at v2.6.21 67 kB view raw
1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="LKLockingGuide"> 6 <bookinfo> 7 <title>Unreliable Guide To Locking</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Rusty</firstname> 12 <surname>Russell</surname> 13 <affiliation> 14 <address> 15 <email>rusty@rustcorp.com.au</email> 16 </address> 17 </affiliation> 18 </author> 19 </authorgroup> 20 21 <copyright> 22 <year>2003</year> 23 <holder>Rusty Russell</holder> 24 </copyright> 25 26 <legalnotice> 27 <para> 28 This documentation is free software; you can redistribute 29 it and/or modify it under the terms of the GNU General Public 30 License as published by the Free Software Foundation; either 31 version 2 of the License, or (at your option) any later 32 version. 33 </para> 34 35 <para> 36 This program is distributed in the hope that it will be 37 useful, but WITHOUT ANY WARRANTY; without even the implied 38 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 39 See the GNU General Public License for more details. 40 </para> 41 42 <para> 43 You should have received a copy of the GNU General Public 44 License along with this program; if not, write to the Free 45 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 46 MA 02111-1307 USA 47 </para> 48 49 <para> 50 For more details see the file COPYING in the source 51 distribution of Linux. 52 </para> 53 </legalnotice> 54 </bookinfo> 55 56 <toc></toc> 57 <chapter id="intro"> 58 <title>Introduction</title> 59 <para> 60 Welcome, to Rusty's Remarkably Unreliable Guide to Kernel 61 Locking issues. This document describes the locking systems in 62 the Linux Kernel in 2.6. 63 </para> 64 <para> 65 With the wide availability of HyperThreading, and <firstterm 66 linkend="gloss-preemption">preemption </firstterm> in the Linux 67 Kernel, everyone hacking on the kernel needs to know the 68 fundamentals of concurrency and locking for 69 <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>. 70 </para> 71 </chapter> 72 73 <chapter id="races"> 74 <title>The Problem With Concurrency</title> 75 <para> 76 (Skip this if you know what a Race Condition is). 77 </para> 78 <para> 79 In a normal program, you can increment a counter like so: 80 </para> 81 <programlisting> 82 very_important_count++; 83 </programlisting> 84 85 <para> 86 This is what they would expect to happen: 87 </para> 88 89 <table> 90 <title>Expected Results</title> 91 92 <tgroup cols="2" align="left"> 93 94 <thead> 95 <row> 96 <entry>Instance 1</entry> 97 <entry>Instance 2</entry> 98 </row> 99 </thead> 100 101 <tbody> 102 <row> 103 <entry>read very_important_count (5)</entry> 104 <entry></entry> 105 </row> 106 <row> 107 <entry>add 1 (6)</entry> 108 <entry></entry> 109 </row> 110 <row> 111 <entry>write very_important_count (6)</entry> 112 <entry></entry> 113 </row> 114 <row> 115 <entry></entry> 116 <entry>read very_important_count (6)</entry> 117 </row> 118 <row> 119 <entry></entry> 120 <entry>add 1 (7)</entry> 121 </row> 122 <row> 123 <entry></entry> 124 <entry>write very_important_count (7)</entry> 125 </row> 126 </tbody> 127 128 </tgroup> 129 </table> 130 131 <para> 132 This is what might happen: 133 </para> 134 135 <table> 136 <title>Possible Results</title> 137 138 <tgroup cols="2" align="left"> 139 <thead> 140 <row> 141 <entry>Instance 1</entry> 142 <entry>Instance 2</entry> 143 </row> 144 </thead> 145 146 <tbody> 147 <row> 148 <entry>read very_important_count (5)</entry> 149 <entry></entry> 150 </row> 151 <row> 152 <entry></entry> 153 <entry>read very_important_count (5)</entry> 154 </row> 155 <row> 156 <entry>add 1 (6)</entry> 157 <entry></entry> 158 </row> 159 <row> 160 <entry></entry> 161 <entry>add 1 (6)</entry> 162 </row> 163 <row> 164 <entry>write very_important_count (6)</entry> 165 <entry></entry> 166 </row> 167 <row> 168 <entry></entry> 169 <entry>write very_important_count (6)</entry> 170 </row> 171 </tbody> 172 </tgroup> 173 </table> 174 175 <sect1 id="race-condition"> 176 <title>Race Conditions and Critical Regions</title> 177 <para> 178 This overlap, where the result depends on the 179 relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>. 180 The piece of code containing the concurrency issue is called a 181 <firstterm>critical region</firstterm>. And especially since Linux starting running 182 on SMP machines, they became one of the major issues in kernel 183 design and implementation. 184 </para> 185 <para> 186 Preemption can have the same effect, even if there is only one 187 CPU: by preempting one task during the critical region, we have 188 exactly the same race condition. In this case the thread which 189 preempts might run the critical region itself. 190 </para> 191 <para> 192 The solution is to recognize when these simultaneous accesses 193 occur, and use locks to make sure that only one instance can 194 enter the critical region at any time. There are many 195 friendly primitives in the Linux kernel to help you do this. 196 And then there are the unfriendly primitives, but I'll pretend 197 they don't exist. 198 </para> 199 </sect1> 200 </chapter> 201 202 <chapter id="locks"> 203 <title>Locking in the Linux Kernel</title> 204 205 <para> 206 If I could give you one piece of advice: never sleep with anyone 207 crazier than yourself. But if I had to give you advice on 208 locking: <emphasis>keep it simple</emphasis>. 209 </para> 210 211 <para> 212 Be reluctant to introduce new locks. 213 </para> 214 215 <para> 216 Strangely enough, this last one is the exact reverse of my advice when 217 you <emphasis>have</emphasis> slept with someone crazier than yourself. 218 And you should think about getting a big dog. 219 </para> 220 221 <sect1 id="lock-intro"> 222 <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title> 223 224 <para> 225 There are three main types of kernel locks. The fundamental type 226 is the spinlock 227 (<filename class="headerfile">include/asm/spinlock.h</filename>), 228 which is a very simple single-holder lock: if you can't get the 229 spinlock, you keep trying (spinning) until you can. Spinlocks are 230 very small and fast, and can be used anywhere. 231 </para> 232 <para> 233 The second type is a mutex 234 (<filename class="headerfile">include/linux/mutex.h</filename>): it 235 is like a spinlock, but you may block holding a mutex. 236 If you can't lock a mutex, your task will suspend itself, and be woken 237 up when the mutex is released. This means the CPU can do something 238 else while you are waiting. There are many cases when you simply 239 can't sleep (see <xref linkend="sleeping-things"/>), and so have to 240 use a spinlock instead. 241 </para> 242 <para> 243 The third type is a semaphore 244 (<filename class="headerfile">include/asm/semaphore.h</filename>): it 245 can have more than one holder at any time (the number decided at 246 initialization time), although it is most commonly used as a 247 single-holder lock (a mutex). If you can't get a semaphore, your 248 task will be suspended and later on woken up - just like for mutexes. 249 </para> 250 <para> 251 Neither type of lock is recursive: see 252 <xref linkend="deadlock"/>. 253 </para> 254 </sect1> 255 256 <sect1 id="uniprocessor"> 257 <title>Locks and Uniprocessor Kernels</title> 258 259 <para> 260 For kernels compiled without <symbol>CONFIG_SMP</symbol>, and 261 without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at 262 all. This is an excellent design decision: when no-one else can 263 run at the same time, there is no reason to have a lock. 264 </para> 265 266 <para> 267 If the kernel is compiled without <symbol>CONFIG_SMP</symbol>, 268 but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks 269 simply disable preemption, which is sufficient to prevent any 270 races. For most purposes, we can think of preemption as 271 equivalent to SMP, and not worry about it separately. 272 </para> 273 274 <para> 275 You should always test your locking code with <symbol>CONFIG_SMP</symbol> 276 and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it 277 will still catch some kinds of locking bugs. 278 </para> 279 280 <para> 281 Semaphores still exist, because they are required for 282 synchronization between <firstterm linkend="gloss-usercontext">user 283 contexts</firstterm>, as we will see below. 