at v2.6.20 57 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67}; 68 69/* host-side wrapper for one interface setting's parsed descriptors */ 70struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81}; 82 83enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88}; 89 90/** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @class_dev: driver model's class view of this device. 111 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 112 * allowed unless the counter is 0. 113 * 114 * USB device drivers attach to interfaces on a physical device. Each 115 * interface encapsulates a single high level function, such as feeding 116 * an audio stream to a speaker or reporting a change in a volume control. 117 * Many USB devices only have one interface. The protocol used to talk to 118 * an interface's endpoints can be defined in a usb "class" specification, 119 * or by a product's vendor. The (default) control endpoint is part of 120 * every interface, but is never listed among the interface's descriptors. 121 * 122 * The driver that is bound to the interface can use standard driver model 123 * calls such as dev_get_drvdata() on the dev member of this structure. 124 * 125 * Each interface may have alternate settings. The initial configuration 126 * of a device sets altsetting 0, but the device driver can change 127 * that setting using usb_set_interface(). Alternate settings are often 128 * used to control the the use of periodic endpoints, such as by having 129 * different endpoints use different amounts of reserved USB bandwidth. 130 * All standards-conformant USB devices that use isochronous endpoints 131 * will use them in non-default settings. 132 * 133 * The USB specification says that alternate setting numbers must run from 134 * 0 to one less than the total number of alternate settings. But some 135 * devices manage to mess this up, and the structures aren't necessarily 136 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 137 * look up an alternate setting in the altsetting array based on its number. 138 */ 139struct usb_interface { 140 /* array of alternate settings for this interface, 141 * stored in no particular order */ 142 struct usb_host_interface *altsetting; 143 144 struct usb_host_interface *cur_altsetting; /* the currently 145 * active alternate setting */ 146 unsigned num_altsetting; /* number of alternate settings */ 147 148 int minor; /* minor number this interface is 149 * bound to */ 150 enum usb_interface_condition condition; /* state of binding */ 151 unsigned is_active:1; /* the interface is not suspended */ 152 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 153 154 struct device dev; /* interface specific device info */ 155 struct class_device *class_dev; 156 int pm_usage_cnt; /* usage counter for autosuspend */ 157}; 158#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 159#define interface_to_usbdev(intf) \ 160 container_of(intf->dev.parent, struct usb_device, dev) 161 162static inline void *usb_get_intfdata (struct usb_interface *intf) 163{ 164 return dev_get_drvdata (&intf->dev); 165} 166 167static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 168{ 169 dev_set_drvdata(&intf->dev, data); 170} 171 172struct usb_interface *usb_get_intf(struct usb_interface *intf); 173void usb_put_intf(struct usb_interface *intf); 174 175/* this maximum is arbitrary */ 176#define USB_MAXINTERFACES 32 177 178/** 179 * struct usb_interface_cache - long-term representation of a device interface 180 * @num_altsetting: number of altsettings defined. 181 * @ref: reference counter. 182 * @altsetting: variable-length array of interface structures, one for 183 * each alternate setting that may be selected. Each one includes a 184 * set of endpoint configurations. They will be in no particular order. 185 * 186 * These structures persist for the lifetime of a usb_device, unlike 187 * struct usb_interface (which persists only as long as its configuration 188 * is installed). The altsetting arrays can be accessed through these 189 * structures at any time, permitting comparison of configurations and 190 * providing support for the /proc/bus/usb/devices pseudo-file. 191 */ 192struct usb_interface_cache { 193 unsigned num_altsetting; /* number of alternate settings */ 194 struct kref ref; /* reference counter */ 195 196 /* variable-length array of alternate settings for this interface, 197 * stored in no particular order */ 198 struct usb_host_interface altsetting[0]; 199}; 200#define ref_to_usb_interface_cache(r) \ 201 container_of(r, struct usb_interface_cache, ref) 202#define altsetting_to_usb_interface_cache(a) \ 203 container_of(a, struct usb_interface_cache, altsetting[0]) 204 205/** 206 * struct usb_host_config - representation of a device's configuration 207 * @desc: the device's configuration descriptor. 208 * @string: pointer to the cached version of the iConfiguration string, if 209 * present for this configuration. 210 * @interface: array of pointers to usb_interface structures, one for each 211 * interface in the configuration. The number of interfaces is stored 212 * in desc.bNumInterfaces. These pointers are valid only while the 213 * the configuration is active. 214 * @intf_cache: array of pointers to usb_interface_cache structures, one 215 * for each interface in the configuration. These structures exist 216 * for the entire life of the device. 217 * @extra: pointer to buffer containing all extra descriptors associated 218 * with this configuration (those preceding the first interface 219 * descriptor). 220 * @extralen: length of the extra descriptors buffer. 