(1) 922 { /* Begin forever while */ 923 set_current_state(TASK_INTERRUPTIBLE); 924 if (tty_hung_up_p(filp) || 925 !(ch->asyncflags & ASYNC_INITIALIZED)) 926 { 927 if (ch->asyncflags & ASYNC_HUP_NOTIFY) 928 retval = -EAGAIN; 929 else 930 retval = -ERESTARTSYS; 931 break; 932 } 933 if (!(ch->asyncflags & ASYNC_CLOSING) && 934 (do_clocal || (ch->imodem & ch->dcd))) 935 break; 936 if (signal_pending(current)) { 937 retval = -ERESTARTSYS; 938 break; 939 } 940 spin_unlock_irqrestore(&epca_lock, flags); 941 /* --------------------------------------------------------------- 942 Allow someone else to be scheduled. We will occasionally go 943 through this loop until one of the above conditions change. 944 The below schedule call will allow other processes to enter and 945 prevent this loop from hogging the cpu. 946 ------------------------------------------------------------------ */ 947 schedule(); 948 spin_lock_irqsave(&epca_lock, flags); 949 950 } /* End forever while */ 951 952 current->state = TASK_RUNNING; 953 remove_wait_queue(&ch->open_wait, &wait); 954 if (!tty_hung_up_p(filp)) 955 ch->count++; 956 ch->blocked_open--; 957 958 spin_unlock_irqrestore(&epca_lock, flags); 959 960 if (retval) 961 return retval; 962 963 ch->asyncflags |= ASYNC_NORMAL_ACTIVE; 964 return 0; 965} /* End block_til_ready */ 966 967/* ------------------ Begin pc_open ---------------------- */ 968 969static int pc_open(struct tty_struct *tty, struct file * filp) 970{ /* Begin pc_open */ 971 972 struct channel *ch; 973 unsigned long flags; 974 int line, retval, boardnum; 975 struct board_chan __iomem *bc; 976 unsigned int head; 977 978 line = tty->index; 979 if (line < 0 || line >= nbdevs) 980 return -ENODEV; 981 982 ch = &digi_channels[line]; 983 boardnum = ch->boardnum; 984 985 /* Check status of board configured in system. */ 986 987 /* ----------------------------------------------------------------- 988 I check to see if the epca_setup routine detected an user error. 989 It might be better to put this in pc_init, but for the moment it 990 goes here. 991 ---------------------------------------------------------------------- */ 992 993 if (invalid_lilo_config) { 994 if (setup_error_code & INVALID_BOARD_TYPE) 995 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n"); 996 if (setup_error_code & INVALID_NUM_PORTS) 997 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n"); 998 if (setup_error_code & INVALID_MEM_BASE) 999 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n"); 1000 if (setup_error_code & INVALID_PORT_BASE) 1001 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n"); 1002 if (setup_error_code & INVALID_BOARD_STATUS) 1003 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n"); 1004 if (setup_error_code & INVALID_ALTPIN) 1005 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n"); 1006 tty->driver_data = NULL; /* Mark this device as 'down' */ 1007 return -ENODEV; 1008 } 1009 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) { 1010 tty->driver_data = NULL; /* Mark this device as 'down' */ 1011 return(-ENODEV); 1012 } 1013 1014 if ((bc = ch->brdchan) == 0) { 1015 tty->driver_data = NULL; 1016 return -ENODEV; 1017 } 1018 1019 spin_lock_irqsave(&epca_lock, flags); 1020 /* ------------------------------------------------------------------ 1021 Every time a channel is opened, increment a counter. This is 1022 necessary because we do not wish to flush and shutdown the channel 1023 until the last app holding the channel open, closes it. 1024 --------------------------------------------------------------------- */ 1025 ch->count++; 1026 /* ---------------------------------------------------------------- 1027 Set a kernel structures pointer to our local channel 1028 structure. This way we can get to it when passed only 1029 a tty struct. 1030 ------------------------------------------------------------------ */ 1031 tty->driver_data = ch; 1032 /* ---------------------------------------------------------------- 1033 If this is the first time the channel has been opened, initialize 1034 the tty->termios struct otherwise let pc_close handle it. 1035 -------------------------------------------------------------------- */ 1036 globalwinon(ch); 1037 ch->statusflags = 0; 1038 1039 /* Save boards current modem status */ 1040 ch->imodem = readb(&bc->mstat); 1041 1042 /* ---------------------------------------------------------------- 1043 Set receive head and tail ptrs to each other. This indicates 1044 no data available to read. 1045 ----------------------------------------------------------------- */ 1046 head = readw(&bc->rin); 1047 writew(head, &bc->rout); 1048 1049 /* Set the channels associated tty structure */ 1050 ch->tty = tty; 1051 1052 /* ----------------------------------------------------------------- 1053 The below routine generally sets up parity, baud, flow control 1054 issues, etc.... It effect both control flags and input flags. 1055 -------------------------------------------------------------------- */ 1056 epcaparam(tty,ch); 1057 ch->asyncflags |= ASYNC_INITIALIZED; 1058 memoff(ch); 1059 spin_unlock_irqrestore(&epca_lock, flags); 1060 1061 retval = block_til_ready(tty, filp, ch); 1062 if (retval) 1063 return retval; 1064 /* ------------------------------------------------------------- 1065 Set this again in case a hangup set it to zero while this 1066 open() was waiting for the line... 1067 --------------------------------------------------------------- */ 1068 spin_lock_irqsave(&epca_lock, flags); 1069 ch->tty = tty; 1070 globalwinon(ch); 1071 /* Enable Digi Data events */ 1072 writeb(1, &bc->idata); 1073 memoff(ch); 1074 spin_unlock_irqrestore(&epca_lock, flags); 1075 return 0; 1076} /* End pc_open */ 1077 1078static int __init epca_module_init(void) 1079{ /* Begin init_module */ 1080 return pc_init(); 1081} 1082 1083module_init(epca_module_init); 1084 1085static struct pci_driver epca_driver; 1086 1087static void __exit epca_module_exit(void) 1088{ 1089 int count, crd; 1090 struct board_info *bd; 1091 struct channel *ch; 1092 1093 del_timer_sync(&epca_timer); 1094 1095 if ((tty_unregister_driver(pc_driver)) || 1096 (tty_unregister_driver(pc_info))) 1097 { 1098 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n"); 1099 return; 1100 } 1101 put_tty_driver(pc_driver); 1102 put_tty_driver(pc_info); 1103 1104 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */ 1105 bd = &boards[crd]; 1106 if (!bd) 1107 { /* Begin sanity check */ 1108 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n"); 1109 return; 1110 } /* End sanity check */ 1111 ch = card_ptr[crd]; 1112 for (count = 0; count < bd->numports; count++, ch++) 1113 { /* Begin for each port */ 1114 if (ch && ch->tty) 1115 tty_hangup(ch->tty); 1116 } /* End for each port */ 1117 } /* End for each card */ 1118 pci_unregister_driver (&epca_driver); 1119} 1120 1121module_exit(epca_module_exit); 1122 1123static const struct tty_operations pc_ops = { 1124 .open = pc_open, 1125 .close = pc_close, 1126 .write = pc_write, 1127 .write_room = pc_write_room, 1128 .flush_buffer = pc_flush_buffer, 1129 .chars_in_buffer = pc_chars_in_buffer, 1130 .flush_chars = pc_flush_chars, 1131 .put_char = pc_put_char, 1132 .ioctl = pc_ioctl, 1133 .set_termios = pc_set_termios, 1134 .stop = pc_stop, 1135 .start = pc_start, 1136 .throttle = pc_throttle, 1137 .unthrottle = pc_unthrottle, 1138 .hangup = pc_hangup, 1139}; 1140 1141static int info_open(struct tty_struct *tty, struct file * filp) 1142{ 1143 return 0; 1144} 1145 1146static struct tty_operations info_ops = { 1147 .open = info_open, 1148 .ioctl = info_ioctl, 1149}; 1150 1151/* ------------------ Begin pc_init ---------------------- */ 1152 1153static int __init pc_init(void) 1154{ /* Begin pc_init */ 1155 int crd; 1156 struct board_info *bd; 1157 unsigned char board_id = 0; 1158 int err = -ENOMEM; 1159 1160 int pci_boards_found, pci_count; 1161 1162 pci_count = 0; 1163 1164 pc_driver = alloc_tty_driver(MAX_ALLOC); 1165 if (!pc_driver) 1166 goto out1; 1167 1168 pc_info = alloc_tty_driver(MAX_ALLOC); 1169 if (!pc_info) 1170 goto out2; 1171 1172 /* ----------------------------------------------------------------------- 1173 If epca_setup has not been ran by LILO set num_cards to defaults; copy 1174 board structure defined by digiConfig into drivers board structure. 1175 Note : If LILO has ran epca_setup then epca_setup will handle defining 1176 num_cards as well as copying the data into the board structure. 1177 -------------------------------------------------------------------------- */ 1178 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */ 1179 1180 nbdevs = NBDEVS; 1181 num_cards = NUMCARDS; 1182 memcpy((void *)&boards, (void *)&static_boards, 1183 (sizeof(struct board_info) * NUMCARDS)); 1184 } /* End driver has been configured via. epcaconfig */ 1185 1186 /* ----------------------------------------------------------------- 1187 Note : If lilo was used to configure the driver and the 1188 ignore epcaconfig option was choosen (digiepca=2) then 1189 nbdevs and num_cards will equal 0 at this point. This is 1190 okay; PCI cards will still be picked up if detected. 