284 </para> 285 </sect1> 286 287 <sect1 id="usercontextlocking"> 288 <title>Locking Only In User Context</title> 289 290 <para> 291 If you have a data structure which is only ever accessed from 292 user context, then you can use a simple semaphore 293 (<filename>linux/asm/semaphore.h</filename>) to protect it. This 294 is the most trivial case: you initialize the semaphore to the number 295 of resources available (usually 1), and call 296 <function>down_interruptible()</function> to grab the semaphore, and 297 <function>up()</function> to release it. There is also a 298 <function>down()</function>, which should be avoided, because it 299 will not return if a signal is received. 300 </para> 301 302 <para> 303 Example: <filename>linux/net/core/netfilter.c</filename> allows 304 registration of new <function>setsockopt()</function> and 305 <function>getsockopt()</function> calls, with 306 <function>nf_register_sockopt()</function>. Registration and 307 de-registration are only done on module load and unload (and boot 308 time, where there is no concurrency), and the list of registrations 309 is only consulted for an unknown <function>setsockopt()</function> 310 or <function>getsockopt()</function> system call. The 311 <varname>nf_sockopt_mutex</varname> is perfect to protect this, 312 especially since the setsockopt and getsockopt calls may well 313 sleep. 314 </para> 315 </sect1> 316 317 <sect1 id="lock-user-bh"> 318 <title>Locking Between User Context and Softirqs</title> 319 320 <para> 321 If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares 322 data with user context, you have two problems. Firstly, the current 323 user context can be interrupted by a softirq, and secondly, the 324 critical region could be entered from another CPU. This is where 325 <function>spin_lock_bh()</function> 326 (<filename class="headerfile">include/linux/spinlock.h</filename>) is 327 used. It disables softirqs on that CPU, then grabs the lock. 328 <function>spin_unlock_bh()</function> does the reverse. (The 329 '_bh' suffix is a historical reference to "Bottom Halves", the 330 old name for software interrupts. It should really be 331 called spin_lock_softirq()' in a perfect world). 332 </para> 333 334 <para> 335 Note that you can also use <function>spin_lock_irq()</function> 336 or <function>spin_lock_irqsave()</function> here, which stop 337 hardware interrupts as well: see <xref linkend="hardirq-context"/>. 338 </para> 339 340 <para> 341 This works perfectly for <firstterm linkend="gloss-up"><acronym>UP 342 </acronym></firstterm> as well: the spin lock vanishes, and this macro 343 simply becomes <function>local_bh_disable()</function> 344 (<filename class="headerfile">include/linux/interrupt.h</filename>), which 345 protects you from the softirq being run. 346 </para> 347 </sect1> 348 349 <sect1 id="lock-user-tasklet"> 350 <title>Locking Between User Context and Tasklets</title> 351 352 <para> 353 This is exactly the same as above, because <firstterm 354 linkend="gloss-tasklet">tasklets</firstterm> are actually run 355 from a softirq. 356 </para> 357 </sect1> 358 359 <sect1 id="lock-user-timers"> 360 <title>Locking Between User Context and Timers</title> 361 362 <para> 363 This, too, is exactly the same as above, because <firstterm 364 linkend="gloss-timers">timers</firstterm> are actually run from 365 a softirq. From a locking point of view, tasklets and timers 366 are identical. 367 </para> 368 </sect1> 369 370 <sect1 id="lock-tasklets"> 371 <title>Locking Between Tasklets/Timers</title> 372 373 <para> 374 Sometimes a tasklet or timer might want to share data with 375 another tasklet or timer. 376 </para> 377 378 <sect2 id="lock-tasklets-same"> 379 <title>The Same Tasklet/Timer</title> 380 <para> 381 Since a tasklet is never run on two CPUs at once, you don't 382 need to worry about your tasklet being reentrant (running 383 twice at once), even on SMP. 384 </para> 385 </sect2> 386 387 <sect2 id="lock-tasklets-different"> 388 <title>Different Tasklets/Timers</title> 389 <para> 390 If another tasklet/timer wants 391 to share data with your tasklet or timer , you will both need to use 392 <function>spin_lock()</function> and 393 <function>spin_unlock()</function> calls. 394 <function>spin_lock_bh()</function> is 395 unnecessary here, as you are already in a tasklet, and 396 none will be run on the same CPU. 397 </para> 398 </sect2> 399 </sect1> 400 401 <sect1 id="lock-softirqs"> 402 <title>Locking Between Softirqs</title> 403 404 <para> 405 Often a softirq might 406 want to share data with itself or a tasklet/timer. 407 </para> 408 409 <sect2 id="lock-softirqs-same"> 410 <title>The Same Softirq</title> 411 412 <para> 413 The same softirq can run on the other CPUs: you can use a 414 per-CPU array (see <xref linkend="per-cpu"/>) for better 415 performance. If you're going so far as to use a softirq, 416 you probably care about scalable performance enough 417 to justify the extra complexity. 418 </para> 419 420 <para> 421 You'll need to use <function>spin_lock()</function> and 422 <function>spin_unlock()</function> for shared data. 423 </para> 424 </sect2> 425 426 <sect2 id="lock-softirqs-different"> 427 <title>Different Softirqs</title> 428 429 <para> 430 You'll need to use <function>spin_lock()</function> and 431 <function>spin_unlock()</function> for shared data, whether it 432 be a timer, tasklet, different softirq or the same or another 433 softirq: any of them could be running on a different CPU. 434 </para> 435 </sect2> 436 </sect1> 437 </chapter> 438 439 <chapter id="hardirq-context"> 440 <title>Hard IRQ Context</title> 441 442 <para> 443 Hardware interrupts usually communicate with a 444 tasklet or softirq. Frequently this involves putting work in a 445 queue, which the softirq will take out. 446 </para> 447 448 <sect1 id="hardirq-softirq"> 449 <title>Locking Between Hard IRQ and Softirqs/Tasklets</title> 450 451 <para> 452 If a hardware irq handler shares data with a softirq, you have 453 two concerns. Firstly, the softirq processing can be 454 interrupted by a hardware interrupt, and secondly, the 455 critical region could be entered by a hardware interrupt on 456 another CPU. This is where <function>spin_lock_irq()</function> is 457 used. It is defined to disable interrupts on that cpu, then grab 458 the lock. <function>spin_unlock_irq()</function> does the reverse. 459 </para> 460 461 <para> 462 The irq handler does not to use 463 <function>spin_lock_irq()</function>, because the softirq cannot 464 run while the irq handler is running: it can use 465 <function>spin_lock()</function>, which is slightly faster. The 466 only exception would be if a different hardware irq handler uses 467 the same lock: <function>spin_lock_irq()</function> will stop 468 that from interrupting us. 469 </para> 470 471 <para> 472 This works perfectly for UP as well: the spin lock vanishes, 473 and this macro simply becomes <function>local_irq_disable()</function> 474 (<filename class="headerfile">include/asm/smp.h</filename>), which 475 protects you from the softirq/tasklet/BH being run. 476 </para> 477 478 <para> 479 <function>spin_lock_irqsave()</function> 480 (<filename>include/linux/spinlock.h</filename>) is a variant 481 which saves whether interrupts were on or off in a flags word, 482 which is passed to <function>spin_unlock_irqrestore()</function>. This 483 means that the same code can be used inside an hard irq handler (where 484 interrupts are already off) and in softirqs (where the irq 485 disabling is required). 486 </para> 487 488 <para> 489 Note that softirqs (and hence tasklets and timers) are run on 490 return from hardware interrupts, so 491 <function>spin_lock_irq()</function> also stops these. In that 492 sense, <function>spin_lock_irqsave()</function> is the most 493 general and powerful locking function. 494 </para> 495 496 </sect1> 497 <sect1 id="hardirq-hardirq"> 498 <title>Locking Between Two Hard IRQ Handlers</title> 499 <para> 500 It is rare to have to share data between two IRQ handlers, but 501 if you do, <function>spin_lock_irqsave()</function> should be 502 used: it is architecture-specific whether all interrupts are 503 disabled inside irq handlers themselves. 