221 * 222 * USB devices may have multiple configurations, but only one can be active 223 * at any time. Each encapsulates a different operational environment; 224 * for example, a dual-speed device would have separate configurations for 225 * full-speed and high-speed operation. The number of configurations 226 * available is stored in the device descriptor as bNumConfigurations. 227 * 228 * A configuration can contain multiple interfaces. Each corresponds to 229 * a different function of the USB device, and all are available whenever 230 * the configuration is active. The USB standard says that interfaces 231 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 232 * of devices get this wrong. In addition, the interface array is not 233 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 234 * look up an interface entry based on its number. 235 * 236 * Device drivers should not attempt to activate configurations. The choice 237 * of which configuration to install is a policy decision based on such 238 * considerations as available power, functionality provided, and the user's 239 * desires (expressed through userspace tools). However, drivers can call 240 * usb_reset_configuration() to reinitialize the current configuration and 241 * all its interfaces. 242 */ 243struct usb_host_config { 244 struct usb_config_descriptor desc; 245 246 char *string; /* iConfiguration string, if present */ 247 /* the interfaces associated with this configuration, 248 * stored in no particular order */ 249 struct usb_interface *interface[USB_MAXINTERFACES]; 250 251 /* Interface information available even when this is not the 252 * active configuration */ 253 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 254 255 unsigned char *extra; /* Extra descriptors */ 256 int extralen; 257}; 258 259int __usb_get_extra_descriptor(char *buffer, unsigned size, 260 unsigned char type, void **ptr); 261#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 262 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 263 type,(void**)ptr) 264 265/* ----------------------------------------------------------------------- */ 266 267/* USB device number allocation bitmap */ 268struct usb_devmap { 269 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 270}; 271 272/* 273 * Allocated per bus (tree of devices) we have: 274 */ 275struct usb_bus { 276 struct device *controller; /* host/master side hardware */ 277 int busnum; /* Bus number (in order of reg) */ 278 char *bus_name; /* stable id (PCI slot_name etc) */ 279 u8 uses_dma; /* Does the host controller use DMA? */ 280 u8 otg_port; /* 0, or number of OTG/HNP port */ 281 unsigned is_b_host:1; /* true during some HNP roleswitches */ 282 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 283 284 int devnum_next; /* Next open device number in 285 * round-robin allocation */ 286 287 struct usb_devmap devmap; /* device address allocation map */ 288 struct usb_device *root_hub; /* Root hub */ 289 struct list_head bus_list; /* list of busses */ 290 291 int bandwidth_allocated; /* on this bus: how much of the time 292 * reserved for periodic (intr/iso) 293 * requests is used, on average? 294 * Units: microseconds/frame. 295 * Limits: Full/low speed reserve 90%, 296 * while high speed reserves 80%. 297 */ 298 int bandwidth_int_reqs; /* number of Interrupt requests */ 299 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 300 301 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 302 303 struct class_device *class_dev; /* class device for this bus */ 304 305#if defined(CONFIG_USB_MON) 306 struct mon_bus *mon_bus; /* non-null when associated */ 307 int monitored; /* non-zero when monitored */ 308#endif 309}; 310 311/* ----------------------------------------------------------------------- */ 312 313/* This is arbitrary. 314 * From USB 2.0 spec Table 11-13, offset 7, a hub can 315 * have up to 255 ports. The most yet reported is 10. 316 * 317 * Current Wireless USB host hardware (Intel i1480 for example) allows 318 * up to 22 devices to connect. Upcoming hardware might raise that 319 * limit. Because the arrays need to add a bit for hub status data, we 320 * do 31, so plus one evens out to four bytes. 321 */ 322#define USB_MAXCHILDREN (31) 323 324struct usb_tt; 325 326/* 327 * struct usb_device - kernel's representation of a USB device 328 * 329 * FIXME: Write the kerneldoc! 330 * 331 * Usbcore drivers should not set usbdev->state directly. Instead use 332 * usb_set_device_state(). 333 */ 334struct usb_device { 335 int devnum; /* Address on USB bus */ 336 char devpath [16]; /* Use in messages: /port/port/... */ 337 enum usb_device_state state; /* configured, not attached, etc */ 338 enum usb_device_speed speed; /* high/full/low (or error) */ 339 340 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 341 int ttport; /* device port on that tt hub */ 342 343 unsigned int toggle[2]; /* one bit for each endpoint 344 * ([0] = IN, [1] = OUT) */ 345 346 struct usb_device *parent; /* our hub, unless we're the root */ 347 struct usb_bus *bus; /* Bus we're part of */ 348 struct usb_host_endpoint ep0; 349 350 struct device dev; /* Generic device interface */ 351 352 struct usb_device_descriptor descriptor;/* Descriptor */ 353 struct usb_host_config *config; /* All of the configs */ 354 355 struct usb_host_config *actconfig;/* the active configuration */ 356 struct usb_host_endpoint *ep_in[16]; 357 struct usb_host_endpoint *ep_out[16]; 358 359 char **rawdescriptors; /* Raw descriptors for each config */ 360 361 unsigned short bus_mA; /* Current available from the bus */ 362 u8 portnum; /* Parent port number (origin 1) */ 363 u8 level; /* Number of USB hub ancestors */ 364 365 unsigned discon_suspended:1; /* Disconnected while suspended */ 366 unsigned have_langid:1; /* whether string_langid is valid */ 367 int string_langid; /* language ID for strings */ 368 369 /* static strings from the device */ 370 char *product; /* iProduct string, if present */ 371 char *manufacturer; /* iManufacturer string, if present */ 372 char *serial; /* iSerialNumber string, if present */ 373 374 struct list_head filelist; 375 struct class_device *class_dev; 376 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 377 378 /* 379 * Child devices - these can be either new devices 380 * (if this is a hub device), or different instances 381 * of this same device. 