1191 --------------------------------------------------------------------- */ 1192 1193 /* ----------------------------------------------------------- 1194 Set up interrupt, we will worry about memory allocation in 1195 post_fep_init. 1196 --------------------------------------------------------------- */ 1197 1198 1199 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION); 1200 1201 /* ------------------------------------------------------------------ 1202 NOTE : This code assumes that the number of ports found in 1203 the boards array is correct. This could be wrong if 1204 the card in question is PCI (And therefore has no ports 1205 entry in the boards structure.) The rest of the 1206 information will be valid for PCI because the beginning 1207 of pc_init scans for PCI and determines i/o and base 1208 memory addresses. I am not sure if it is possible to 1209 read the number of ports supported by the card prior to 1210 it being booted (Since that is the state it is in when 1211 pc_init is run). Because it is not possible to query the 1212 number of supported ports until after the card has booted; 1213 we are required to calculate the card_ptrs as the card is 1214 is initialized (Inside post_fep_init). The negative thing 1215 about this approach is that digiDload's call to GET_INFO 1216 will have a bad port value. (Since this is called prior 1217 to post_fep_init.) 1218 1219 --------------------------------------------------------------------- */ 1220 1221 pci_boards_found = 0; 1222 if(num_cards < MAXBOARDS) 1223 pci_boards_found += init_PCI(); 1224 num_cards += pci_boards_found; 1225 1226 pc_driver->owner = THIS_MODULE; 1227 pc_driver->name = "ttyD"; 1228 pc_driver->major = DIGI_MAJOR; 1229 pc_driver->minor_start = 0; 1230 pc_driver->type = TTY_DRIVER_TYPE_SERIAL; 1231 pc_driver->subtype = SERIAL_TYPE_NORMAL; 1232 pc_driver->init_termios = tty_std_termios; 1233 pc_driver->init_termios.c_iflag = 0; 1234 pc_driver->init_termios.c_oflag = 0; 1235 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL; 1236 pc_driver->init_termios.c_lflag = 0; 1237 pc_driver->init_termios.c_ispeed = 9600; 1238 pc_driver->init_termios.c_ospeed = 9600; 1239 pc_driver->flags = TTY_DRIVER_REAL_RAW; 1240 tty_set_operations(pc_driver, &pc_ops); 1241 1242 pc_info->owner = THIS_MODULE; 1243 pc_info->name = "digi_ctl"; 1244 pc_info->major = DIGIINFOMAJOR; 1245 pc_info->minor_start = 0; 1246 pc_info->type = TTY_DRIVER_TYPE_SERIAL; 1247 pc_info->subtype = SERIAL_TYPE_INFO; 1248 pc_info->init_termios = tty_std_termios; 1249 pc_info->init_termios.c_iflag = 0; 1250 pc_info->init_termios.c_oflag = 0; 1251 pc_info->init_termios.c_lflag = 0; 1252 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL; 1253 pc_info->init_termios.c_ispeed = 9600; 1254 pc_info->init_termios.c_ospeed = 9600; 1255 pc_info->flags = TTY_DRIVER_REAL_RAW; 1256 tty_set_operations(pc_info, &info_ops); 1257 1258 1259 for (crd = 0; crd < num_cards; crd++) 1260 { /* Begin for each card */ 1261 1262 /* ------------------------------------------------------------------ 1263 This is where the appropriate memory handlers for the hardware is 1264 set. Everything at runtime blindly jumps through these vectors. 1265 ---------------------------------------------------------------------- */ 1266 1267 /* defined in epcaconfig.h */ 1268 bd = &boards[crd]; 1269 1270 switch (bd->type) 1271 { /* Begin switch on bd->type {board type} */ 1272 case PCXEM: 1273 case EISAXEM: 1274 bd->memwinon = pcxem_memwinon ; 1275 bd->memwinoff = pcxem_memwinoff ; 1276 bd->globalwinon = pcxem_globalwinon ; 1277 bd->txwinon = pcxem_txwinon ; 1278 bd->rxwinon = pcxem_rxwinon ; 1279 bd->memoff = pcxem_memoff ; 1280 bd->assertgwinon = dummy_assertgwinon; 1281 bd->assertmemoff = dummy_assertmemoff; 1282 break; 1283 1284 case PCIXEM: 1285 case PCIXRJ: 1286 case PCIXR: 1287 bd->memwinon = dummy_memwinon; 1288 bd->memwinoff = dummy_memwinoff; 1289 bd->globalwinon = dummy_globalwinon; 1290 bd->txwinon = dummy_txwinon; 1291 bd->rxwinon = dummy_rxwinon; 1292 bd->memoff = dummy_memoff; 1293 bd->assertgwinon = dummy_assertgwinon; 1294 bd->assertmemoff = dummy_assertmemoff; 1295 break; 1296 1297 case PCXE: 1298 case PCXEVE: 1299 1300 bd->memwinon = pcxe_memwinon; 1301 bd->memwinoff = pcxe_memwinoff; 1302 bd->globalwinon = pcxe_globalwinon; 1303 bd->txwinon = pcxe_txwinon; 1304 bd->rxwinon = pcxe_rxwinon; 1305 bd->memoff = pcxe_memoff; 1306 bd->assertgwinon = dummy_assertgwinon; 1307 bd->assertmemoff = dummy_assertmemoff; 1308 break; 1309 1310 case PCXI: 1311 case PC64XE: 1312 1313 bd->memwinon = pcxi_memwinon; 1314 bd->memwinoff = pcxi_memwinoff; 1315 bd->globalwinon = pcxi_globalwinon; 1316 bd->txwinon = pcxi_txwinon; 1317 bd->rxwinon = pcxi_rxwinon; 1318 bd->memoff = pcxi_memoff; 1319 bd->assertgwinon = pcxi_assertgwinon; 1320 bd->assertmemoff = pcxi_assertmemoff; 1321 break; 1322 1323 default: 1324 break; 1325 1326 } /* End switch on bd->type */ 1327 1328 /* --------------------------------------------------------------- 1329 Some cards need a memory segment to be defined for use in 1330 transmit and receive windowing operations. These boards 1331 are listed in the below switch. In the case of the XI the 1332 amount of memory on the board is variable so the memory_seg 1333 is also variable. This code determines what they segment 1334 should be. 1335 ----------------------------------------------------------------- */ 1336 1337 switch (bd->type) 1338 { /* Begin switch on bd->type {board type} */ 1339 1340 case PCXE: 1341 case PCXEVE: 1342 case PC64XE: 1343 bd->memory_seg = 0xf000; 1344 break; 1345 1346 case PCXI: 1347 board_id = inb((int)bd->port); 1348 if ((board_id & 0x1) == 0x1) 1349 { /* Begin it's an XI card */ 1350 1351 /* Is it a 64K board */ 1352 if ((board_id & 0x30) == 0) 1353 bd->memory_seg = 0xf000; 1354 1355 /* Is it a 128K board */ 1356 if ((board_id & 0x30) == 0x10) 1357 bd->memory_seg = 0xe000; 1358 1359 /* Is is a 256K board */ 1360 if ((board_id & 0x30) == 0x20) 1361 bd->memory_seg = 0xc000; 1362 1363 /* Is it a 512K board */ 1364 if ((board_id & 0x30) == 0x30) 1365 bd->memory_seg = 0x8000; 1366 1367 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port); 1368 break; 1369 1370 } /* End switch on bd->type */ 1371 1372 } /* End for each card */ 1373 1374 err = tty_register_driver(pc_driver); 1375 if (err) { 1376 printk(KERN_ERR "Couldn't register Digi PC/ driver"); 1377 goto out3; 1378 } 1379 1380 err = tty_register_driver(pc_info); 1381 if (err) { 1382 printk(KERN_ERR "Couldn't register Digi PC/ info "); 1383 goto out4; 1384 } 1385 1386 /* ------------------------------------------------------------------- 1387 Start up the poller to check for events on all enabled boards 1388 ---------------------------------------------------------------------- */ 1389 1390 init_timer(&epca_timer); 1391 epca_timer.function = epcapoll; 1392 mod_timer(&epca_timer, jiffies + HZ/25); 1393 return 0; 1394 1395out4: 1396 tty_unregister_driver(pc_driver); 1397out3: 1398 put_tty_driver(pc_info); 1399out2: 1400 put_tty_driver(pc_driver); 1401out1: 1402 return err; 1403 1404} /* End pc_init */ 1405 1406/* ------------------ Begin post_fep_init ---------------------- */ 1407 1408static void post_fep_init(unsigned int crd) 1409{ /* Begin post_fep_init */ 1410 1411 int i; 1412 void __iomem *memaddr; 1413 struct global_data __iomem *gd; 1414 struct board_info *bd; 1415 struct board_chan __iomem *bc; 1416 struct channel *ch; 1417 int shrinkmem = 0, lowwater ; 1418 1419 /* ------------------------------------------------------------- 1420 This call is made by the user via. the ioctl call DIGI_INIT. 1421 It is responsible for setting up all the card specific stuff. 1422 ---------------------------------------------------------------- */ 1423 bd = &boards[crd]; 1424 1425 /* ----------------------------------------------------------------- 1426 If this is a PCI board, get the port info. Remember PCI cards 1427 do not have entries into the epcaconfig.h file, so we can't get 1428 the number of ports from it. Unfortunetly, this means that anyone 1429 doing a DIGI_GETINFO before the board has booted will get an invalid 1430 number of ports returned (It should return 0). Calls to DIGI_GETINFO 1431 after DIGI_INIT has been called will return the proper values. 1432 ------------------------------------------------------------------- */ 1433 1434 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */ 1435 /* -------------------------------------------------------------------- 1436 Below we use XEMPORTS as a memory offset regardless of which PCI 1437 card it is. This is because all of the supported PCI cards have 1438 the same memory offset for the channel data. This will have to be 1439 changed if we ever develop a PCI/XE card. NOTE : The FEP manual 1440 states that the port offset is 0xC22 as opposed to 0xC02. This is 1441 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series. 1442 On the PCI cards the number of ports is determined by reading a 1443 ID PROM located in the box attached to the card. The card can then 1444 determine the index the id to determine the number of ports available. 1445 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes 1446 if the box in question is a XEM or CX)). 1447 ------------------------------------------------------------------------ */ 1448 /* PCI cards are already remapped at this point ISA are not */ 1449 bd->numports = readw(bd->re_map_membase + XEMPORTS); 1450 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports"); 1451 nbdevs += (bd->numports); 1452 } else { 1453 /* Fix up the mappings for ISA/EISA etc */ 1454 /* FIXME: 64K - can we be smarter ? */ 1455 bd->re_map_membase = ioremap(bd->membase, 0x10000); 1456 } 1457 1458 if (crd != 0) 1459 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports; 1460 else 1461 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */ 1462 1463 ch = card_ptr[crd]; 1464 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range"); 1465 1466 memaddr = bd->re_map_membase; 1467 1468 /* ----------------------------------------------------------------- 1469 The below assignment will set bc to point at the BEGINING of 1470 the cards channel structures. For 1 card there will be between 1471 8 and 64 of these structures. 