504 </para> 505 </sect1> 506 507 </chapter> 508 509 <chapter id="cheatsheet"> 510 <title>Cheat Sheet For Locking</title> 511 <para> 512 Pete Zaitcev gives the following summary: 513 </para> 514 <itemizedlist> 515 <listitem> 516 <para> 517 If you are in a process context (any syscall) and want to 518 lock other process out, use a semaphore. You can take a semaphore 519 and sleep (<function>copy_from_user*(</function> or 520 <function>kmalloc(x,GFP_KERNEL)</function>). 521 </para> 522 </listitem> 523 <listitem> 524 <para> 525 Otherwise (== data can be touched in an interrupt), use 526 <function>spin_lock_irqsave()</function> and 527 <function>spin_unlock_irqrestore()</function>. 528 </para> 529 </listitem> 530 <listitem> 531 <para> 532 Avoid holding spinlock for more than 5 lines of code and 533 across any function call (except accessors like 534 <function>readb</function>). 535 </para> 536 </listitem> 537 </itemizedlist> 538 539 <sect1 id="minimum-lock-reqirements"> 540 <title>Table of Minimum Requirements</title> 541 542 <para> The following table lists the <emphasis>minimum</emphasis> 543 locking requirements between various contexts. In some cases, 544 the same context can only be running on one CPU at a time, so 545 no locking is required for that context (eg. a particular 546 thread can only run on one CPU at a time, but if it needs 547 shares data with another thread, locking is required). 548 </para> 549 <para> 550 Remember the advice above: you can always use 551 <function>spin_lock_irqsave()</function>, which is a superset 552 of all other spinlock primitives. 553 </para> 554 <table> 555<title>Table of Locking Requirements</title> 556<tgroup cols="11"> 557<tbody> 558<row> 559<entry></entry> 560<entry>IRQ Handler A</entry> 561<entry>IRQ Handler B</entry> 562<entry>Softirq A</entry> 563<entry>Softirq B</entry> 564<entry>Tasklet A</entry> 565<entry>Tasklet B</entry> 566<entry>Timer A</entry> 567<entry>Timer B</entry> 568<entry>User Context A</entry> 569<entry>User Context B</entry> 570</row> 571 572<row> 573<entry>IRQ Handler A</entry> 574<entry>None</entry> 575</row> 576 577<row> 578<entry>IRQ Handler B</entry> 579<entry>spin_lock_irqsave</entry> 580<entry>None</entry> 581</row> 582 583<row> 584<entry>Softirq A</entry> 585<entry>spin_lock_irq</entry> 586<entry>spin_lock_irq</entry> 587<entry>spin_lock</entry> 588</row> 589 590<row> 591<entry>Softirq B</entry> 592<entry>spin_lock_irq</entry> 593<entry>spin_lock_irq</entry> 594<entry>spin_lock</entry> 595<entry>spin_lock</entry> 596</row> 597 598<row> 599<entry>Tasklet A</entry> 600<entry>spin_lock_irq</entry> 601<entry>spin_lock_irq</entry> 602<entry>spin_lock</entry> 603<entry>spin_lock</entry> 604<entry>None</entry> 605</row> 606 607<row> 608<entry>Tasklet B</entry> 609<entry>spin_lock_irq</entry> 610<entry>spin_lock_irq</entry> 611<entry>spin_lock</entry> 612<entry>spin_lock</entry> 613<entry>spin_lock</entry> 614<entry>None</entry> 615</row> 616 617<row> 618<entry>Timer A</entry> 619<entry>spin_lock_irq</entry> 620<entry>spin_lock_irq</entry> 621<entry>spin_lock</entry> 622<entry>spin_lock</entry> 623<entry>spin_lock</entry> 624<entry>spin_lock</entry> 625<entry>None</entry> 626</row> 627 628<row> 629<entry>Timer B</entry> 630<entry>spin_lock_irq</entry> 631<entry>spin_lock_irq</entry> 632<entry>spin_lock</entry> 633<entry>spin_lock</entry> 634<entry>spin_lock</entry> 635<entry>spin_lock</entry> 636<entry>spin_lock</entry> 637<entry>None</entry> 638</row> 639 640<row> 641<entry>User Context A</entry> 642<entry>spin_lock_irq</entry> 643<entry>spin_lock_irq</entry> 644<entry>spin_lock_bh</entry> 645<entry>spin_lock_bh</entry> 646<entry>spin_lock_bh</entry> 647<entry>spin_lock_bh</entry> 648<entry>spin_lock_bh</entry> 649<entry>spin_lock_bh</entry> 650<entry>None</entry> 651</row> 652 653<row> 654<entry>User Context B</entry> 655<entry>spin_lock_irq</entry> 656<entry>spin_lock_irq</entry> 657<entry>spin_lock_bh</entry> 658<entry>spin_lock_bh</entry> 659<entry>spin_lock_bh</entry> 660<entry>spin_lock_bh</entry> 661<entry>spin_lock_bh</entry> 662<entry>spin_lock_bh</entry> 663<entry>down_interruptible</entry> 664<entry>None</entry> 665</row> 666 667</tbody> 668</tgroup> 669</table> 670</sect1> 671</chapter> 672 673 <chapter id="Examples"> 674 <title>Common Examples</title> 675 <para> 676Let's step through a simple example: a cache of number to name 677mappings. The cache keeps a count of how often each of the objects is 678used, and when it gets full, throws out the least used one. 679 680 </para> 681 682 <sect1 id="examples-usercontext"> 683 <title>All In User Context</title> 684 <para> 685For our first example, we assume that all operations are in user 686context (ie. from system calls), so we can sleep. This means we can 687use a semaphore to protect the cache and all the objects within 688it. Here's the code: 689 </para> 690 691 <programlisting> 692#include &lt;linux/list.h&gt; 693#include &lt;linux/slab.h&gt; 694#include &lt;linux/string.h&gt; 695#include &lt;asm/semaphore.h&gt; 696#include &lt;asm/errno.h&gt; 697 698struct object 699{ 700 struct list_head list; 701 int id; 702 char name[32]; 703 int popularity; 704}; 705 706/* Protects the cache, cache_num, and the objects within it */ 707static DECLARE_MUTEX(cache_lock); 708static LIST_HEAD(cache); 709static unsigned int cache_num = 0; 710#define MAX_CACHE_SIZE 10 711 712/* Must be holding cache_lock */ 713static struct object *__cache_find(int id) 714{ 715 struct object *i; 716 717 list_for_each_entry(i, &amp;cache, list) 718 if (i-&gt;id == id) { 719 i-&gt;popularity++; 720 return i; 721 } 722 return NULL; 723} 724 725/* Must be holding cache_lock */ 726static void __cache_delete(struct object *obj) 727{ 728 BUG_ON(!obj); 729 list_del(&amp;obj-&gt;list); 730 kfree(obj); 731 cache_num--; 732} 733 734/* Must be holding cache_lock */ 735static void __cache_add(struct object *obj) 736{ 737 list_add(&amp;obj-&gt;list, &amp;cache); 738 if (++cache_num > MAX_CACHE_SIZE) { 739 struct object *i, *outcast = NULL; 740 list_for_each_entry(i, &amp;cache, list) { 741 if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity) 742 outcast = i; 743 } 744 __cache_delete(outcast); 745 } 746} 747 748int cache_add(int id, const char *name) 749{ 750 struct object *obj; 751 752 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL) 753 return -ENOMEM; 754 755 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 756 obj-&gt;id = id; 757 obj-&gt;popularity = 0; 758 759 down(&amp;cache_lock); 760 __cache_add(obj); 761 up(&amp;cache_lock); 762 return 0; 763} 764 765void cache_delete(int id) 766{ 767 down(&amp;cache_lock); 768 __cache_delete(__cache_find(id)); 769 up(&amp;cache_lock); 770} 771 772int cache_find(int id, char *name) 773{ 774 struct object *obj; 775 int ret = -ENOENT; 776 777 down(&amp;cache_lock); 778 obj = __cache_find(id); 779 if (obj) { 780 ret = 0; 781 strcpy(name, obj-&gt;name); 782 } 783 up(&amp;cache_lock); 784 return ret; 785} 786</programlisting> 787 788 <para> 789Note that we always make sure we have the cache_lock when we add, 790delete, or look up the cache: both the cache infrastructure itself and 791the contents of the objects are protected by the lock. In this case 792it's easy, since we copy the data for the user, and never let them 793access the objects directly. 794 </para> 795 <para> 796There is a slight (and common) optimization here: in 797<function>cache_add</function> we set up the fields of the object 798before grabbing the lock. This is safe, as no-one else can access it 799until we put it in cache. 800 </para> 801 </sect1> 802 803 <sect1 id="examples-interrupt"> 804 <title>Accessing From Interrupt Context</title> 805 <para> 806Now consider the case where <function>cache_find</function> can be 807called from interrupt context: either a hardware interrupt or a 808softirq. An example would be a timer which deletes object from the 809cache. 810 </para> 811 <para> 812The change is shown below, in standard patch format: the 813<symbol>-</symbol> are lines which are taken away, and the 814<symbol>+</symbol> are lines which are added. 