382 * 383 * Each instance needs its own set of data structures. 384 */ 385 386 int maxchild; /* Number of ports if hub */ 387 struct usb_device *children[USB_MAXCHILDREN]; 388 389 int pm_usage_cnt; /* usage counter for autosuspend */ 390#ifdef CONFIG_PM 391 struct delayed_work autosuspend; /* for delayed autosuspends */ 392 struct mutex pm_mutex; /* protects PM operations */ 393 394 unsigned auto_pm:1; /* autosuspend/resume in progress */ 395 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 396#endif 397}; 398#define to_usb_device(d) container_of(d, struct usb_device, dev) 399 400extern struct usb_device *usb_get_dev(struct usb_device *dev); 401extern void usb_put_dev(struct usb_device *dev); 402 403/* USB device locking */ 404#define usb_lock_device(udev) down(&(udev)->dev.sem) 405#define usb_unlock_device(udev) up(&(udev)->dev.sem) 406#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 407extern int usb_lock_device_for_reset(struct usb_device *udev, 408 const struct usb_interface *iface); 409 410/* USB port reset for device reinitialization */ 411extern int usb_reset_device(struct usb_device *dev); 412extern int usb_reset_composite_device(struct usb_device *dev, 413 struct usb_interface *iface); 414 415extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 416 417/* USB autosuspend and autoresume */ 418#ifdef CONFIG_USB_SUSPEND 419extern int usb_autopm_set_interface(struct usb_interface *intf); 420extern int usb_autopm_get_interface(struct usb_interface *intf); 421extern void usb_autopm_put_interface(struct usb_interface *intf); 422 423static inline void usb_autopm_enable(struct usb_interface *intf) 424{ 425 intf->pm_usage_cnt = 0; 426 usb_autopm_set_interface(intf); 427} 428 429static inline void usb_autopm_disable(struct usb_interface *intf) 430{ 431 intf->pm_usage_cnt = 1; 432 usb_autopm_set_interface(intf); 433} 434 435#else 436 437static inline int usb_autopm_set_interface(struct usb_interface *intf) 438{ return 0; } 439 440static inline int usb_autopm_get_interface(struct usb_interface *intf) 441{ return 0; } 442 443static inline void usb_autopm_put_interface(struct usb_interface *intf) 444{ } 445static inline void usb_autopm_enable(struct usb_interface *intf) 446{ } 447static inline void usb_autopm_disable(struct usb_interface *intf) 448{ } 449#endif 450 451/*-------------------------------------------------------------------------*/ 452 453/* for drivers using iso endpoints */ 454extern int usb_get_current_frame_number (struct usb_device *usb_dev); 455 456/* used these for multi-interface device registration */ 457extern int usb_driver_claim_interface(struct usb_driver *driver, 458 struct usb_interface *iface, void* priv); 459 460/** 461 * usb_interface_claimed - returns true iff an interface is claimed 462 * @iface: the interface being checked 463 * 464 * Returns true (nonzero) iff the interface is claimed, else false (zero). 465 * Callers must own the driver model's usb bus readlock. So driver 466 * probe() entries don't need extra locking, but other call contexts 467 * may need to explicitly claim that lock. 468 * 469 */ 470static inline int usb_interface_claimed(struct usb_interface *iface) { 471 return (iface->dev.driver != NULL); 472} 473 474extern void usb_driver_release_interface(struct usb_driver *driver, 475 struct usb_interface *iface); 476const struct usb_device_id *usb_match_id(struct usb_interface *interface, 477 const struct usb_device_id *id); 478 479extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 480 int minor); 481extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 482 unsigned ifnum); 483extern struct usb_host_interface *usb_altnum_to_altsetting( 484 const struct usb_interface *intf, unsigned int altnum); 485 486 487/** 488 * usb_make_path - returns stable device path in the usb tree 489 * @dev: the device whose path is being constructed 490 * @buf: where to put the string 491 * @size: how big is "buf"? 492 * 493 * Returns length of the string (> 0) or negative if size was too small. 494 * 495 * This identifier is intended to be "stable", reflecting physical paths in 496 * hardware such as physical bus addresses for host controllers or ports on 497 * USB hubs. That makes it stay the same until systems are physically 498 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 499 * controllers. Adding and removing devices, including virtual root hubs 500 * in host controller driver modules, does not change these path identifers; 501 * neither does rebooting or re-enumerating. These are more useful identifiers 502 * than changeable ("unstable") ones like bus numbers or device addresses. 503 * 504 * With a partial exception for devices connected to USB 2.0 root hubs, these 505 * identifiers are also predictable. So long as the device tree isn't changed, 506 * plugging any USB device into a given hub port always gives it the same path. 507 * Because of the use of "companion" controllers, devices connected to ports on 508 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 509 * high speed, and a different one if they are full or low speed. 