1472 -------------------------------------------------------------------- */ 1473 1474 bc = memaddr + CHANSTRUCT; 1475 1476 /* ------------------------------------------------------------------- 1477 The below assignment will set gd to point at the BEGINING of 1478 global memory address 0xc00. The first data in that global 1479 memory actually starts at address 0xc1a. The command in 1480 pointer begins at 0xd10. 1481 ---------------------------------------------------------------------- */ 1482 1483 gd = memaddr + GLOBAL; 1484 1485 /* -------------------------------------------------------------------- 1486 XEPORTS (address 0xc22) points at the number of channels the 1487 card supports. (For 64XE, XI, XEM, and XR use 0xc02) 1488 ----------------------------------------------------------------------- */ 1489 1490 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3)) 1491 shrinkmem = 1; 1492 if (bd->type < PCIXEM) 1493 if (!request_region((int)bd->port, 4, board_desc[bd->type])) 1494 return; 1495 memwinon(bd, 0); 1496 1497 /* -------------------------------------------------------------------- 1498 Remember ch is the main drivers channels structure, while bc is 1499 the cards channel structure. 1500 ------------------------------------------------------------------------ */ 1501 1502 /* For every port on the card do ..... */ 1503 1504 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */ 1505 unsigned long flags; 1506 u16 tseg, rseg; 1507 1508 ch->brdchan = bc; 1509 ch->mailbox = gd; 1510 INIT_WORK(&ch->tqueue, do_softint); 1511 ch->board = &boards[crd]; 1512 1513 spin_lock_irqsave(&epca_lock, flags); 1514 switch (bd->type) { 1515 /* ---------------------------------------------------------------- 1516 Since some of the boards use different bitmaps for their 1517 control signals we cannot hard code these values and retain 1518 portability. We virtualize this data here. 1519 ------------------------------------------------------------------- */ 1520 case EISAXEM: 1521 case PCXEM: 1522 case PCIXEM: 1523 case PCIXRJ: 1524 case PCIXR: 1525 ch->m_rts = 0x02 ; 1526 ch->m_dcd = 0x80 ; 1527 ch->m_dsr = 0x20 ; 1528 ch->m_cts = 0x10 ; 1529 ch->m_ri = 0x40 ; 1530 ch->m_dtr = 0x01 ; 1531 break; 1532 1533 case PCXE: 1534 case PCXEVE: 1535 case PCXI: 1536 case PC64XE: 1537 ch->m_rts = 0x02 ; 1538 ch->m_dcd = 0x08 ; 1539 ch->m_dsr = 0x10 ; 1540 ch->m_cts = 0x20 ; 1541 ch->m_ri = 0x40 ; 1542 ch->m_dtr = 0x80 ; 1543 break; 1544 1545 } /* End switch bd->type */ 1546 1547 if (boards[crd].altpin) { 1548 ch->dsr = ch->m_dcd; 1549 ch->dcd = ch->m_dsr; 1550 ch->digiext.digi_flags |= DIGI_ALTPIN; 1551 } 1552 else { 1553 ch->dcd = ch->m_dcd; 1554 ch->dsr = ch->m_dsr; 1555 } 1556 1557 ch->boardnum = crd; 1558 ch->channelnum = i; 1559 ch->magic = EPCA_MAGIC; 1560 ch->tty = NULL; 1561 1562 if (shrinkmem) { 1563 fepcmd(ch, SETBUFFER, 32, 0, 0, 0); 1564 shrinkmem = 0; 1565 } 1566 1567 tseg = readw(&bc->tseg); 1568 rseg = readw(&bc->rseg); 1569 1570 switch (bd->type) { 1571 1572 case PCIXEM: 1573 case PCIXRJ: 1574 case PCIXR: 1575 /* Cover all the 2MEG cards */ 1576 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff); 1577 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff); 1578 ch->txwin = FEPWIN | (tseg >> 11); 1579 ch->rxwin = FEPWIN | (rseg >> 11); 1580 break; 1581 1582 case PCXEM: 1583 case EISAXEM: 1584 /* Cover all the 32K windowed cards */ 1585 /* Mask equal to window size - 1 */ 1586 ch->txptr = memaddr + ((tseg << 4) & 0x7fff); 1587 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff); 1588 ch->txwin = FEPWIN | (tseg >> 11); 1589 ch->rxwin = FEPWIN | (rseg >> 11); 1590 break; 1591 1592 case PCXEVE: 1593 case PCXE: 1594 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff); 1595 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9); 1596 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff); 1597 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 ); 1598 break; 1599 1600 case PCXI: 1601 case PC64XE: 1602 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4); 1603 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4); 1604 ch->txwin = ch->rxwin = 0; 1605 break; 1606 1607 } /* End switch bd->type */ 1608 1609 ch->txbufhead = 0; 1610 ch->txbufsize = readw(&bc->tmax) + 1; 1611 1612 ch->rxbufhead = 0; 1613 ch->rxbufsize = readw(&bc->rmax) + 1; 1614 1615 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2); 1616 1617 /* Set transmitter low water mark */ 1618 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0); 1619 1620 /* Set receiver low water mark */ 1621 1622 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0); 1623 1624 /* Set receiver high water mark */ 1625 1626 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0); 1627 1628 writew(100, &bc->edelay); 1629 writeb(1, &bc->idata); 1630 1631 ch->startc = readb(&bc->startc); 1632 ch->stopc = readb(&bc->stopc); 1633 ch->startca = readb(&bc->startca); 1634 ch->stopca = readb(&bc->stopca); 1635 1636 ch->fepcflag = 0; 1637 ch->fepiflag = 0; 1638 ch->fepoflag = 0; 1639 ch->fepstartc = 0; 1640 ch->fepstopc = 0; 1641 ch->fepstartca = 0; 1642 ch->fepstopca = 0; 1643 1644 ch->close_delay = 50; 1645 ch->count = 0; 1646 ch->blocked_open = 0; 1647 init_waitqueue_head(&ch->open_wait); 1648 init_waitqueue_head(&ch->close_wait); 1649 1650 spin_unlock_irqrestore(&epca_lock, flags); 1651 } /* End for each port */ 1652 1653 printk(KERN_INFO 1654 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n", 1655 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports); 1656 memwinoff(bd, 0); 1657 1658} /* End post_fep_init */ 1659 1660/* --------------------- Begin epcapoll ------------------------ */ 1661 1662static void epcapoll(unsigned long ignored) 1663{ /* Begin epcapoll */ 1664 1665 unsigned long flags; 1666 int crd; 1667 volatile unsigned int head, tail; 1668 struct channel *ch; 1669 struct board_info *bd; 1670 1671 /* ------------------------------------------------------------------- 1672 This routine is called upon every timer interrupt. Even though 1673 the Digi series cards are capable of generating interrupts this 1674 method of non-looping polling is more efficient. This routine 1675 checks for card generated events (Such as receive data, are transmit 1676 buffer empty) and acts on those events. 1677 ----------------------------------------------------------------------- */ 1678 1679 for (crd = 0; crd < num_cards; crd++) 1680 { /* Begin for each card */ 1681 1682 bd = &boards[crd]; 1683 ch = card_ptr[crd]; 1684 1685 if ((bd->status == DISABLED) || digi_poller_inhibited) 1686 continue; /* Begin loop next interation */ 1687 1688 /* ----------------------------------------------------------- 1689 assertmemoff is not needed here; indeed it is an empty subroutine. 1690 It is being kept because future boards may need this as well as 1691 some legacy boards. 1692 ---------------------------------------------------------------- */ 1693 1694 spin_lock_irqsave(&epca_lock, flags); 1695 1696 assertmemoff(ch); 1697 1698 globalwinon(ch); 1699 1700 /* --------------------------------------------------------------- 1701 In this case head and tail actually refer to the event queue not 1702 the transmit or receive queue. 1703 ------------------------------------------------------------------- */ 1704 1705 head = readw(&ch->mailbox->ein); 1706 tail = readw(&ch->mailbox->eout); 1707 1708 /* If head isn't equal to tail we have an event */ 1709 1710 if (head != tail) 1711 doevent(crd); 1712 memoff(ch); 1713 1714 spin_unlock_irqrestore(&epca_lock, flags); 1715 1716 } /* End for each card */ 1717 mod_timer(&epca_timer, jiffies + (HZ / 25)); 1718} /* End epcapoll */ 1719 1720/* --------------------- Begin doevent ------------------------ */ 1721 1722static void doevent(int crd) 1723{ /* Begin doevent */ 1724 1725 void __iomem *eventbuf; 1726 struct channel *ch, *chan0; 1727 static struct tty_struct *tty; 1728 struct board_info *bd; 1729 struct board_chan __iomem *bc; 1730 unsigned int tail, head; 1731 int event, channel; 1732 int mstat, lstat; 1733 1734 /* ------------------------------------------------------------------- 1735 This subroutine is called by epcapoll when an event is detected 1736 in the event queue. This routine responds to those events. 1737 --------------------------------------------------------------------- */ 1738 bd = &boards[crd]; 1739 1740 chan0 = card_ptr[crd]; 1741 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range"); 1742 assertgwinon(chan0); 1743 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein))) 1744 { /* Begin while something in event queue */ 1745 assertgwinon(chan0); 1746 eventbuf = bd->re_map_membase + tail + ISTART; 1747 /* Get the channel the event occurred on */ 1748 channel = readb(eventbuf); 1749 /* Get the actual event code that occurred */ 1750 event = readb(eventbuf + 1); 1751 /* ---------------------------------------------------------------- 1752 The two assignments below get the current modem status (mstat) 1753 and the previous modem status (lstat). These are useful becuase 1754 an event could signal a change in modem signals itself. 