815 </para> 816<programlisting> 817--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100 818+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100 819@@ -12,7 +12,7 @@ 820 int popularity; 821 }; 822 823-static DECLARE_MUTEX(cache_lock); 824+static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED; 825 static LIST_HEAD(cache); 826 static unsigned int cache_num = 0; 827 #define MAX_CACHE_SIZE 10 828@@ -55,6 +55,7 @@ 829 int cache_add(int id, const char *name) 830 { 831 struct object *obj; 832+ unsigned long flags; 833 834 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL) 835 return -ENOMEM; 836@@ -63,30 +64,33 @@ 837 obj-&gt;id = id; 838 obj-&gt;popularity = 0; 839 840- down(&amp;cache_lock); 841+ spin_lock_irqsave(&amp;cache_lock, flags); 842 __cache_add(obj); 843- up(&amp;cache_lock); 844+ spin_unlock_irqrestore(&amp;cache_lock, flags); 845 return 0; 846 } 847 848 void cache_delete(int id) 849 { 850- down(&amp;cache_lock); 851+ unsigned long flags; 852+ 853+ spin_lock_irqsave(&amp;cache_lock, flags); 854 __cache_delete(__cache_find(id)); 855- up(&amp;cache_lock); 856+ spin_unlock_irqrestore(&amp;cache_lock, flags); 857 } 858 859 int cache_find(int id, char *name) 860 { 861 struct object *obj; 862 int ret = -ENOENT; 863+ unsigned long flags; 864 865- down(&amp;cache_lock); 866+ spin_lock_irqsave(&amp;cache_lock, flags); 867 obj = __cache_find(id); 868 if (obj) { 869 ret = 0; 870 strcpy(name, obj-&gt;name); 871 } 872- up(&amp;cache_lock); 873+ spin_unlock_irqrestore(&amp;cache_lock, flags); 874 return ret; 875 } 876</programlisting> 877 878 <para> 879Note that the <function>spin_lock_irqsave</function> will turn off 880interrupts if they are on, otherwise does nothing (if we are already 881in an interrupt handler), hence these functions are safe to call from 882any context. 883 </para> 884 <para> 885Unfortunately, <function>cache_add</function> calls 886<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol> 887flag, which is only legal in user context. I have assumed that 888<function>cache_add</function> is still only called in user context, 889otherwise this should become a parameter to 890<function>cache_add</function>. 891 </para> 892 </sect1> 893 <sect1 id="examples-refcnt"> 894 <title>Exposing Objects Outside This File</title> 895 <para> 896If our objects contained more information, it might not be sufficient 897to copy the information in and out: other parts of the code might want 898to keep pointers to these objects, for example, rather than looking up 899the id every time. This produces two problems. 900 </para> 901 <para> 902The first problem is that we use the <symbol>cache_lock</symbol> to 903protect objects: we'd need to make this non-static so the rest of the 904code can use it. This makes locking trickier, as it is no longer all 905in one place. 906 </para> 907 <para> 908The second problem is the lifetime problem: if another structure keeps 909a pointer to an object, it presumably expects that pointer to remain 910valid. Unfortunately, this is only guaranteed while you hold the 911lock, otherwise someone might call <function>cache_delete</function> 912and even worse, add another object, re-using the same address. 913 </para> 914 <para> 915As there is only one lock, you can't hold it forever: no-one else would 916get any work done. 917 </para> 918 <para> 919The solution to this problem is to use a reference count: everyone who 920has a pointer to the object increases it when they first get the 921object, and drops the reference count when they're finished with it. 922Whoever drops it to zero knows it is unused, and can actually delete it. 923 </para> 924 <para> 925Here is the code: 926 </para> 927 928<programlisting> 929--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100 930+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100 931@@ -7,6 +7,7 @@ 932 struct object 933 { 934 struct list_head list; 935+ unsigned int refcnt; 936 int id; 937 char name[32]; 938 int popularity; 939@@ -17,6 +18,35 @@ 940 static unsigned int cache_num = 0; 941 #define MAX_CACHE_SIZE 10 942 943+static void __object_put(struct object *obj) 944+{ 945+ if (--obj-&gt;refcnt == 0) 946+ kfree(obj); 947+} 948+ 949+static void __object_get(struct object *obj) 950+{ 951+ obj-&gt;refcnt++; 952+} 953+ 954+void object_put(struct object *obj) 955+{ 956+ unsigned long flags; 957+ 958+ spin_lock_irqsave(&amp;cache_lock, flags); 959+ __object_put(obj); 960+ spin_unlock_irqrestore(&amp;cache_lock, flags); 961+} 962+ 963+void object_get(struct object *obj) 964+{ 965+ unsigned long flags; 966+ 967+ spin_lock_irqsave(&amp;cache_lock, flags); 968+ __object_get(obj); 969+ spin_unlock_irqrestore(&amp;cache_lock, flags); 970+} 971+ 972 /* Must be holding cache_lock */ 973 static struct object *__cache_find(int id) 974 { 975@@ -35,6 +65,7 @@ 976 { 977 BUG_ON(!obj); 978 list_del(&amp;obj-&gt;list); 979+ __object_put(obj); 980 cache_num--; 981 } 982 983@@ -63,6 +94,7 @@ 984 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 985 obj-&gt;id = id; 986 obj-&gt;popularity = 0; 987+ obj-&gt;refcnt = 1; /* The cache holds a reference */ 988 989 spin_lock_irqsave(&amp;cache_lock, flags); 990 __cache_add(obj); 991@@ -79,18 +111,15 @@ 992 spin_unlock_irqrestore(&amp;cache_lock, flags); 993 } 994 995-int cache_find(int id, char *name) 996+struct object *cache_find(int id) 997 { 998 struct object *obj; 999- int ret = -ENOENT; 1000 unsigned long flags; 1001 1002 spin_lock_irqsave(&amp;cache_lock, flags); 1003 obj = __cache_find(id); 1004- if (obj) { 1005- ret = 0; 1006- strcpy(name, obj-&gt;name); 1007- } 1008+ if (obj) 1009+ __object_get(obj); 1010 spin_unlock_irqrestore(&amp;cache_lock, flags); 1011- return ret; 1012+ return obj; 1013 } 1014</programlisting> 1015 1016<para> 1017We encapsulate the reference counting in the standard 'get' and 'put' 1018functions. Now we can return the object itself from 1019<function>cache_find</function> which has the advantage that the user 1020can now sleep holding the object (eg. to 1021<function>copy_to_user</function> to name to userspace). 1022</para> 1023<para> 1024The other point to note is that I said a reference should be held for 1025every pointer to the object: thus the reference count is 1 when first 1026inserted into the cache. In some versions the framework does not hold 1027a reference count, but they are more complicated. 1028</para> 1029 1030 <sect2 id="examples-refcnt-atomic"> 1031 <title>Using Atomic Operations For The Reference Count</title> 1032<para> 1033In practice, <type>atomic_t</type> would usually be used for 1034<structfield>refcnt</structfield>. There are a number of atomic 1035operations defined in 1036 1037<filename class="headerfile">include/asm/atomic.h</filename>: these are 1038guaranteed to be seen atomically from all CPUs in the system, so no 1039lock is required. In this case, it is simpler than using spinlocks, 1040although for anything non-trivial using spinlocks is clearer. The 1041<function>atomic_inc</function> and 1042<function>atomic_dec_and_test</function> are used instead of the 1043standard increment and decrement operators, and the lock is no longer 1044used to protect the reference count itself. 1045</para> 1046 1047<programlisting> 1048--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100 1049+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100 1050@@ -7,7 +7,7 @@ 1051 struct object 1052 { 1053 struct list_head list; 1054- unsigned int refcnt; 1055+ atomic_t refcnt; 1056 int id; 1057 char name[32]; 1058 int popularity; 1059@@ -18,33 +18,15 @@ 1060 static unsigned int cache_num = 0; 1061 #define MAX_CACHE_SIZE 10 1062 1063-static void __object_put(struct object *obj) 1064-{ 1065- if (--obj-&gt;refcnt == 0) 1066- kfree(obj); 1067-} 1068- 1069-static void __object_get(struct object *obj) 1070-{ 1071- obj-&gt;refcnt++; 1072-} 1073- 1074 void object_put(struct object *obj) 1075 { 1076- unsigned long flags; 1077- 1078- spin_lock_irqsave(&amp;cache_lock, flags); 1079- __object_put(obj); 1080- spin_unlock_irqrestore(&amp;cache_lock, flags); 1081+ if (atomic_dec_and_test(&amp;obj-&gt;refcnt)) 1082+ kfree(obj); 1083 } 1084 1085 void object_get(struct object *obj) 1086 { 1087- unsigned long flags; 1088- 1089- spin_lock_irqsave(&amp;cache_lock, flags); 1090- __object_get(obj); 1091- spin_unlock_irqrestore(&amp;cache_lock, flags); 1092+ atomic_inc(&amp;obj-&gt;refcnt); 1093 } 1094 1095 /* Must be holding cache_lock */ 1096@@ -65,7 +47,7 @@ 1097 { 1098 BUG_ON(!obj); 1099 list_del(&amp;obj-&gt;list); 1100- __object_put(obj); 1101+ object_put(obj); 1102 cache_num--; 1103 } 1104 1105@@ -94,7 +76,7 @@ 1106 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 1107 obj-&gt;id = id; 1108 obj-&gt;popularity = 0; 1109- obj-&gt;refcnt = 1; /* The cache holds a reference */ 1110+ atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1111 1112 spin_lock_irqsave(&amp;cache_lock, flags); 1113 __cache_add(obj); 1114@@ -119,7 +101,7 @@ 1115 spin_lock_irqsave(&amp;cache_lock, flags); 1116 obj = __cache_find(id); 1117 if (obj) 1118- __object_get(obj); 1119+ object_get(obj); 1120 spin_unlock_irqrestore(&amp;cache_lock, flags); 1121 return obj; 1122 } 1123</programlisting> 1124</sect2> 1125</sect1> 1126 1127 <sect1 id="examples-lock-per-obj"> 1128 <title>Protecting The Objects Themselves</title> 1129 <para> 1130In these examples, we assumed that the objects (except the reference 1131counts) never changed once they are created. If we wanted to allow 1132the name to change, there are three possibilities: 1133 </para> 1134 <itemizedlist> 1135 <listitem> 1136 <para> 1137You can make <symbol>cache_lock</symbol> non-static, and tell people 1138to grab that lock before changing the name in any object. 