510 */ 511static inline int usb_make_path (struct usb_device *dev, char *buf, 512 size_t size) 513{ 514 int actual; 515 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 516 dev->devpath); 517 return (actual >= (int)size) ? -1 : actual; 518} 519 520/*-------------------------------------------------------------------------*/ 521 522/** 523 * usb_endpoint_dir_in - check if the endpoint has IN direction 524 * @epd: endpoint to be checked 525 * 526 * Returns true if the endpoint is of type IN, otherwise it returns false. 527 */ 528static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 529{ 530 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 531} 532 533/** 534 * usb_endpoint_dir_out - check if the endpoint has OUT direction 535 * @epd: endpoint to be checked 536 * 537 * Returns true if the endpoint is of type OUT, otherwise it returns false. 538 */ 539static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 540{ 541 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 542} 543 544/** 545 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 546 * @epd: endpoint to be checked 547 * 548 * Returns true if the endpoint is of type bulk, otherwise it returns false. 549 */ 550static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 551{ 552 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 553 USB_ENDPOINT_XFER_BULK); 554} 555 556/** 557 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 558 * @epd: endpoint to be checked 559 * 560 * Returns true if the endpoint is of type interrupt, otherwise it returns 561 * false. 562 */ 563static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 564{ 565 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 566 USB_ENDPOINT_XFER_INT); 567} 568 569/** 570 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 571 * @epd: endpoint to be checked 572 * 573 * Returns true if the endpoint is of type isochronous, otherwise it returns 574 * false. 575 */ 576static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 577{ 578 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 579 USB_ENDPOINT_XFER_ISOC); 580} 581 582/** 583 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 584 * @epd: endpoint to be checked 585 * 586 * Returns true if the endpoint has bulk transfer type and IN direction, 587 * otherwise it returns false. 588 */ 589static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 590{ 591 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 592} 593 594/** 595 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 596 * @epd: endpoint to be checked 597 * 598 * Returns true if the endpoint has bulk transfer type and OUT direction, 599 * otherwise it returns false. 600 */ 601static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 602{ 603 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 604} 605 606/** 607 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 608 * @epd: endpoint to be checked 609 * 610 * Returns true if the endpoint has interrupt transfer type and IN direction, 611 * otherwise it returns false. 612 */ 613static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 614{ 615 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 616} 617 618/** 619 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 620 * @epd: endpoint to be checked 621 * 622 * Returns true if the endpoint has interrupt transfer type and OUT direction, 623 * otherwise it returns false. 624 */ 625static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 626{ 627 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 628} 629 630/** 631 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 632 * @epd: endpoint to be checked 633 * 634 * Returns true if the endpoint has isochronous transfer type and IN direction, 635 * otherwise it returns false. 636 */ 637static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 638{ 639 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 640} 641 642/** 643 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 644 * @epd: endpoint to be checked 645 * 646 * Returns true if the endpoint has isochronous transfer type and OUT direction, 647 * otherwise it returns false. 648 */ 649static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 650{ 651 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 652} 653 654/*-------------------------------------------------------------------------*/ 655 656#define USB_DEVICE_ID_MATCH_DEVICE \ 657 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 658#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 659 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 660#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 661 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 662#define USB_DEVICE_ID_MATCH_DEV_INFO \ 663 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 664 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 665 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 666#define USB_DEVICE_ID_MATCH_INT_INFO \ 667 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 668 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 669 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 670 671/** 672 * USB_DEVICE - macro used to describe a specific usb device 673 * @vend: the 16 bit USB Vendor ID 674 * @prod: the 16 bit USB Product ID 675 * 676 * This macro is used to create a struct usb_device_id that matches a 677 * specific device. 