1755 ------------------------------------------------------------------- */ 1756 mstat = readb(eventbuf + 2); 1757 lstat = readb(eventbuf + 3); 1758 1759 ch = chan0 + channel; 1760 if ((unsigned)channel >= bd->numports || !ch) { 1761 if (channel >= bd->numports) 1762 ch = chan0; 1763 bc = ch->brdchan; 1764 goto next; 1765 } 1766 1767 if ((bc = ch->brdchan) == NULL) 1768 goto next; 1769 1770 if (event & DATA_IND) { /* Begin DATA_IND */ 1771 receive_data(ch); 1772 assertgwinon(ch); 1773 } /* End DATA_IND */ 1774 /* else *//* Fix for DCD transition missed bug */ 1775 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */ 1776 /* A modem signal change has been indicated */ 1777 ch->imodem = mstat; 1778 if (ch->asyncflags & ASYNC_CHECK_CD) { 1779 if (mstat & ch->dcd) /* We are now receiving dcd */ 1780 wake_up_interruptible(&ch->open_wait); 1781 else 1782 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */ 1783 } 1784 } /* End MODEMCHG_IND */ 1785 tty = ch->tty; 1786 if (tty) { /* Begin if valid tty */ 1787 if (event & BREAK_IND) { /* Begin if BREAK_IND */ 1788 /* A break has been indicated */ 1789 tty_insert_flip_char(tty, 0, TTY_BREAK); 1790 tty_schedule_flip(tty); 1791 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */ 1792 if (ch->statusflags & LOWWAIT) 1793 { /* Begin if LOWWAIT */ 1794 ch->statusflags &= ~LOWWAIT; 1795 tty_wakeup(tty); 1796 } /* End if LOWWAIT */ 1797 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */ 1798 /* This event is generated by setup_empty_event */ 1799 ch->statusflags &= ~TXBUSY; 1800 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */ 1801 ch->statusflags &= ~EMPTYWAIT; 1802 tty_wakeup(tty); 1803 } /* End if EMPTYWAIT */ 1804 } /* End EMPTYTX_IND */ 1805 } /* End if valid tty */ 1806 next: 1807 globalwinon(ch); 1808 BUG_ON(!bc); 1809 writew(1, &bc->idata); 1810 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout); 1811 globalwinon(chan0); 1812 } /* End while something in event queue */ 1813} /* End doevent */ 1814 1815/* --------------------- Begin fepcmd ------------------------ */ 1816 1817static void fepcmd(struct channel *ch, int cmd, int word_or_byte, 1818 int byte2, int ncmds, int bytecmd) 1819{ /* Begin fepcmd */ 1820 unchar __iomem *memaddr; 1821 unsigned int head, cmdTail, cmdStart, cmdMax; 1822 long count; 1823 int n; 1824 1825 /* This is the routine in which commands may be passed to the card. */ 1826 1827 if (ch->board->status == DISABLED) 1828 return; 1829 assertgwinon(ch); 1830 /* Remember head (As well as max) is just an offset not a base addr */ 1831 head = readw(&ch->mailbox->cin); 1832 /* cmdStart is a base address */ 1833 cmdStart = readw(&ch->mailbox->cstart); 1834 /* ------------------------------------------------------------------ 1835 We do the addition below because we do not want a max pointer 1836 relative to cmdStart. We want a max pointer that points at the 1837 physical end of the command queue. 1838 -------------------------------------------------------------------- */ 1839 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax)); 1840 memaddr = ch->board->re_map_membase; 1841 1842 if (head >= (cmdMax - cmdStart) || (head & 03)) { 1843 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head); 1844 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart); 1845 return; 1846 } 1847 if (bytecmd) { 1848 writeb(cmd, memaddr + head + cmdStart + 0); 1849 writeb(ch->channelnum, memaddr + head + cmdStart + 1); 1850 /* Below word_or_byte is bits to set */ 1851 writeb(word_or_byte, memaddr + head + cmdStart + 2); 1852 /* Below byte2 is bits to reset */ 1853 writeb(byte2, memaddr + head + cmdStart + 3); 1854 } else { 1855 writeb(cmd, memaddr + head + cmdStart + 0); 1856 writeb(ch->channelnum, memaddr + head + cmdStart + 1); 1857 writeb(word_or_byte, memaddr + head + cmdStart + 2); 1858 } 1859 head = (head + 4) & (cmdMax - cmdStart - 4); 1860 writew(head, &ch->mailbox->cin); 1861 count = FEPTIMEOUT; 1862 1863 for (;;) { /* Begin forever loop */ 1864 count--; 1865 if (count == 0) { 1866 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n"); 1867 return; 1868 } 1869 head = readw(&ch->mailbox->cin); 1870 cmdTail = readw(&ch->mailbox->cout); 1871 n = (head - cmdTail) & (cmdMax - cmdStart - 4); 1872 /* ---------------------------------------------------------- 1873 Basically this will break when the FEP acknowledges the 1874 command by incrementing cmdTail (Making it equal to head). 1875 ------------------------------------------------------------- */ 1876 if (n <= ncmds * (sizeof(short) * 4)) 1877 break; /* Well nearly forever :-) */ 1878 } /* End forever loop */ 1879} /* End fepcmd */ 1880 1881/* --------------------------------------------------------------------- 1882 Digi products use fields in their channels structures that are very 1883 similar to the c_cflag and c_iflag fields typically found in UNIX 1884 termios structures. The below three routines allow mappings 1885 between these hardware "flags" and their respective Linux flags. 1886------------------------------------------------------------------------- */ 1887 1888/* --------------------- Begin termios2digi_h -------------------- */ 1889 1890static unsigned termios2digi_h(struct channel *ch, unsigned cflag) 1891{ /* Begin termios2digi_h */ 1892 unsigned res = 0; 1893 1894 if (cflag & CRTSCTS) { 1895 ch->digiext.digi_flags |= (RTSPACE | CTSPACE); 1896 res |= ((ch->m_cts) | (ch->m_rts)); 1897 } 1898 1899 if (ch->digiext.digi_flags & RTSPACE) 1900 res |= ch->m_rts; 1901 1902 if (ch->digiext.digi_flags & DTRPACE) 1903 res |= ch->m_dtr; 1904 1905 if (ch->digiext.digi_flags & CTSPACE) 1906 res |= ch->m_cts; 1907 1908 if (ch->digiext.digi_flags & DSRPACE) 1909 res |= ch->dsr; 1910 1911 if (ch->digiext.digi_flags & DCDPACE) 1912 res |= ch->dcd; 1913 1914 if (res & (ch->m_rts)) 1915 ch->digiext.digi_flags |= RTSPACE; 1916 1917 if (res & (ch->m_cts)) 1918 ch->digiext.digi_flags |= CTSPACE; 1919 1920 return res; 1921 1922} /* End termios2digi_h */ 1923 1924/* --------------------- Begin termios2digi_i -------------------- */ 1925static unsigned termios2digi_i(struct channel *ch, unsigned iflag) 1926{ /* Begin termios2digi_i */ 1927 1928 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK | 1929 INPCK | ISTRIP|IXON|IXANY|IXOFF); 1930 if (ch->digiext.digi_flags & DIGI_AIXON) 1931 res |= IAIXON; 1932 return res; 1933 1934} /* End termios2digi_i */ 1935 1936/* --------------------- Begin termios2digi_c -------------------- */ 1937 1938static unsigned termios2digi_c(struct channel *ch, unsigned cflag) 1939{ /* Begin termios2digi_c */ 1940 1941 unsigned res = 0; 1942 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */ 1943 ch->digiext.digi_flags |= DIGI_FAST; 1944 /* ------------------------------------------------------------- 1945 HUPCL bit is used by FEP to indicate fast baud 1946 table is to be used. 1947 ----------------------------------------------------------------- */ 1948 res |= FEP_HUPCL; 1949 } /* End detected CBAUDEX */ 1950 else ch->digiext.digi_flags &= ~DIGI_FAST; 1951 /* ------------------------------------------------------------------- 1952 CBAUD has bit position 0x1000 set these days to indicate Linux 1953 baud rate remap. Digi hardware can't handle the bit assignment. 1954 (We use a different bit assignment for high speed.). Clear this 1955 bit out. 1956 ---------------------------------------------------------------------- */ 1957 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE); 1958 /* ------------------------------------------------------------- 1959 This gets a little confusing. The Digi cards have their own 1960 representation of c_cflags controling baud rate. For the most 1961 part this is identical to the Linux implementation. However; 1962 Digi supports one rate (76800) that Linux doesn't. This means 1963 that the c_cflag entry that would normally mean 76800 for Digi 1964 actually means 115200 under Linux. Without the below mapping, 1965 a stty 115200 would only drive the board at 76800. Since 1966 the rate 230400 is also found after 76800, the same problem afflicts 1967 us when we choose a rate of 230400. Without the below modificiation 1968 stty 230400 would actually give us 115200. 1969 1970 There are two additional differences. The Linux value for CLOCAL 1971 (0x800; 0004000) has no meaning to the Digi hardware. Also in 1972 later releases of Linux; the CBAUD define has CBAUDEX (0x1000; 1973 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX 1974 should be checked for a screened out prior to termios2digi_c 1975 returning. Since CLOCAL isn't used by the board this can be 1976 ignored as long as the returned value is used only by Digi hardware. 1977 ----------------------------------------------------------------- */ 1978 if (cflag & CBAUDEX) { 1979 /* ------------------------------------------------------------- 1980 The below code is trying to guarantee that only baud rates 1981 115200 and 230400 are remapped. We use exclusive or because 1982 the various baud rates share common bit positions and therefore 1983 can't be tested for easily. 