1139 </para> 1140 </listitem> 1141 <listitem> 1142 <para> 1143You can provide a <function>cache_obj_rename</function> which grabs 1144this lock and changes the name for the caller, and tell everyone to 1145use that function. 1146 </para> 1147 </listitem> 1148 <listitem> 1149 <para> 1150You can make the <symbol>cache_lock</symbol> protect only the cache 1151itself, and use another lock to protect the name. 1152 </para> 1153 </listitem> 1154 </itemizedlist> 1155 1156 <para> 1157Theoretically, you can make the locks as fine-grained as one lock for 1158every field, for every object. In practice, the most common variants 1159are: 1160</para> 1161 <itemizedlist> 1162 <listitem> 1163 <para> 1164One lock which protects the infrastructure (the <symbol>cache</symbol> 1165list in this example) and all the objects. This is what we have done 1166so far. 1167 </para> 1168 </listitem> 1169 <listitem> 1170 <para> 1171One lock which protects the infrastructure (including the list 1172pointers inside the objects), and one lock inside the object which 1173protects the rest of that object. 1174 </para> 1175 </listitem> 1176 <listitem> 1177 <para> 1178Multiple locks to protect the infrastructure (eg. one lock per hash 1179chain), possibly with a separate per-object lock. 1180 </para> 1181 </listitem> 1182 </itemizedlist> 1183 1184<para> 1185Here is the "lock-per-object" implementation: 1186</para> 1187<programlisting> 1188--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100 1189+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100 1190@@ -6,11 +6,17 @@ 1191 1192 struct object 1193 { 1194+ /* These two protected by cache_lock. */ 1195 struct list_head list; 1196+ int popularity; 1197+ 1198 atomic_t refcnt; 1199+ 1200+ /* Doesn't change once created. */ 1201 int id; 1202+ 1203+ spinlock_t lock; /* Protects the name */ 1204 char name[32]; 1205- int popularity; 1206 }; 1207 1208 static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED; 1209@@ -77,6 +84,7 @@ 1210 obj-&gt;id = id; 1211 obj-&gt;popularity = 0; 1212 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1213+ spin_lock_init(&amp;obj-&gt;lock); 1214 1215 spin_lock_irqsave(&amp;cache_lock, flags); 1216 __cache_add(obj); 1217</programlisting> 1218 1219<para> 1220Note that I decide that the <structfield>popularity</structfield> 1221count should be protected by the <symbol>cache_lock</symbol> rather 1222than the per-object lock: this is because it (like the 1223<structname>struct list_head</structname> inside the object) is 1224logically part of the infrastructure. This way, I don't need to grab 1225the lock of every object in <function>__cache_add</function> when 1226seeking the least popular. 1227</para> 1228 1229<para> 1230I also decided that the <structfield>id</structfield> member is 1231unchangeable, so I don't need to grab each object lock in 1232<function>__cache_find()</function> to examine the 1233<structfield>id</structfield>: the object lock is only used by a 1234caller who wants to read or write the <structfield>name</structfield> 1235field. 1236</para> 1237 1238<para> 1239Note also that I added a comment describing what data was protected by 1240which locks. This is extremely important, as it describes the runtime 1241behavior of the code, and can be hard to gain from just reading. And 1242as Alan Cox says, <quote>Lock data, not code</quote>. 1243</para> 1244</sect1> 1245</chapter> 1246 1247 <chapter id="common-problems"> 1248 <title>Common Problems</title> 1249 <sect1 id="deadlock"> 1250 <title>Deadlock: Simple and Advanced</title> 1251 1252 <para> 1253 There is a coding bug where a piece of code tries to grab a 1254 spinlock twice: it will spin forever, waiting for the lock to 1255 be released (spinlocks, rwlocks and semaphores are not 1256 recursive in Linux). This is trivial to diagnose: not a 1257 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of 1258 problem. 1259 </para> 1260 1261 <para> 1262 For a slightly more complex case, imagine you have a region 1263 shared by a softirq and user context. If you use a 1264 <function>spin_lock()</function> call to protect it, it is 1265 possible that the user context will be interrupted by the softirq 1266 while it holds the lock, and the softirq will then spin 1267 forever trying to get the same lock. 1268 </para> 1269 1270 <para> 1271 Both of these are called deadlock, and as shown above, it can 1272 occur even with a single CPU (although not on UP compiles, 1273 since spinlocks vanish on kernel compiles with 1274 <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption 1275 in the second example). 1276 </para> 1277 1278 <para> 1279 This complete lockup is easy to diagnose: on SMP boxes the 1280 watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set 1281 (<filename>include/linux/spinlock.h</filename>) will show this up 1282 immediately when it happens. 1283 </para> 1284 1285 <para> 1286 A more complex problem is the so-called 'deadly embrace', 1287 involving two or more locks. Say you have a hash table: each 1288 entry in the table is a spinlock, and a chain of hashed 1289 objects. Inside a softirq handler, you sometimes want to 1290 alter an object from one place in the hash to another: you 1291 grab the spinlock of the old hash chain and the spinlock of 1292 the new hash chain, and delete the object from the old one, 1293 and insert it in the new one. 1294 </para> 1295 1296 <para> 1297 There are two problems here. First, if your code ever 1298 tries to move the object to the same chain, it will deadlock 1299 with itself as it tries to lock it twice. Secondly, if the 1300 same softirq on another CPU is trying to move another object 1301 in the reverse direction, the following could happen: 1302 </para> 1303 1304 <table> 1305 <title>Consequences</title> 1306 1307 <tgroup cols="2" align="left"> 1308 1309 <thead> 1310 <row> 1311 <entry>CPU 1</entry> 1312 <entry>CPU 2</entry> 1313 </row> 1314 </thead> 1315 1316 <tbody> 1317 <row> 1318 <entry>Grab lock A -&gt; OK</entry> 1319 <entry>Grab lock B -&gt; OK</entry> 1320 </row> 1321 <row> 1322 <entry>Grab lock B -&gt; spin</entry> 1323 <entry>Grab lock A -&gt; spin</entry> 1324 </row> 1325 </tbody> 1326 </tgroup> 1327 </table> 1328 1329 <para> 1330 The two CPUs will spin forever, waiting for the other to give up 1331 their lock. It will look, smell, and feel like a crash. 1332 </para> 1333 </sect1> 1334 1335 <sect1 id="techs-deadlock-prevent"> 1336 <title>Preventing Deadlock</title> 1337 1338 <para> 1339 Textbooks will tell you that if you always lock in the same 1340 order, you will never get this kind of deadlock. Practice 1341 will tell you that this approach doesn't scale: when I 1342 create a new lock, I don't understand enough of the kernel 1343 to figure out where in the 5000 lock hierarchy it will fit. 1344 </para> 1345 1346 <para> 1347 The best locks are encapsulated: they never get exposed in 1348 headers, and are never held around calls to non-trivial 1349 functions outside the same file. You can read through this 1350 code and see that it will never deadlock, because it never 1351 tries to grab another lock while it has that one. People 1352 using your code don't even need to know you are using a 1353 lock. 1354 </para> 1355 1356 <para> 1357 A classic problem here is when you provide callbacks or 1358 hooks: if you call these with the lock held, you risk simple 1359 deadlock, or a deadly embrace (who knows what the callback 1360 will do?). Remember, the other programmers are out to get 1361 you, so don't do this. 1362 </para> 1363 1364 <sect2 id="techs-deadlock-overprevent"> 1365 <title>Overzealous Prevention Of Deadlocks</title> 1366 1367 <para> 1368 Deadlocks are problematic, but not as bad as data 1369 corruption. Code which grabs a read lock, searches a list, 1370 fails to find what it wants, drops the read lock, grabs a 1371 write lock and inserts the object has a race condition. 