678 */ 679#define USB_DEVICE(vend,prod) \ 680 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 681 .idProduct = (prod) 682/** 683 * USB_DEVICE_VER - macro used to describe a specific usb device with a 684 * version range 685 * @vend: the 16 bit USB Vendor ID 686 * @prod: the 16 bit USB Product ID 687 * @lo: the bcdDevice_lo value 688 * @hi: the bcdDevice_hi value 689 * 690 * This macro is used to create a struct usb_device_id that matches a 691 * specific device, with a version range. 692 */ 693#define USB_DEVICE_VER(vend,prod,lo,hi) \ 694 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 695 .idVendor = (vend), .idProduct = (prod), \ 696 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 697 698/** 699 * USB_DEVICE_INFO - macro used to describe a class of usb devices 700 * @cl: bDeviceClass value 701 * @sc: bDeviceSubClass value 702 * @pr: bDeviceProtocol value 703 * 704 * This macro is used to create a struct usb_device_id that matches a 705 * specific class of devices. 706 */ 707#define USB_DEVICE_INFO(cl,sc,pr) \ 708 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 709 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 710 711/** 712 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 713 * @cl: bInterfaceClass value 714 * @sc: bInterfaceSubClass value 715 * @pr: bInterfaceProtocol value 716 * 717 * This macro is used to create a struct usb_device_id that matches a 718 * specific class of interfaces. 719 */ 720#define USB_INTERFACE_INFO(cl,sc,pr) \ 721 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 722 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 723 724/* ----------------------------------------------------------------------- */ 725 726struct usb_dynids { 727 spinlock_t lock; 728 struct list_head list; 729}; 730 731/** 732 * struct usbdrv_wrap - wrapper for driver-model structure 733 * @driver: The driver-model core driver structure. 734 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 735 */ 736struct usbdrv_wrap { 737 struct device_driver driver; 738 int for_devices; 739}; 740 741/** 742 * struct usb_driver - identifies USB interface driver to usbcore 743 * @name: The driver name should be unique among USB drivers, 744 * and should normally be the same as the module name. 745 * @probe: Called to see if the driver is willing to manage a particular 746 * interface on a device. If it is, probe returns zero and uses 747 * dev_set_drvdata() to associate driver-specific data with the 748 * interface. It may also use usb_set_interface() to specify the 749 * appropriate altsetting. If unwilling to manage the interface, 750 * return a negative errno value. 751 * @disconnect: Called when the interface is no longer accessible, usually 752 * because its device has been (or is being) disconnected or the 753 * driver module is being unloaded. 754 * @ioctl: Used for drivers that want to talk to userspace through 755 * the "usbfs" filesystem. This lets devices provide ways to 756 * expose information to user space regardless of where they 757 * do (or don't) show up otherwise in the filesystem. 758 * @suspend: Called when the device is going to be suspended by the system. 759 * @resume: Called when the device is being resumed by the system. 760 * @pre_reset: Called by usb_reset_composite_device() when the device 761 * is about to be reset. 762 * @post_reset: Called by usb_reset_composite_device() after the device 763 * has been reset. 764 * @id_table: USB drivers use ID table to support hotplugging. 765 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 766 * or your driver's probe function will never get called. 767 * @dynids: used internally to hold the list of dynamically added device 768 * ids for this driver. 769 * @drvwrap: Driver-model core structure wrapper. 770 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 771 * added to this driver by preventing the sysfs file from being created. 772 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 773 * for interfaces bound to this driver. 774 * 775 * USB interface drivers must provide a name, probe() and disconnect() 776 * methods, and an id_table. Other driver fields are optional. 777 * 778 * The id_table is used in hotplugging. It holds a set of descriptors, 779 * and specialized data may be associated with each entry. That table 780 * is used by both user and kernel mode hotplugging support. 781 * 782 * The probe() and disconnect() methods are called in a context where 783 * they can sleep, but they should avoid abusing the privilege. Most 784 * work to connect to a device should be done when the device is opened, 785 * and undone at the last close. The disconnect code needs to address 786 * concurrency issues with respect to open() and close() methods, as 787 * well as forcing all pending I/O requests to complete (by unlinking 788 * them as necessary, and blocking until the unlinks complete). 789 */ 790struct usb_driver { 791 const char *name; 792 793 int (*probe) (struct usb_interface *intf, 794 const struct usb_device_id *id); 795 796 void (*disconnect) (struct usb_interface *intf); 797 798 int (*ioctl) (struct usb_interface *intf, unsigned int code, 799 void *buf); 800 801 int (*suspend) (struct usb_interface *intf, pm_message_t message); 802 int (*resume) (struct usb_interface *intf); 803 804 void (*pre_reset) (struct usb_interface *intf); 805 void (*post_reset) (struct usb_interface *intf); 806 807 const struct usb_device_id *id_table; 808 809 struct usb_dynids dynids; 810 struct usbdrv_wrap drvwrap; 811 unsigned int no_dynamic_id:1; 812 unsigned int supports_autosuspend:1; 813}; 814#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 815 816/** 817 * struct usb_device_driver - identifies USB device driver to usbcore 818 * @name: The driver name should be unique among USB drivers, 819 * and should normally be the same as the module name. 820 * @probe: Called to see if the driver is willing to manage a particular 821 * device. If it is, probe returns zero and uses dev_set_drvdata() 822 * to associate driver-specific data with the device. If unwilling 823 * to manage the device, return a negative errno value. 