1984 ----------------------------------------------------------------- */ 1985 1986 1987 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) || 1988 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX)))) 1989 res += 1; 1990 } 1991 return res; 1992 1993} /* End termios2digi_c */ 1994 1995/* --------------------- Begin epcaparam ----------------------- */ 1996 1997/* Caller must hold the locks */ 1998static void epcaparam(struct tty_struct *tty, struct channel *ch) 1999{ /* Begin epcaparam */ 2000 2001 unsigned int cmdHead; 2002 struct ktermios *ts; 2003 struct board_chan __iomem *bc; 2004 unsigned mval, hflow, cflag, iflag; 2005 2006 bc = ch->brdchan; 2007 epcaassert(bc !=0, "bc out of range"); 2008 2009 assertgwinon(ch); 2010 ts = tty->termios; 2011 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */ 2012 cmdHead = readw(&bc->rin); 2013 writew(cmdHead, &bc->rout); 2014 cmdHead = readw(&bc->tin); 2015 /* Changing baud in mid-stream transmission can be wonderful */ 2016 /* --------------------------------------------------------------- 2017 Flush current transmit buffer by setting cmdTail pointer (tout) 2018 to cmdHead pointer (tin). Hopefully the transmit buffer is empty. 2019 ----------------------------------------------------------------- */ 2020 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0); 2021 mval = 0; 2022 } else { /* Begin CBAUD not detected */ 2023 /* ------------------------------------------------------------------- 2024 c_cflags have changed but that change had nothing to do with BAUD. 2025 Propagate the change to the card. 2026 ---------------------------------------------------------------------- */ 2027 cflag = termios2digi_c(ch, ts->c_cflag); 2028 if (cflag != ch->fepcflag) { 2029 ch->fepcflag = cflag; 2030 /* Set baud rate, char size, stop bits, parity */ 2031 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0); 2032 } 2033 /* ---------------------------------------------------------------- 2034 If the user has not forced CLOCAL and if the device is not a 2035 CALLOUT device (Which is always CLOCAL) we set flags such that 2036 the driver will wait on carrier detect. 2037 ------------------------------------------------------------------- */ 2038 if (ts->c_cflag & CLOCAL) 2039 ch->asyncflags &= ~ASYNC_CHECK_CD; 2040 else 2041 ch->asyncflags |= ASYNC_CHECK_CD; 2042 mval = ch->m_dtr | ch->m_rts; 2043 } /* End CBAUD not detected */ 2044 iflag = termios2digi_i(ch, ts->c_iflag); 2045 /* Check input mode flags */ 2046 if (iflag != ch->fepiflag) { 2047 ch->fepiflag = iflag; 2048 /* --------------------------------------------------------------- 2049 Command sets channels iflag structure on the board. Such things 2050 as input soft flow control, handling of parity errors, and 2051 break handling are all set here. 2052 ------------------------------------------------------------------- */ 2053 /* break handling, parity handling, input stripping, flow control chars */ 2054 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0); 2055 } 2056 /* --------------------------------------------------------------- 2057 Set the board mint value for this channel. This will cause hardware 2058 events to be generated each time the DCD signal (Described in mint) 2059 changes. 2060 ------------------------------------------------------------------- */ 2061 writeb(ch->dcd, &bc->mint); 2062 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD)) 2063 if (ch->digiext.digi_flags & DIGI_FORCEDCD) 2064 writeb(0, &bc->mint); 2065 ch->imodem = readb(&bc->mstat); 2066 hflow = termios2digi_h(ch, ts->c_cflag); 2067 if (hflow != ch->hflow) { 2068 ch->hflow = hflow; 2069 /* -------------------------------------------------------------- 2070 Hard flow control has been selected but the board is not 2071 using it. Activate hard flow control now. 2072 ----------------------------------------------------------------- */ 2073 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1); 2074 } 2075 mval ^= ch->modemfake & (mval ^ ch->modem); 2076 2077 if (ch->omodem ^ mval) { 2078 ch->omodem = mval; 2079 /* -------------------------------------------------------------- 2080 The below command sets the DTR and RTS mstat structure. If 2081 hard flow control is NOT active these changes will drive the 2082 output of the actual DTR and RTS lines. If hard flow control 2083 is active, the changes will be saved in the mstat structure and 2084 only asserted when hard flow control is turned off. 2085 ----------------------------------------------------------------- */ 2086 2087 /* First reset DTR & RTS; then set them */ 2088 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1); 2089 fepcmd(ch, SETMODEM, mval, 0, 0, 1); 2090 } 2091 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) { 2092 ch->fepstartc = ch->startc; 2093 ch->fepstopc = ch->stopc; 2094 /* ------------------------------------------------------------ 2095 The XON / XOFF characters have changed; propagate these 2096 changes to the card. 2097 --------------------------------------------------------------- */ 2098 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); 2099 } 2100 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) { 2101 ch->fepstartca = ch->startca; 2102 ch->fepstopca = ch->stopca; 2103 /* --------------------------------------------------------------- 2104 Similar to the above, this time the auxilarly XON / XOFF 2105 characters have changed; propagate these changes to the card. 2106 ------------------------------------------------------------------ */ 2107 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); 2108 } 2109} /* End epcaparam */ 2110 2111/* --------------------- Begin receive_data ----------------------- */ 2112/* Caller holds lock */ 2113static void receive_data(struct channel *ch) 2114{ /* Begin receive_data */ 2115 2116 unchar *rptr; 2117 struct ktermios *ts = NULL; 2118 struct tty_struct *tty; 2119 struct board_chan __iomem *bc; 2120 int dataToRead, wrapgap, bytesAvailable; 2121 unsigned int tail, head; 2122 unsigned int wrapmask; 2123 2124 /* --------------------------------------------------------------- 2125 This routine is called by doint when a receive data event 2126 has taken place. 2127 ------------------------------------------------------------------- */ 2128 2129 globalwinon(ch); 2130 if (ch->statusflags & RXSTOPPED) 2131 return; 2132 tty = ch->tty; 2133 if (tty) 2134 ts = tty->termios; 2135 bc = ch->brdchan; 2136 BUG_ON(!bc); 2137 wrapmask = ch->rxbufsize - 1; 2138 2139 /* --------------------------------------------------------------------- 2140 Get the head and tail pointers to the receiver queue. Wrap the 2141 head pointer if it has reached the end of the buffer. 2142 ------------------------------------------------------------------------ */ 2143 head = readw(&bc->rin); 2144 head &= wrapmask; 2145 tail = readw(&bc->rout) & wrapmask; 2146 2147 bytesAvailable = (head - tail) & wrapmask; 2148 if (bytesAvailable == 0) 2149 return; 2150 2151 /* ------------------------------------------------------------------ 2152 If CREAD bit is off or device not open, set TX tail to head 2153 --------------------------------------------------------------------- */ 2154 2155 if (!tty || !ts || !(ts->c_cflag & CREAD)) { 2156 writew(head, &bc->rout); 2157 return; 2158 } 2159 2160 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0) 2161 return; 2162 2163 if (readb(&bc->orun)) { 2164 writeb(0, &bc->orun); 2165 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name); 2166 tty_insert_flip_char(tty, 0, TTY_OVERRUN); 2167 } 2168 rxwinon(ch); 2169 while (bytesAvailable > 0) { /* Begin while there is data on the card */ 2170 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail; 2171 /* --------------------------------------------------------------- 2172 Even if head has wrapped around only report the amount of 2173 data to be equal to the size - tail. Remember memcpy can't 2174 automaticly wrap around the receive buffer. 2175 ----------------------------------------------------------------- */ 2176 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable; 2177 /* -------------------------------------------------------------- 2178 Make sure we don't overflow the buffer 2179 ----------------------------------------------------------------- */ 2180 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead); 2181 if (dataToRead == 0) 2182 break; 2183 /* --------------------------------------------------------------- 2184 Move data read from our card into the line disciplines buffer 2185 for translation if necessary. 2186 ------------------------------------------------------------------ */ 2187 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead); 2188 tail = (tail + dataToRead) & wrapmask; 2189 bytesAvailable -= dataToRead; 2190 } /* End while there is data on the card */ 2191 globalwinon(ch); 2192 writew(tail, &bc->rout); 2193 /* Must be called with global data */ 2194 tty_schedule_flip(ch->tty); 2195 return; 2196} /* End receive_data */ 2197 2198static int info_ioctl(struct tty_struct *tty, struct file * file, 2199 unsigned int cmd, unsigned long arg) 2200{ 2201 switch (cmd) 2202 { /* Begin switch cmd */ 2203 case DIGI_GETINFO: 2204 { /* Begin case DIGI_GETINFO */ 2205 struct digi_info di ; 2206 int brd; 2207 2208 if(get_user(brd, (unsigned int __user *)arg)) 2209 return -EFAULT; 2210 if (brd < 0 || brd >= num_cards || num_cards == 0) 2211 return -ENODEV; 2212 2213 memset(&di, 0, sizeof(di)); 2214 2215 di.board = brd ; 2216 di.status = boards[brd].status; 2217 di.type = boards[brd].type ; 2218 di.numports = boards[brd].numports ; 2219 /* Legacy fixups - just move along nothing to see */ 2220 di.port = (unsigned char *)boards[brd].port ; 2221 di.membase = (unsigned char *)boards[brd].membase ; 2222 2223 if (copy_to_user((void __user *)arg, &di, sizeof (di))) 2224 return -EFAULT; 2225 break; 2226 2227 } /* End case DIGI_GETINFO */ 2228 2229 case DIGI_POLLER: 2230 { /* Begin case DIGI_POLLER */ 2231 2232 int brd = arg & 0xff000000 >> 16 ; 2233 unsigned char state = arg & 0xff ; 2234 2235 if (brd < 0 || brd >= num_cards) { 2236 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n"); 2237 return (-ENODEV); 2238 } 2239 digi_poller_inhibited = state ; 2240 break ; 2241 } /* End case DIGI_POLLER */ 2242 2243 case DIGI_INIT: 2244 { /* Begin case DIGI_INIT */ 2245 /* ------------------------------------------------------------ 2246 This call is made by the apps to complete the initilization 2247 of the board(s). This routine is responsible for setting 2248 the card to its initial state and setting the drivers control 2249 fields to the sutianle settings for the card in question. 