1372 </para> 1373 1374 <para> 1375 If you don't see why, please stay the fuck away from my code. 1376 </para> 1377 </sect2> 1378 </sect1> 1379 1380 <sect1 id="racing-timers"> 1381 <title>Racing Timers: A Kernel Pastime</title> 1382 1383 <para> 1384 Timers can produce their own special problems with races. 1385 Consider a collection of objects (list, hash, etc) where each 1386 object has a timer which is due to destroy it. 1387 </para> 1388 1389 <para> 1390 If you want to destroy the entire collection (say on module 1391 removal), you might do the following: 1392 </para> 1393 1394 <programlisting> 1395 /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE 1396 HUNGARIAN NOTATION */ 1397 spin_lock_bh(&amp;list_lock); 1398 1399 while (list) { 1400 struct foo *next = list-&gt;next; 1401 del_timer(&amp;list-&gt;timer); 1402 kfree(list); 1403 list = next; 1404 } 1405 1406 spin_unlock_bh(&amp;list_lock); 1407 </programlisting> 1408 1409 <para> 1410 Sooner or later, this will crash on SMP, because a timer can 1411 have just gone off before the <function>spin_lock_bh()</function>, 1412 and it will only get the lock after we 1413 <function>spin_unlock_bh()</function>, and then try to free 1414 the element (which has already been freed!). 1415 </para> 1416 1417 <para> 1418 This can be avoided by checking the result of 1419 <function>del_timer()</function>: if it returns 1420 <returnvalue>1</returnvalue>, the timer has been deleted. 1421 If <returnvalue>0</returnvalue>, it means (in this 1422 case) that it is currently running, so we can do: 1423 </para> 1424 1425 <programlisting> 1426 retry: 1427 spin_lock_bh(&amp;list_lock); 1428 1429 while (list) { 1430 struct foo *next = list-&gt;next; 1431 if (!del_timer(&amp;list-&gt;timer)) { 1432 /* Give timer a chance to delete this */ 1433 spin_unlock_bh(&amp;list_lock); 1434 goto retry; 1435 } 1436 kfree(list); 1437 list = next; 1438 } 1439 1440 spin_unlock_bh(&amp;list_lock); 1441 </programlisting> 1442 1443 <para> 1444 Another common problem is deleting timers which restart 1445 themselves (by calling <function>add_timer()</function> at the end 1446 of their timer function). Because this is a fairly common case 1447 which is prone to races, you should use <function>del_timer_sync()</function> 1448 (<filename class="headerfile">include/linux/timer.h</filename>) 1449 to handle this case. It returns the number of times the timer 1450 had to be deleted before we finally stopped it from adding itself back 1451 in. 1452 </para> 1453 </sect1> 1454 1455 </chapter> 1456 1457 <chapter id="Efficiency"> 1458 <title>Locking Speed</title> 1459 1460 <para> 1461There are three main things to worry about when considering speed of 1462some code which does locking. First is concurrency: how many things 1463are going to be waiting while someone else is holding a lock. Second 1464is the time taken to actually acquire and release an uncontended lock. 1465Third is using fewer, or smarter locks. I'm assuming that the lock is 1466used fairly often: otherwise, you wouldn't be concerned about 1467efficiency. 1468</para> 1469 <para> 1470Concurrency depends on how long the lock is usually held: you should 1471hold the lock for as long as needed, but no longer. In the cache 1472example, we always create the object without the lock held, and then 1473grab the lock only when we are ready to insert it in the list. 1474</para> 1475 <para> 1476Acquisition times depend on how much damage the lock operations do to 1477the pipeline (pipeline stalls) and how likely it is that this CPU was 1478the last one to grab the lock (ie. is the lock cache-hot for this 1479CPU): on a machine with more CPUs, this likelihood drops fast. 1480Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns, 1481an atomic increment takes about 58ns, a lock which is cache-hot on 1482this CPU takes 160ns, and a cacheline transfer from another CPU takes 1483an additional 170 to 360ns. (These figures from Paul McKenney's 1484<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux 1485Journal RCU article</ulink>). 1486</para> 1487 <para> 1488These two aims conflict: holding a lock for a short time might be done 1489by splitting locks into parts (such as in our final per-object-lock 1490example), but this increases the number of lock acquisitions, and the 1491results are often slower than having a single lock. This is another 1492reason to advocate locking simplicity. 1493</para> 1494 <para> 1495The third concern is addressed below: there are some methods to reduce 1496the amount of locking which needs to be done. 1497</para> 1498 1499 <sect1 id="efficiency-rwlocks"> 1500 <title>Read/Write Lock Variants</title> 1501 1502 <para> 1503 Both spinlocks and semaphores have read/write variants: 1504 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>. 1505 These divide users into two classes: the readers and the writers. If 1506 you are only reading the data, you can get a read lock, but to write to 1507 the data you need the write lock. Many people can hold a read lock, 1508 but a writer must be sole holder. 1509 </para> 1510 1511 <para> 1512 If your code divides neatly along reader/writer lines (as our 1513 cache code does), and the lock is held by readers for 1514 significant lengths of time, using these locks can help. They 1515 are slightly slower than the normal locks though, so in practice 1516 <type>rwlock_t</type> is not usually worthwhile. 1517 </para> 1518 </sect1> 1519 1520 <sect1 id="efficiency-read-copy-update"> 1521 <title>Avoiding Locks: Read Copy Update</title> 1522 1523 <para> 1524 There is a special method of read/write locking called Read Copy 1525 Update. Using RCU, the readers can avoid taking a lock 1526 altogether: as we expect our cache to be read more often than 1527 updated (otherwise the cache is a waste of time), it is a 1528 candidate for this optimization. 1529 </para> 1530 1531 <para> 1532 How do we get rid of read locks? Getting rid of read locks 1533 means that writers may be changing the list underneath the 1534 readers. That is actually quite simple: we can read a linked 1535 list while an element is being added if the writer adds the 1536 element very carefully. For example, adding 1537 <symbol>new</symbol> to a single linked list called 1538 <symbol>list</symbol>: 1539 </para> 1540 1541 <programlisting> 1542 new-&gt;next = list-&gt;next; 1543 wmb(); 1544 list-&gt;next = new; 1545 </programlisting> 1546 1547 <para> 1548 The <function>wmb()</function> is a write memory barrier. It 1549 ensures that the first operation (setting the new element's 1550 <symbol>next</symbol> pointer) is complete and will be seen by 1551 all CPUs, before the second operation is (putting the new 1552 element into the list). This is important, since modern 1553 compilers and modern CPUs can both reorder instructions unless 1554 told otherwise: we want a reader to either not see the new 1555 element at all, or see the new element with the 1556 <symbol>next</symbol> pointer correctly pointing at the rest of 1557 the list. 1558 </para> 1559 <para> 1560 Fortunately, there is a function to do this for standard 1561 <structname>struct list_head</structname> lists: 1562 <function>list_add_rcu()</function> 1563 (<filename>include/linux/list.h</filename>). 1564 </para> 1565 <para> 1566 Removing an element from the list is even simpler: we replace 1567 the pointer to the old element with a pointer to its successor, 1568 and readers will either see it, or skip over it. 1569 </para> 1570 <programlisting> 1571 list-&gt;next = old-&gt;next; 1572 </programlisting> 1573 <para> 1574 There is <function>list_del_rcu()</function> 1575 (<filename>include/linux/list.h</filename>) which does this (the 1576 normal version poisons the old object, which we don't want). 