824 * @disconnect: Called when the device is no longer accessible, usually 825 * because it has been (or is being) disconnected or the driver's 826 * module is being unloaded. 827 * @suspend: Called when the device is going to be suspended by the system. 828 * @resume: Called when the device is being resumed by the system. 829 * @drvwrap: Driver-model core structure wrapper. 830 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 831 * for devices bound to this driver. 832 * 833 * USB drivers must provide all the fields listed above except drvwrap. 834 */ 835struct usb_device_driver { 836 const char *name; 837 838 int (*probe) (struct usb_device *udev); 839 void (*disconnect) (struct usb_device *udev); 840 841 int (*suspend) (struct usb_device *udev, pm_message_t message); 842 int (*resume) (struct usb_device *udev); 843 struct usbdrv_wrap drvwrap; 844 unsigned int supports_autosuspend:1; 845}; 846#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 847 drvwrap.driver) 848 849extern struct bus_type usb_bus_type; 850 851/** 852 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 853 * @name: the usb class device name for this driver. Will show up in sysfs. 854 * @fops: pointer to the struct file_operations of this driver. 855 * @minor_base: the start of the minor range for this driver. 856 * 857 * This structure is used for the usb_register_dev() and 858 * usb_unregister_dev() functions, to consolidate a number of the 859 * parameters used for them. 860 */ 861struct usb_class_driver { 862 char *name; 863 const struct file_operations *fops; 864 int minor_base; 865}; 866 867/* 868 * use these in module_init()/module_exit() 869 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 870 */ 871extern int usb_register_driver(struct usb_driver *, struct module *); 872static inline int usb_register(struct usb_driver *driver) 873{ 874 return usb_register_driver(driver, THIS_MODULE); 875} 876extern void usb_deregister(struct usb_driver *); 877 878extern int usb_register_device_driver(struct usb_device_driver *, 879 struct module *); 880extern void usb_deregister_device_driver(struct usb_device_driver *); 881 882extern int usb_register_dev(struct usb_interface *intf, 883 struct usb_class_driver *class_driver); 884extern void usb_deregister_dev(struct usb_interface *intf, 885 struct usb_class_driver *class_driver); 886 887extern int usb_disabled(void); 888 889/* ----------------------------------------------------------------------- */ 890 891/* 892 * URB support, for asynchronous request completions 893 */ 894 895/* 896 * urb->transfer_flags: 897 */ 898#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 899#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 900 * ignored */ 901#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 902#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 903#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 904#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 905#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 906 * needed */ 907 908struct usb_iso_packet_descriptor { 909 unsigned int offset; 910 unsigned int length; /* expected length */ 911 unsigned int actual_length; 912 unsigned int status; 913}; 914 915struct urb; 916 917typedef void (*usb_complete_t)(struct urb *); 918 919/** 920 * struct urb - USB Request Block 921 * @urb_list: For use by current owner of the URB. 922 * @pipe: Holds endpoint number, direction, type, and more. 923 * Create these values with the eight macros available; 924 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 925 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 926 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 927 * numbers range from zero to fifteen. Note that "in" endpoint two 928 * is a different endpoint (and pipe) from "out" endpoint two. 929 * The current configuration controls the existence, type, and 930 * maximum packet size of any given endpoint. 931 * @dev: Identifies the USB device to perform the request. 932 * @status: This is read in non-iso completion functions to get the 933 * status of the particular request. ISO requests only use it 934 * to tell whether the URB was unlinked; detailed status for 935 * each frame is in the fields of the iso_frame-desc. 936 * @transfer_flags: A variety of flags may be used to affect how URB 937 * submission, unlinking, or operation are handled. Different 938 * kinds of URB can use different flags. 939 * @transfer_buffer: This identifies the buffer to (or from) which 940 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 941 * is set). This buffer must be suitable for DMA; allocate it with 942 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 943 * of this buffer will be modified. This buffer is used for the data 944 * stage of control transfers. 945 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 946 * the device driver is saying that it provided this DMA address, 947 * which the host controller driver should use in preference to the 948 * transfer_buffer. 