2250 ---------------------------------------------------------------- */ 2251 int crd ; 2252 for (crd = 0; crd < num_cards; crd++) 2253 post_fep_init (crd); 2254 break ; 2255 } /* End case DIGI_INIT */ 2256 default: 2257 return -ENOTTY; 2258 } /* End switch cmd */ 2259 return (0) ; 2260} 2261/* --------------------- Begin pc_ioctl ----------------------- */ 2262 2263static int pc_tiocmget(struct tty_struct *tty, struct file *file) 2264{ 2265 struct channel *ch = (struct channel *) tty->driver_data; 2266 struct board_chan __iomem *bc; 2267 unsigned int mstat, mflag = 0; 2268 unsigned long flags; 2269 2270 if (ch) 2271 bc = ch->brdchan; 2272 else 2273 return -EINVAL; 2274 2275 spin_lock_irqsave(&epca_lock, flags); 2276 globalwinon(ch); 2277 mstat = readb(&bc->mstat); 2278 memoff(ch); 2279 spin_unlock_irqrestore(&epca_lock, flags); 2280 2281 if (mstat & ch->m_dtr) 2282 mflag |= TIOCM_DTR; 2283 if (mstat & ch->m_rts) 2284 mflag |= TIOCM_RTS; 2285 if (mstat & ch->m_cts) 2286 mflag |= TIOCM_CTS; 2287 if (mstat & ch->dsr) 2288 mflag |= TIOCM_DSR; 2289 if (mstat & ch->m_ri) 2290 mflag |= TIOCM_RI; 2291 if (mstat & ch->dcd) 2292 mflag |= TIOCM_CD; 2293 return mflag; 2294} 2295 2296static int pc_tiocmset(struct tty_struct *tty, struct file *file, 2297 unsigned int set, unsigned int clear) 2298{ 2299 struct channel *ch = (struct channel *) tty->driver_data; 2300 unsigned long flags; 2301 2302 if (!ch) 2303 return -EINVAL; 2304 2305 spin_lock_irqsave(&epca_lock, flags); 2306 /* 2307 * I think this modemfake stuff is broken. It doesn't 2308 * correctly reflect the behaviour desired by the TIOCM* 2309 * ioctls. Therefore this is probably broken. 2310 */ 2311 if (set & TIOCM_RTS) { 2312 ch->modemfake |= ch->m_rts; 2313 ch->modem |= ch->m_rts; 2314 } 2315 if (set & TIOCM_DTR) { 2316 ch->modemfake |= ch->m_dtr; 2317 ch->modem |= ch->m_dtr; 2318 } 2319 if (clear & TIOCM_RTS) { 2320 ch->modemfake |= ch->m_rts; 2321 ch->modem &= ~ch->m_rts; 2322 } 2323 if (clear & TIOCM_DTR) { 2324 ch->modemfake |= ch->m_dtr; 2325 ch->modem &= ~ch->m_dtr; 2326 } 2327 globalwinon(ch); 2328 /* -------------------------------------------------------------- 2329 The below routine generally sets up parity, baud, flow control 2330 issues, etc.... It effect both control flags and input flags. 2331 ------------------------------------------------------------------ */ 2332 epcaparam(tty,ch); 2333 memoff(ch); 2334 spin_unlock_irqrestore(&epca_lock, flags); 2335 return 0; 2336} 2337 2338static int pc_ioctl(struct tty_struct *tty, struct file * file, 2339 unsigned int cmd, unsigned long arg) 2340{ /* Begin pc_ioctl */ 2341 2342 digiflow_t dflow; 2343 int retval; 2344 unsigned long flags; 2345 unsigned int mflag, mstat; 2346 unsigned char startc, stopc; 2347 struct board_chan __iomem *bc; 2348 struct channel *ch = (struct channel *) tty->driver_data; 2349 void __user *argp = (void __user *)arg; 2350 2351 if (ch) 2352 bc = ch->brdchan; 2353 else 2354 return -EINVAL; 2355 2356 /* ------------------------------------------------------------------- 2357 For POSIX compliance we need to add more ioctls. See tty_ioctl.c 2358 in /usr/src/linux/drivers/char for a good example. In particular 2359 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS. 2360 ---------------------------------------------------------------------- */ 2361 2362 switch (cmd) 2363 { /* Begin switch cmd */ 2364 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2365 retval = tty_check_change(tty); 2366 if (retval) 2367 return retval; 2368 /* Setup an event to indicate when the transmit buffer empties */ 2369 spin_lock_irqsave(&epca_lock, flags); 2370 setup_empty_event(tty,ch); 2371 spin_unlock_irqrestore(&epca_lock, flags); 2372 tty_wait_until_sent(tty, 0); 2373 if (!arg) 2374 digi_send_break(ch, HZ/4); /* 1/4 second */ 2375 return 0; 2376 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2377 retval = tty_check_change(tty); 2378 if (retval) 2379 return retval; 2380 2381 /* Setup an event to indicate when the transmit buffer empties */ 2382 spin_lock_irqsave(&epca_lock, flags); 2383 setup_empty_event(tty,ch); 2384 spin_unlock_irqrestore(&epca_lock, flags); 2385 tty_wait_until_sent(tty, 0); 2386 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4); 2387 return 0; 2388 case TIOCGSOFTCAR: 2389 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg)) 2390 return -EFAULT; 2391 return 0; 2392 case TIOCSSOFTCAR: 2393 { 2394 unsigned int value; 2395 2396 if (get_user(value, (unsigned __user *)argp)) 2397 return -EFAULT; 2398 tty->termios->c_cflag = 2399 ((tty->termios->c_cflag & ~CLOCAL) | 2400 (value ? CLOCAL : 0)); 2401 return 0; 2402 } 2403 case TIOCMODG: 2404 mflag = pc_tiocmget(tty, file); 2405 if (put_user(mflag, (unsigned long __user *)argp)) 2406 return -EFAULT; 2407 break; 2408 case TIOCMODS: 2409 if (get_user(mstat, (unsigned __user *)argp)) 2410 return -EFAULT; 2411 return pc_tiocmset(tty, file, mstat, ~mstat); 2412 case TIOCSDTR: 2413 spin_lock_irqsave(&epca_lock, flags); 2414 ch->omodem |= ch->m_dtr; 2415 globalwinon(ch); 2416 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1); 2417 memoff(ch); 2418 spin_unlock_irqrestore(&epca_lock, flags); 2419 break; 2420 2421 case TIOCCDTR: 2422 spin_lock_irqsave(&epca_lock, flags); 2423 ch->omodem &= ~ch->m_dtr; 2424 globalwinon(ch); 2425 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1); 2426 memoff(ch); 2427 spin_unlock_irqrestore(&epca_lock, flags); 2428 break; 2429 case DIGI_GETA: 2430 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t))) 2431 return -EFAULT; 2432 break; 2433 case DIGI_SETAW: 2434 case DIGI_SETAF: 2435 if (cmd == DIGI_SETAW) { 2436 /* Setup an event to indicate when the transmit buffer empties */ 2437 spin_lock_irqsave(&epca_lock, flags); 2438 setup_empty_event(tty,ch); 2439 spin_unlock_irqrestore(&epca_lock, flags); 2440 tty_wait_until_sent(tty, 0); 2441 } else { 2442 /* ldisc lock already held in ioctl */ 2443 if (tty->ldisc.flush_buffer) 2444 tty->ldisc.flush_buffer(tty); 2445 } 2446 /* Fall Thru */ 2447 case DIGI_SETA: 2448 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t))) 2449 return -EFAULT; 2450 2451 if (ch->digiext.digi_flags & DIGI_ALTPIN) { 2452 ch->dcd = ch->m_dsr; 2453 ch->dsr = ch->m_dcd; 2454 } else { 2455 ch->dcd = ch->m_dcd; 2456 ch->dsr = ch->m_dsr; 2457 } 2458 2459 spin_lock_irqsave(&epca_lock, flags); 2460 globalwinon(ch); 2461 2462 /* ----------------------------------------------------------------- 2463 The below routine generally sets up parity, baud, flow control 2464 issues, etc.... It effect both control flags and input flags. 2465 ------------------------------------------------------------------- */ 2466 2467 epcaparam(tty,ch); 2468 memoff(ch); 2469 spin_unlock_irqrestore(&epca_lock, flags); 2470 break; 2471 2472 case DIGI_GETFLOW: 2473 case DIGI_GETAFLOW: 2474 spin_lock_irqsave(&epca_lock, flags); 2475 globalwinon(ch); 2476 if (cmd == DIGI_GETFLOW) { 2477 dflow.startc = readb(&bc->startc); 2478 dflow.stopc = readb(&bc->stopc); 2479 } else { 2480 dflow.startc = readb(&bc->startca); 2481 dflow.stopc = readb(&bc->stopca); 2482 } 2483 memoff(ch); 2484 spin_unlock_irqrestore(&epca_lock, flags); 2485 2486 if (copy_to_user(argp, &dflow, sizeof(dflow))) 2487 return -EFAULT; 2488 break; 2489 2490 case DIGI_SETAFLOW: 2491 case DIGI_SETFLOW: 2492 if (cmd == DIGI_SETFLOW) { 2493 startc = ch->startc; 2494 stopc = ch->stopc; 2495 } else { 2496 startc = ch->startca; 2497 stopc = ch->stopca; 2498 } 2499 2500 if (copy_from_user(&dflow, argp, sizeof(dflow))) 2501 return -EFAULT; 2502 2503 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */ 2504 spin_lock_irqsave(&epca_lock, flags); 2505 globalwinon(ch); 2506 2507 if (cmd == DIGI_SETFLOW) { 2508 ch->fepstartc = ch->startc = dflow.startc; 2509 ch->fepstopc = ch->stopc = dflow.stopc; 2510 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1); 2511 } else { 2512 ch->fepstartca = ch->startca = dflow.startc; 2513 ch->fepstopca = ch->stopca = dflow.stopc; 2514 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1); 2515 } 2516 2517 if (ch->statusflags & TXSTOPPED) 2518 pc_start(tty); 2519 2520 memoff(ch); 2521 spin_unlock_irqrestore(&epca_lock, flags); 2522 } /* End if setflow toggled */ 2523 break; 2524 default: 2525 return -ENOIOCTLCMD; 2526 } /* End switch cmd */ 2527 return 0; 2528} /* End pc_ioctl */ 2529 2530/* --------------------- Begin pc_set_termios ----------------------- */ 2531 2532static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios) 2533{ /* Begin pc_set_termios */ 2534 2535 struct channel *ch; 2536 unsigned long flags; 2537 /* --------------------------------------------------------- 2538 verifyChannel returns the channel from the tty struct 2539 if it is valid. This serves as a sanity check. 