1577 </para> 1578 <para> 1579 The reader must also be careful: some CPUs can look through the 1580 <symbol>next</symbol> pointer to start reading the contents of 1581 the next element early, but don't realize that the pre-fetched 1582 contents is wrong when the <symbol>next</symbol> pointer changes 1583 underneath them. Once again, there is a 1584 <function>list_for_each_entry_rcu()</function> 1585 (<filename>include/linux/list.h</filename>) to help you. Of 1586 course, writers can just use 1587 <function>list_for_each_entry()</function>, since there cannot 1588 be two simultaneous writers. 1589 </para> 1590 <para> 1591 Our final dilemma is this: when can we actually destroy the 1592 removed element? Remember, a reader might be stepping through 1593 this element in the list right now: if we free this element and 1594 the <symbol>next</symbol> pointer changes, the reader will jump 1595 off into garbage and crash. We need to wait until we know that 1596 all the readers who were traversing the list when we deleted the 1597 element are finished. We use <function>call_rcu()</function> to 1598 register a callback which will actually destroy the object once 1599 the readers are finished. 1600 </para> 1601 <para> 1602 But how does Read Copy Update know when the readers are 1603 finished? The method is this: firstly, the readers always 1604 traverse the list inside 1605 <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function> 1606 pairs: these simply disable preemption so the reader won't go to 1607 sleep while reading the list. 1608 </para> 1609 <para> 1610 RCU then waits until every other CPU has slept at least once: 1611 since readers cannot sleep, we know that any readers which were 1612 traversing the list during the deletion are finished, and the 1613 callback is triggered. The real Read Copy Update code is a 1614 little more optimized than this, but this is the fundamental 1615 idea. 1616 </para> 1617 1618<programlisting> 1619--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100 1620+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100 1621@@ -1,15 +1,18 @@ 1622 #include &lt;linux/list.h&gt; 1623 #include &lt;linux/slab.h&gt; 1624 #include &lt;linux/string.h&gt; 1625+#include &lt;linux/rcupdate.h&gt; 1626 #include &lt;asm/semaphore.h&gt; 1627 #include &lt;asm/errno.h&gt; 1628 1629 struct object 1630 { 1631- /* These two protected by cache_lock. */ 1632+ /* This is protected by RCU */ 1633 struct list_head list; 1634 int popularity; 1635 1636+ struct rcu_head rcu; 1637+ 1638 atomic_t refcnt; 1639 1640 /* Doesn't change once created. */ 1641@@ -40,7 +43,7 @@ 1642 { 1643 struct object *i; 1644 1645- list_for_each_entry(i, &amp;cache, list) { 1646+ list_for_each_entry_rcu(i, &amp;cache, list) { 1647 if (i-&gt;id == id) { 1648 i-&gt;popularity++; 1649 return i; 1650@@ -49,19 +52,25 @@ 1651 return NULL; 1652 } 1653 1654+/* Final discard done once we know no readers are looking. */ 1655+static void cache_delete_rcu(void *arg) 1656+{ 1657+ object_put(arg); 1658+} 1659+ 1660 /* Must be holding cache_lock */ 1661 static void __cache_delete(struct object *obj) 1662 { 1663 BUG_ON(!obj); 1664- list_del(&amp;obj-&gt;list); 1665- object_put(obj); 1666+ list_del_rcu(&amp;obj-&gt;list); 1667 cache_num--; 1668+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj); 1669 } 1670 1671 /* Must be holding cache_lock */ 1672 static void __cache_add(struct object *obj) 1673 { 1674- list_add(&amp;obj-&gt;list, &amp;cache); 1675+ list_add_rcu(&amp;obj-&gt;list, &amp;cache); 1676 if (++cache_num > MAX_CACHE_SIZE) { 1677 struct object *i, *outcast = NULL; 1678 list_for_each_entry(i, &amp;cache, list) { 1679@@ -85,6 +94,7 @@ 1680 obj-&gt;popularity = 0; 1681 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1682 spin_lock_init(&amp;obj-&gt;lock); 1683+ INIT_RCU_HEAD(&amp;obj-&gt;rcu); 1684 1685 spin_lock_irqsave(&amp;cache_lock, flags); 1686 __cache_add(obj); 1687@@ -104,12 +114,11 @@ 1688 struct object *cache_find(int id) 1689 { 1690 struct object *obj; 1691- unsigned long flags; 1692 1693- spin_lock_irqsave(&amp;cache_lock, flags); 1694+ rcu_read_lock(); 1695 obj = __cache_find(id); 1696 if (obj) 1697 object_get(obj); 1698- spin_unlock_irqrestore(&amp;cache_lock, flags); 1699+ rcu_read_unlock(); 1700 return obj; 1701 } 1702</programlisting> 1703 1704<para> 1705Note that the reader will alter the 1706<structfield>popularity</structfield> member in 1707<function>__cache_find()</function>, and now it doesn't hold a lock. 1708One solution would be to make it an <type>atomic_t</type>, but for 1709this usage, we don't really care about races: an approximate result is 1710good enough, so I didn't change it. 1711</para> 1712 1713<para> 1714The result is that <function>cache_find()</function> requires no 1715synchronization with any other functions, so is almost as fast on SMP 1716as it would be on UP. 1717</para> 1718 1719<para> 1720There is a furthur optimization possible here: remember our original 1721cache code, where there were no reference counts and the caller simply 1722held the lock whenever using the object? This is still possible: if 1723you hold the lock, noone can delete the object, so you don't need to 1724get and put the reference count. 1725</para> 1726 1727<para> 1728Now, because the 'read lock' in RCU is simply disabling preemption, a 1729caller which always has preemption disabled between calling 1730<function>cache_find()</function> and 1731<function>object_put()</function> does not need to actually get and 1732put the reference count: we could expose 1733<function>__cache_find()</function> by making it non-static, and 1734such callers could simply call that. 1735</para> 1736<para> 1737The benefit here is that the reference count is not written to: the 1738object is not altered in any way, which is much faster on SMP 1739machines due to caching. 1740</para> 1741 </sect1> 1742 1743 <sect1 id="per-cpu"> 1744 <title>Per-CPU Data</title> 1745 1746 <para> 1747 Another technique for avoiding locking which is used fairly 1748 widely is to duplicate information for each CPU. For example, 1749 if you wanted to keep a count of a common condition, you could 1750 use a spin lock and a single counter. Nice and simple. 1751 </para> 1752 1753 <para> 1754 If that was too slow (it's usually not, but if you've got a 1755 really big machine to test on and can show that it is), you 1756 could instead use a counter for each CPU, then none of them need 1757 an exclusive lock. See <function>DEFINE_PER_CPU()</function>, 1758 <function>get_cpu_var()</function> and 1759 <function>put_cpu_var()</function> 1760 (<filename class="headerfile">include/linux/percpu.h</filename>). 1761 </para> 1762 1763 <para> 1764 Of particular use for simple per-cpu counters is the 1765 <type>local_t</type> type, and the 1766 <function>cpu_local_inc()</function> and related functions, 1767 which are more efficient than simple code on some architectures 1768 (<filename class="headerfile">include/asm/local.h</filename>). 1769 </para> 1770 1771 <para> 1772 Note that there is no simple, reliable way of getting an exact 1773 value of such a counter, without introducing more locks. This 1774 is not a problem for some uses. 1775 </para> 1776 </sect1> 1777 1778 <sect1 id="mostly-hardirq"> 1779 <title>Data Which Mostly Used By An IRQ Handler</title> 1780 1781 <para> 1782 If data is always accessed from within the same IRQ handler, you 1783 don't need a lock at all: the kernel already guarantees that the 1784 irq handler will not run simultaneously on multiple CPUs. 1785 </para> 1786 <para> 1787 Manfred Spraul points out that you can still do this, even if 1788 the data is very occasionally accessed in user context or 1789 softirqs/tasklets. The irq handler doesn't use a lock, and 1790 all other accesses are done as so: 1791 </para> 1792 1793<programlisting> 1794 spin_lock(&amp;lock); 1795 disable_irq(irq); 1796 ... 1797 enable_irq(irq); 1798 spin_unlock(&amp;lock); 1799</programlisting> 1800 <para> 1801 The <function>disable_irq()</function> prevents the irq handler 1802 from running (and waits for it to finish if it's currently 1803 running on other CPUs). The spinlock prevents any other 1804 accesses happening at the same time. Naturally, this is slower 1805 than just a <function>spin_lock_irq()</function> call, so it 1806 only makes sense if this type of access happens extremely 1807 rarely. 