949 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 950 * be broken up into chunks according to the current maximum packet 951 * size for the endpoint, which is a function of the configuration 952 * and is encoded in the pipe. When the length is zero, neither 953 * transfer_buffer nor transfer_dma is used. 954 * @actual_length: This is read in non-iso completion functions, and 955 * it tells how many bytes (out of transfer_buffer_length) were 956 * transferred. It will normally be the same as requested, unless 957 * either an error was reported or a short read was performed. 958 * The URB_SHORT_NOT_OK transfer flag may be used to make such 959 * short reads be reported as errors. 960 * @setup_packet: Only used for control transfers, this points to eight bytes 961 * of setup data. Control transfers always start by sending this data 962 * to the device. Then transfer_buffer is read or written, if needed. 963 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 964 * device driver has provided this DMA address for the setup packet. 965 * The host controller driver should use this in preference to 966 * setup_packet. 967 * @start_frame: Returns the initial frame for isochronous transfers. 968 * @number_of_packets: Lists the number of ISO transfer buffers. 969 * @interval: Specifies the polling interval for interrupt or isochronous 970 * transfers. The units are frames (milliseconds) for for full and low 971 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 972 * @error_count: Returns the number of ISO transfers that reported errors. 973 * @context: For use in completion functions. This normally points to 974 * request-specific driver context. 975 * @complete: Completion handler. This URB is passed as the parameter to the 976 * completion function. The completion function may then do what 977 * it likes with the URB, including resubmitting or freeing it. 978 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 979 * collect the transfer status for each buffer. 980 * 981 * This structure identifies USB transfer requests. URBs must be allocated by 982 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 983 * Initialization may be done using various usb_fill_*_urb() functions. URBs 984 * are submitted using usb_submit_urb(), and pending requests may be canceled 985 * using usb_unlink_urb() or usb_kill_urb(). 986 * 987 * Data Transfer Buffers: 988 * 989 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 990 * taken from the general page pool. That is provided by transfer_buffer 991 * (control requests also use setup_packet), and host controller drivers 992 * perform a dma mapping (and unmapping) for each buffer transferred. Those 993 * mapping operations can be expensive on some platforms (perhaps using a dma 994 * bounce buffer or talking to an IOMMU), 995 * although they're cheap on commodity x86 and ppc hardware. 996 * 997 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 998 * which tell the host controller driver that no such mapping is needed since 999 * the device driver is DMA-aware. For example, a device driver might 1000 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1001 * When these transfer flags are provided, host controller drivers will 1002 * attempt to use the dma addresses found in the transfer_dma and/or 1003 * setup_dma fields rather than determining a dma address themselves. (Note 1004 * that transfer_buffer and setup_packet must still be set because not all 1005 * host controllers use DMA, nor do virtual root hubs). 1006 * 1007 * Initialization: 1008 * 1009 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1010 * zero), and complete fields. All URBs must also initialize 1011 * transfer_buffer and transfer_buffer_length. They may provide the 1012 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1013 * to be treated as errors; that flag is invalid for write requests. 1014 * 1015 * Bulk URBs may 1016 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1017 * should always terminate with a short packet, even if it means adding an 1018 * extra zero length packet. 1019 * 1020 * Control URBs must provide a setup_packet. The setup_packet and 1021 * transfer_buffer may each be mapped for DMA or not, independently of 1022 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1023 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1024 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1025 * 1026 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1027 * or, for highspeed devices, 125 microsecond units) 1028 * to poll for transfers. After the URB has been submitted, the interval 1029 * field reflects how the transfer was actually scheduled. 1030 * The polling interval may be more frequent than requested. 1031 * For example, some controllers have a maximum interval of 32 milliseconds, 1032 * while others support intervals of up to 1024 milliseconds. 1033 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1034 * endpoints, as well as high speed interrupt endpoints, the encoding of 1035 * the transfer interval in the endpoint descriptor is logarithmic. 1036 * Device drivers must convert that value to linear units themselves.) 