2540 ------------------------------------------------------------- */ 2541 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */ 2542 spin_lock_irqsave(&epca_lock, flags); 2543 globalwinon(ch); 2544 epcaparam(tty, ch); 2545 memoff(ch); 2546 spin_unlock_irqrestore(&epca_lock, flags); 2547 2548 if ((old_termios->c_cflag & CRTSCTS) && 2549 ((tty->termios->c_cflag & CRTSCTS) == 0)) 2550 tty->hw_stopped = 0; 2551 2552 if (!(old_termios->c_cflag & CLOCAL) && 2553 (tty->termios->c_cflag & CLOCAL)) 2554 wake_up_interruptible(&ch->open_wait); 2555 2556 } /* End if channel valid */ 2557 2558} /* End pc_set_termios */ 2559 2560/* --------------------- Begin do_softint ----------------------- */ 2561 2562static void do_softint(struct work_struct *work) 2563{ /* Begin do_softint */ 2564 struct channel *ch = container_of(work, struct channel, tqueue); 2565 /* Called in response to a modem change event */ 2566 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */ 2567 struct tty_struct *tty = ch->tty; 2568 2569 if (tty && tty->driver_data) { 2570 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */ 2571 tty_hangup(tty); /* FIXME: module removal race here - AKPM */ 2572 wake_up_interruptible(&ch->open_wait); 2573 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE; 2574 } /* End if clear_bit */ 2575 } 2576 } /* End EPCA_MAGIC */ 2577} /* End do_softint */ 2578 2579/* ------------------------------------------------------------ 2580 pc_stop and pc_start provide software flow control to the 2581 routine and the pc_ioctl routine. 2582---------------------------------------------------------------- */ 2583 2584/* --------------------- Begin pc_stop ----------------------- */ 2585 2586static void pc_stop(struct tty_struct *tty) 2587{ /* Begin pc_stop */ 2588 2589 struct channel *ch; 2590 unsigned long flags; 2591 /* --------------------------------------------------------- 2592 verifyChannel returns the channel from the tty struct 2593 if it is valid. This serves as a sanity check. 2594 ------------------------------------------------------------- */ 2595 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */ 2596 spin_lock_irqsave(&epca_lock, flags); 2597 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */ 2598 globalwinon(ch); 2599 /* STOP transmitting now !! */ 2600 fepcmd(ch, PAUSETX, 0, 0, 0, 0); 2601 ch->statusflags |= TXSTOPPED; 2602 memoff(ch); 2603 } /* End if transmit stop requested */ 2604 spin_unlock_irqrestore(&epca_lock, flags); 2605 } /* End if valid channel */ 2606} /* End pc_stop */ 2607 2608/* --------------------- Begin pc_start ----------------------- */ 2609 2610static void pc_start(struct tty_struct *tty) 2611{ /* Begin pc_start */ 2612 struct channel *ch; 2613 /* --------------------------------------------------------- 2614 verifyChannel returns the channel from the tty struct 2615 if it is valid. This serves as a sanity check. 2616 ------------------------------------------------------------- */ 2617 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */ 2618 unsigned long flags; 2619 spin_lock_irqsave(&epca_lock, flags); 2620 /* Just in case output was resumed because of a change in Digi-flow */ 2621 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */ 2622 struct board_chan __iomem *bc; 2623 globalwinon(ch); 2624 bc = ch->brdchan; 2625 if (ch->statusflags & LOWWAIT) 2626 writeb(1, &bc->ilow); 2627 /* Okay, you can start transmitting again... */ 2628 fepcmd(ch, RESUMETX, 0, 0, 0, 0); 2629 ch->statusflags &= ~TXSTOPPED; 2630 memoff(ch); 2631 } /* End transmit resume requested */ 2632 spin_unlock_irqrestore(&epca_lock, flags); 2633 } /* End if channel valid */ 2634} /* End pc_start */ 2635 2636/* ------------------------------------------------------------------ 2637 The below routines pc_throttle and pc_unthrottle are used 2638 to slow (And resume) the receipt of data into the kernels 2639 receive buffers. The exact occurrence of this depends on the 2640 size of the kernels receive buffer and what the 'watermarks' 2641 are set to for that buffer. See the n_ttys.c file for more 2642 details. 2643______________________________________________________________________ */ 2644/* --------------------- Begin throttle ----------------------- */ 2645 2646static void pc_throttle(struct tty_struct * tty) 2647{ /* Begin pc_throttle */ 2648 struct channel *ch; 2649 unsigned long flags; 2650 /* --------------------------------------------------------- 2651 verifyChannel returns the channel from the tty struct 2652 if it is valid. This serves as a sanity check. 2653 ------------------------------------------------------------- */ 2654 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */ 2655 spin_lock_irqsave(&epca_lock, flags); 2656 if ((ch->statusflags & RXSTOPPED) == 0) { 2657 globalwinon(ch); 2658 fepcmd(ch, PAUSERX, 0, 0, 0, 0); 2659 ch->statusflags |= RXSTOPPED; 2660 memoff(ch); 2661 } 2662 spin_unlock_irqrestore(&epca_lock, flags); 2663 } /* End if channel valid */ 2664} /* End pc_throttle */ 2665 2666/* --------------------- Begin unthrottle ----------------------- */ 2667 2668static void pc_unthrottle(struct tty_struct *tty) 2669{ /* Begin pc_unthrottle */ 2670 struct channel *ch; 2671 unsigned long flags; 2672 /* --------------------------------------------------------- 2673 verifyChannel returns the channel from the tty struct 2674 if it is valid. This serves as a sanity check. 2675 ------------------------------------------------------------- */ 2676 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */ 2677 /* Just in case output was resumed because of a change in Digi-flow */ 2678 spin_lock_irqsave(&epca_lock, flags); 2679 if (ch->statusflags & RXSTOPPED) { 2680 globalwinon(ch); 2681 fepcmd(ch, RESUMERX, 0, 0, 0, 0); 2682 ch->statusflags &= ~RXSTOPPED; 2683 memoff(ch); 2684 } 2685 spin_unlock_irqrestore(&epca_lock, flags); 2686 } /* End if channel valid */ 2687} /* End pc_unthrottle */ 2688 2689/* --------------------- Begin digi_send_break ----------------------- */ 2690 2691void digi_send_break(struct channel *ch, int msec) 2692{ /* Begin digi_send_break */ 2693 unsigned long flags; 2694 2695 spin_lock_irqsave(&epca_lock, flags); 2696 globalwinon(ch); 2697 /* -------------------------------------------------------------------- 2698 Maybe I should send an infinite break here, schedule() for 2699 msec amount of time, and then stop the break. This way, 2700 the user can't screw up the FEP by causing digi_send_break() 2701 to be called (i.e. via an ioctl()) more than once in msec amount 2702 of time. Try this for now... 2703 ------------------------------------------------------------------------ */ 2704 fepcmd(ch, SENDBREAK, msec, 0, 10, 0); 2705 memoff(ch); 2706 spin_unlock_irqrestore(&epca_lock, flags); 2707} /* End digi_send_break */ 2708 2709/* --------------------- Begin setup_empty_event ----------------------- */ 2710 2711/* Caller MUST hold the lock */ 2712 2713static void setup_empty_event(struct tty_struct *tty, struct channel *ch) 2714{ /* Begin setup_empty_event */ 2715 2716 struct board_chan __iomem *bc = ch->brdchan; 2717 2718 globalwinon(ch); 2719 ch->statusflags |= EMPTYWAIT; 2720 /* ------------------------------------------------------------------ 2721 When set the iempty flag request a event to be generated when the 2722 transmit buffer is empty (If there is no BREAK in progress). 2723 --------------------------------------------------------------------- */ 2724 writeb(1, &bc->iempty); 2725 memoff(ch); 2726} /* End setup_empty_event */ 2727 2728/* ---------------------- Begin epca_setup -------------------------- */ 2729void epca_setup(char *str, int *ints) 2730{ /* Begin epca_setup */ 2731 struct board_info board; 2732 int index, loop, last; 2733 char *temp, *t2; 2734 unsigned len; 2735 2736 /* ---------------------------------------------------------------------- 2737 If this routine looks a little strange it is because it is only called 2738 if a LILO append command is given to boot the kernel with parameters. 2739 In this way, we can provide the user a method of changing his board 2740 configuration without rebuilding the kernel. 2741 ----------------------------------------------------------------------- */ 2742 if (!liloconfig) 2743 liloconfig = 1; 2744 2745 memset(&board, 0, sizeof(board)); 2746 2747 /* Assume the data is int first, later we can change it */ 2748 /* I think that array position 0 of ints holds the number of args */ 2749 for (last = 0, index = 1; index <= ints[0]; index++) 2750 switch(index) 2751 { /* Begin parse switch */ 2752 case 1: 2753 board.status = ints[index]; 2754 /* --------------------------------------------------------- 2755 We check for 2 (As opposed to 1; because 2 is a flag 2756 instructing the driver to ignore epcaconfig.) For this 2757 reason we check for 2. 