1808 </para> 1809 </sect1> 1810 </chapter> 1811 1812 <chapter id="sleeping-things"> 1813 <title>What Functions Are Safe To Call From Interrupts?</title> 1814 1815 <para> 1816 Many functions in the kernel sleep (ie. call schedule()) 1817 directly or indirectly: you can never call them while holding a 1818 spinlock, or with preemption disabled. This also means you need 1819 to be in user context: calling them from an interrupt is illegal. 1820 </para> 1821 1822 <sect1 id="sleeping"> 1823 <title>Some Functions Which Sleep</title> 1824 1825 <para> 1826 The most common ones are listed below, but you usually have to 1827 read the code to find out if other calls are safe. If everyone 1828 else who calls it can sleep, you probably need to be able to 1829 sleep, too. In particular, registration and deregistration 1830 functions usually expect to be called from user context, and can 1831 sleep. 1832 </para> 1833 1834 <itemizedlist> 1835 <listitem> 1836 <para> 1837 Accesses to 1838 <firstterm linkend="gloss-userspace">userspace</firstterm>: 1839 </para> 1840 <itemizedlist> 1841 <listitem> 1842 <para> 1843 <function>copy_from_user()</function> 1844 </para> 1845 </listitem> 1846 <listitem> 1847 <para> 1848 <function>copy_to_user()</function> 1849 </para> 1850 </listitem> 1851 <listitem> 1852 <para> 1853 <function>get_user()</function> 1854 </para> 1855 </listitem> 1856 <listitem> 1857 <para> 1858 <function> put_user()</function> 1859 </para> 1860 </listitem> 1861 </itemizedlist> 1862 </listitem> 1863 1864 <listitem> 1865 <para> 1866 <function>kmalloc(GFP_KERNEL)</function> 1867 </para> 1868 </listitem> 1869 1870 <listitem> 1871 <para> 1872 <function>down_interruptible()</function> and 1873 <function>down()</function> 1874 </para> 1875 <para> 1876 There is a <function>down_trylock()</function> which can be 1877 used inside interrupt context, as it will not sleep. 1878 <function>up()</function> will also never sleep. 1879 </para> 1880 </listitem> 1881 </itemizedlist> 1882 </sect1> 1883 1884 <sect1 id="dont-sleep"> 1885 <title>Some Functions Which Don't Sleep</title> 1886 1887 <para> 1888 Some functions are safe to call from any context, or holding 1889 almost any lock. 1890 </para> 1891 1892 <itemizedlist> 1893 <listitem> 1894 <para> 1895 <function>printk()</function> 1896 </para> 1897 </listitem> 1898 <listitem> 1899 <para> 1900 <function>kfree()</function> 1901 </para> 1902 </listitem> 1903 <listitem> 1904 <para> 1905 <function>add_timer()</function> and <function>del_timer()</function> 1906 </para> 1907 </listitem> 1908 </itemizedlist> 1909 </sect1> 1910 </chapter> 1911 1912 <chapter id="references"> 1913 <title>Further reading</title> 1914 1915 <itemizedlist> 1916 <listitem> 1917 <para> 1918 <filename>Documentation/spinlocks.txt</filename>: 1919 Linus Torvalds' spinlocking tutorial in the kernel sources. 1920 </para> 1921 </listitem> 1922 1923 <listitem> 1924 <para> 1925 Unix Systems for Modern Architectures: Symmetric 1926 Multiprocessing and Caching for Kernel Programmers: 1927 </para> 1928 1929 <para> 1930 Curt Schimmel's very good introduction to kernel level 1931 locking (not written for Linux, but nearly everything 1932 applies). The book is expensive, but really worth every 1933 penny to understand SMP locking. [ISBN: 0201633388] 1934 </para> 1935 </listitem> 1936 </itemizedlist> 1937 </chapter> 1938 1939 <chapter id="thanks"> 1940 <title>Thanks</title> 1941 1942 <para> 1943 Thanks to Telsa Gwynne for DocBooking, neatening and adding 1944 style. 1945 </para> 1946 1947 <para> 1948 Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul 1949 Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim 1950 Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney, 1951 John Ashby for proofreading, correcting, flaming, commenting. 1952 </para> 1953 1954 <para> 1955 Thanks to the cabal for having no influence on this document. 1956 </para> 1957 </chapter> 1958 1959 <glossary id="glossary"> 1960 <title>Glossary</title> 1961 1962 <glossentry id="gloss-preemption"> 1963 <glossterm>preemption</glossterm> 1964 <glossdef> 1965 <para> 1966 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is 1967 unset, processes in user context inside the kernel would not 1968 preempt each other (ie. you had that CPU until you have it up, 1969 except for interrupts). With the addition of 1970 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when 1971 in user context, higher priority tasks can "cut in": spinlocks 1972 were changed to disable preemption, even on UP. 1973 </para> 1974 </glossdef> 1975 </glossentry> 1976 1977 <glossentry id="gloss-bh"> 1978 <glossterm>bh</glossterm> 1979 <glossdef> 1980 <para> 1981 Bottom Half: for historical reasons, functions with 1982 '_bh' in them often now refer to any software interrupt, e.g. 1983 <function>spin_lock_bh()</function> blocks any software interrupt 1984 on the current CPU. Bottom halves are deprecated, and will 1985 eventually be replaced by tasklets. Only one bottom half will be 1986 running at any time. 1987 </para> 1988 </glossdef> 1989 </glossentry> 1990 1991 <glossentry id="gloss-hwinterrupt"> 1992 <glossterm>Hardware Interrupt / Hardware IRQ</glossterm> 1993 <glossdef> 1994 <para> 1995 Hardware interrupt request. <function>in_irq()</function> returns 1996 <returnvalue>true</returnvalue> in a hardware interrupt handler. 1997 </para> 1998 </glossdef> 1999 </glossentry> 2000 2001 <glossentry id="gloss-interruptcontext"> 2002 <glossterm>Interrupt Context</glossterm> 2003 <glossdef> 2004 <para> 2005 Not user context: processing a hardware irq or software irq. 2006 Indicated by the <function>in_interrupt()</function> macro 2007 returning <returnvalue>true</returnvalue>. 2008 </para> 2009 </glossdef> 2010 </glossentry> 2011 2012 <glossentry id="gloss-smp"> 2013 <glossterm><acronym>SMP</acronym></glossterm> 2014 <glossdef> 2015 <para> 2016 Symmetric Multi-Processor: kernels compiled for multiple-CPU 2017 machines. (CONFIG_SMP=y). 2018 </para> 2019 </glossdef> 2020 </glossentry> 2021 2022 <glossentry id="gloss-softirq"> 2023 <glossterm>Software Interrupt / softirq</glossterm> 2024 <glossdef> 2025 <para> 2026 Software interrupt handler. <function>in_irq()</function> returns 2027 <returnvalue>false</returnvalue>; <function>in_softirq()</function> 2028 returns <returnvalue>true</returnvalue>. Tasklets and softirqs 2029 both fall into the category of 'software interrupts'. 2030 </para> 2031 <para> 2032 Strictly speaking a softirq is one of up to 32 enumerated software 2033 interrupts which can run on multiple CPUs at once. 2034 Sometimes used to refer to tasklets as 2035 well (ie. all software interrupts). 2036 </para> 2037 </glossdef> 2038 </glossentry> 2039 2040 <glossentry id="gloss-tasklet"> 2041 <glossterm>tasklet</glossterm> 2042 <glossdef> 2043 <para> 2044 A dynamically-registrable software interrupt, 2045 which is guaranteed to only run on one CPU at a time. 2046 </para> 2047 </glossdef> 2048 </glossentry> 2049 2050 <glossentry id="gloss-timers"> 2051 <glossterm>timer</glossterm> 2052 <glossdef> 2053 <para> 2054 A dynamically-registrable software interrupt, which is run at 2055 (or close to) a given time. When running, it is just like a 2056 tasklet (in fact, they are called from the TIMER_SOFTIRQ). 2057 </para> 2058 </glossdef> 2059 </glossentry> 2060 2061 <glossentry id="gloss-up"> 2062 <glossterm><acronym>UP</acronym></glossterm> 2063 <glossdef> 2064 <para> 2065 Uni-Processor: Non-SMP. (CONFIG_SMP=n). 2066 </para> 2067 </glossdef> 2068 </glossentry> 2069 2070 <glossentry id="gloss-usercontext"> 2071 <glossterm>User Context</glossterm> 2072 <glossdef> 2073 <para> 2074 The kernel executing on behalf of a particular process (ie. a 2075 system call or trap) or kernel thread. You can tell which 2076 process with the <symbol>current</symbol> macro.) Not to 2077 be confused with userspace. Can be interrupted by software or 2078 hardware interrupts. 2079 </para> 2080 </glossdef> 2081 </glossentry> 2082 2083 <glossentry id="gloss-userspace"> 2084 <glossterm>Userspace</glossterm> 2085 <glossdef> 2086 <para> 2087 A process executing its own code outside the kernel. 2088 </para> 2089 </glossdef> 2090 </glossentry> 2091 2092 </glossary> 2093</book> 2094