2758 ------------------------------------------------------------ */ 2759 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */ 2760 nbdevs = 0; 2761 num_cards = 0; 2762 return; 2763 } /* End ignore epcaconfig as well as lilo cmd line */ 2764 2765 if (board.status > 2) { 2766 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status); 2767 invalid_lilo_config = 1; 2768 setup_error_code |= INVALID_BOARD_STATUS; 2769 return; 2770 } 2771 last = index; 2772 break; 2773 case 2: 2774 board.type = ints[index]; 2775 if (board.type >= PCIXEM) { 2776 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type); 2777 invalid_lilo_config = 1; 2778 setup_error_code |= INVALID_BOARD_TYPE; 2779 return; 2780 } 2781 last = index; 2782 break; 2783 case 3: 2784 board.altpin = ints[index]; 2785 if (board.altpin > 1) { 2786 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin); 2787 invalid_lilo_config = 1; 2788 setup_error_code |= INVALID_ALTPIN; 2789 return; 2790 } 2791 last = index; 2792 break; 2793 2794 case 4: 2795 board.numports = ints[index]; 2796 if (board.numports < 2 || board.numports > 256) { 2797 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports); 2798 invalid_lilo_config = 1; 2799 setup_error_code |= INVALID_NUM_PORTS; 2800 return; 2801 } 2802 nbdevs += board.numports; 2803 last = index; 2804 break; 2805 2806 case 5: 2807 board.port = ints[index]; 2808 if (ints[index] <= 0) { 2809 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port); 2810 invalid_lilo_config = 1; 2811 setup_error_code |= INVALID_PORT_BASE; 2812 return; 2813 } 2814 last = index; 2815 break; 2816 2817 case 6: 2818 board.membase = ints[index]; 2819 if (ints[index] <= 0) { 2820 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase); 2821 invalid_lilo_config = 1; 2822 setup_error_code |= INVALID_MEM_BASE; 2823 return; 2824 } 2825 last = index; 2826 break; 2827 2828 default: 2829 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n"); 2830 return; 2831 2832 } /* End parse switch */ 2833 2834 while (str && *str) { /* Begin while there is a string arg */ 2835 /* find the next comma or terminator */ 2836 temp = str; 2837 /* While string is not null, and a comma hasn't been found */ 2838 while (*temp && (*temp != ',')) 2839 temp++; 2840 if (!*temp) 2841 temp = NULL; 2842 else 2843 *temp++ = 0; 2844 /* Set index to the number of args + 1 */ 2845 index = last + 1; 2846 2847 switch(index) 2848 { 2849 case 1: 2850 len = strlen(str); 2851 if (strncmp("Disable", str, len) == 0) 2852 board.status = 0; 2853 else if (strncmp("Enable", str, len) == 0) 2854 board.status = 1; 2855 else { 2856 printk(KERN_ERR "epca_setup: Invalid status %s\n", str); 2857 invalid_lilo_config = 1; 2858 setup_error_code |= INVALID_BOARD_STATUS; 2859 return; 2860 } 2861 last = index; 2862 break; 2863 2864 case 2: 2865 for(loop = 0; loop < EPCA_NUM_TYPES; loop++) 2866 if (strcmp(board_desc[loop], str) == 0) 2867 break; 2868 /* --------------------------------------------------------------- 2869 If the index incremented above refers to a legitamate board 2870 type set it here. 2871 ------------------------------------------------------------------*/ 2872 if (index < EPCA_NUM_TYPES) 2873 board.type = loop; 2874 else { 2875 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str); 2876 invalid_lilo_config = 1; 2877 setup_error_code |= INVALID_BOARD_TYPE; 2878 return; 2879 } 2880 last = index; 2881 break; 2882 2883 case 3: 2884 len = strlen(str); 2885 if (strncmp("Disable", str, len) == 0) 2886 board.altpin = 0; 2887 else if (strncmp("Enable", str, len) == 0) 2888 board.altpin = 1; 2889 else { 2890 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str); 2891 invalid_lilo_config = 1; 2892 setup_error_code |= INVALID_ALTPIN; 2893 return; 2894 } 2895 last = index; 2896 break; 2897 2898 case 4: 2899 t2 = str; 2900 while (isdigit(*t2)) 2901 t2++; 2902 2903 if (*t2) { 2904 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str); 2905 invalid_lilo_config = 1; 2906 setup_error_code |= INVALID_NUM_PORTS; 2907 return; 2908 } 2909 2910 /* ------------------------------------------------------------ 2911 There is not a man page for simple_strtoul but the code can be 2912 found in vsprintf.c. The first argument is the string to 2913 translate (To an unsigned long obviously), the second argument 2914 can be the address of any character variable or a NULL. If a 2915 variable is given, the end pointer of the string will be stored 2916 in that variable; if a NULL is given the end pointer will 2917 not be returned. The last argument is the base to use. If 2918 a 0 is indicated, the routine will attempt to determine the 2919 proper base by looking at the values prefix (A '0' for octal, 2920 a 'x' for hex, etc ... If a value is given it will use that 2921 value as the base. 2922 ---------------------------------------------------------------- */ 2923 board.numports = simple_strtoul(str, NULL, 0); 2924 nbdevs += board.numports; 2925 last = index; 2926 break; 2927 2928 case 5: 2929 t2 = str; 2930 while (isxdigit(*t2)) 2931 t2++; 2932 2933 if (*t2) { 2934 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str); 2935 invalid_lilo_config = 1; 2936 setup_error_code |= INVALID_PORT_BASE; 2937 return; 2938 } 2939 2940 board.port = simple_strtoul(str, NULL, 16); 2941 last = index; 2942 break; 2943 2944 case 6: 2945 t2 = str; 2946 while (isxdigit(*t2)) 2947 t2++; 2948 2949 if (*t2) { 2950 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str); 2951 invalid_lilo_config = 1; 2952 setup_error_code |= INVALID_MEM_BASE; 2953 return; 2954 } 2955 board.membase = simple_strtoul(str, NULL, 16); 2956 last = index; 2957 break; 2958 default: 2959 printk(KERN_ERR "epca: Too many string parms\n"); 2960 return; 2961 } 2962 str = temp; 2963 } /* End while there is a string arg */ 2964 2965 if (last < 6) { 2966 printk(KERN_ERR "epca: Insufficient parms specified\n"); 2967 return; 2968 } 2969 2970 /* I should REALLY validate the stuff here */ 2971 /* Copies our local copy of board into boards */ 2972 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board)); 2973 /* Does this get called once per lilo arg are what ? */ 2974 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n", 2975 num_cards, board_desc[board.type], 2976 board.numports, (int)board.port, (unsigned int) board.membase); 2977 num_cards++; 2978} /* End epca_setup */ 2979 2980 2981/* ------------------------ Begin init_PCI --------------------------- */ 2982 2983enum epic_board_types { 2984 brd_xr = 0, 2985 brd_xem, 2986 brd_cx, 2987 brd_xrj, 2988}; 2989 2990 2991/* indexed directly by epic_board_types enum */ 2992static struct { 2993 unsigned char board_type; 2994 unsigned bar_idx; /* PCI base address region */ 2995} epca_info_tbl[] = { 2996 { PCIXR, 0, }, 2997 { PCIXEM, 0, }, 2998 { PCICX, 0, }, 2999 { PCIXRJ, 2, }, 3000}; 3001 3002static int __devinit epca_init_one (struct pci_dev *pdev, 3003 const struct pci_device_id *ent) 3004{ 3005 static int board_num = -1; 3006 int board_idx, info_idx = ent->driver_data; 3007 unsigned long addr; 3008 3009 if (pci_enable_device(pdev)) 3010 return -EIO; 3011 3012 board_num++; 3013 board_idx = board_num + num_cards; 3014 if (board_idx >= MAXBOARDS) 3015 goto err_out; 3016 3017 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx); 3018 if (!addr) { 3019 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n", 3020 epca_info_tbl[info_idx].bar_idx); 3021 goto err_out; 3022 } 3023 3024 boards[board_idx].status = ENABLED; 3025 boards[board_idx].type = epca_info_tbl[info_idx].board_type; 3026 boards[board_idx].numports = 0x0; 3027 boards[board_idx].port = addr + PCI_IO_OFFSET; 3028 boards[board_idx].membase = addr; 3029 3030 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) { 3031 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", 3032 0x200000, addr + PCI_IO_OFFSET); 3033 goto err_out; 3034 } 3035 3036 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000); 3037 if (!boards[board_idx].re_map_port) { 3038 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", 3039 0x200000, addr + PCI_IO_OFFSET); 3040 goto err_out_free_pciio; 3041 } 3042 3043 if (!request_mem_region (addr, 0x200000, "epca")) { 3044 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n", 3045 0x200000, addr); 3046 goto err_out_free_iounmap; 3047 } 3048 3049 boards[board_idx].re_map_membase = ioremap(addr, 0x200000); 3050 if (!boards[board_idx].re_map_membase) { 3051 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n", 3052 0x200000, addr + PCI_IO_OFFSET); 3053 goto err_out_free_memregion; 3054 } 3055 3056 /* -------------------------------------------------------------- 3057 I don't know what the below does, but the hardware guys say 3058 its required on everything except PLX (In this case XRJ). 3059 ---------------------------------------------------------------- */ 3060 if (info_idx != brd_xrj) { 3061 pci_write_config_byte(pdev, 0x40, 0); 3062 pci_write_config_byte(pdev, 0x46, 0); 3063 } 3064 3065 return 0; 3066 3067err_out_free_memregion: 3068 release_mem_region (addr, 0x200000); 3069err_out_free_iounmap: 3070 iounmap (boards[board_idx].re_map_port); 3071err_out_free_pciio: 3072 release_mem_region (addr + PCI_IO_OFFSET, 0x200000); 3073err_out: 3074 return -ENODEV; 3075} 3076 3077 3078static struct pci_device_id epca_pci_tbl[] = { 3079 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr }, 3080 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem }, 3081 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx }, 3082 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj }, 3083 { 0, } 3084}; 3085 3086MODULE_DEVICE_TABLE(pci, epca_pci_tbl); 3087 3088int __init init_PCI (void) 3089{ /* Begin init_PCI */ 3090 memset (&epca_driver, 0, sizeof (epca_driver)); 3091 epca_driver.name = "epca"; 3092 epca_driver.id_table = epca_pci_tbl; 3093 epca_driver.probe = epca_init_one; 3094 3095 return pci_register_driver(&epca_driver); 3096} 3097 3098MODULE_LICENSE("GPL");