1037 * 1038 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1039 * the host controller to schedule the transfer as soon as bandwidth 1040 * utilization allows, and then set start_frame to reflect the actual frame 1041 * selected during submission. Otherwise drivers must specify the start_frame 1042 * and handle the case where the transfer can't begin then. However, drivers 1043 * won't know how bandwidth is currently allocated, and while they can 1044 * find the current frame using usb_get_current_frame_number () they can't 1045 * know the range for that frame number. (Ranges for frame counter values 1046 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1047 * 1048 * Isochronous URBs have a different data transfer model, in part because 1049 * the quality of service is only "best effort". Callers provide specially 1050 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1051 * at the end. Each such packet is an individual ISO transfer. Isochronous 1052 * URBs are normally queued, submitted by drivers to arrange that 1053 * transfers are at least double buffered, and then explicitly resubmitted 1054 * in completion handlers, so 1055 * that data (such as audio or video) streams at as constant a rate as the 1056 * host controller scheduler can support. 1057 * 1058 * Completion Callbacks: 1059 * 1060 * The completion callback is made in_interrupt(), and one of the first 1061 * things that a completion handler should do is check the status field. 1062 * The status field is provided for all URBs. It is used to report 1063 * unlinked URBs, and status for all non-ISO transfers. It should not 1064 * be examined before the URB is returned to the completion handler. 1065 * 1066 * The context field is normally used to link URBs back to the relevant 1067 * driver or request state. 1068 * 1069 * When the completion callback is invoked for non-isochronous URBs, the 1070 * actual_length field tells how many bytes were transferred. This field 1071 * is updated even when the URB terminated with an error or was unlinked. 1072 * 1073 * ISO transfer status is reported in the status and actual_length fields 1074 * of the iso_frame_desc array, and the number of errors is reported in 1075 * error_count. Completion callbacks for ISO transfers will normally 1076 * (re)submit URBs to ensure a constant transfer rate. 1077 * 1078 * Note that even fields marked "public" should not be touched by the driver 1079 * when the urb is owned by the hcd, that is, since the call to 1080 * usb_submit_urb() till the entry into the completion routine. 1081 */ 1082struct urb 1083{ 1084 /* private: usb core and host controller only fields in the urb */ 1085 struct kref kref; /* reference count of the URB */ 1086 spinlock_t lock; /* lock for the URB */ 1087 void *hcpriv; /* private data for host controller */ 1088 int bandwidth; /* bandwidth for INT/ISO request */ 1089 atomic_t use_count; /* concurrent submissions counter */ 1090 u8 reject; /* submissions will fail */ 1091 1092 /* public: documented fields in the urb that can be used by drivers */ 1093 struct list_head urb_list; /* list head for use by the urb's 1094 * current owner */ 1095 struct usb_device *dev; /* (in) pointer to associated device */ 1096 unsigned int pipe; /* (in) pipe information */ 1097 int status; /* (return) non-ISO status */ 1098 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1099 void *transfer_buffer; /* (in) associated data buffer */ 1100 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1101 int transfer_buffer_length; /* (in) data buffer length */ 1102 int actual_length; /* (return) actual transfer length */ 1103 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1104 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1105 int start_frame; /* (modify) start frame (ISO) */ 1106 int number_of_packets; /* (in) number of ISO packets */ 1107 int interval; /* (modify) transfer interval 1108 * (INT/ISO) */ 1109 int error_count; /* (return) number of ISO errors */ 1110 void *context; /* (in) context for completion */ 1111 usb_complete_t complete; /* (in) completion routine */ 1112 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1113 /* (in) ISO ONLY */ 1114}; 1115 1116/* ----------------------------------------------------------------------- */ 1117 1118/** 1119 * usb_fill_control_urb - initializes a control urb 1120 * @urb: pointer to the urb to initialize. 1121 * @dev: pointer to the struct usb_device for this urb. 1122 * @pipe: the endpoint pipe 1123 * @setup_packet: pointer to the setup_packet buffer 1124 * @transfer_buffer: pointer to the transfer buffer 1125 * @buffer_length: length of the transfer buffer 1126 * @complete_fn: pointer to the usb_complete_t function 1127 * @context: what to set the urb context to. 1128 * 1129 * Initializes a control urb with the proper information needed to submit 1130 * it to a device. 1131 */ 1132static inline void usb_fill_control_urb (struct urb *urb, 1133 struct usb_device *dev, 1134 unsigned int pipe, 1135 unsigned char *setup_packet, 1136 void *transfer_buffer, 1137 int buffer_length, 1138 usb_complete_t complete_fn, 1139 void *context) 1140{ 1141 spin_lock_init(&urb->lock); 1142 urb->dev = dev; 1143 urb->pipe = pipe; 1144 urb->setup_packet = setup_packet; 1145 urb->transfer_buffer = transfer_buffer; 1146 urb->transfer_buffer_length = buffer_length; 1147 urb->complete = complete_fn; 1148 urb->context = context; 1149} 1150 1151/** 1152 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1153 * @urb: pointer to the urb to initialize. 1154 * @dev: pointer to the struct usb_device for this urb. 1155 * @pipe: the endpoint pipe 1156 * @transfer_buffer: pointer to the transfer buffer 1157 * @buffer_length: length of the transfer buffer 1158 * @complete_fn: pointer to the usb_complete_t function 1159 * @context: what to set the urb context to. 1160 * 1161 * Initializes a bulk urb with the proper information needed to submit it 1162 * to a device. 1163 */ 1164static inline void usb_fill_bulk_urb (struct urb *urb, 1165 struct usb_device *dev, 1166 unsigned int pipe, 1167 void *transfer_buffer, 1168 int buffer_length, 1169 usb_complete_t complete_fn, 1170 void *context) 1171{ 1172 spin_lock_init(&urb->lock); 1173 urb->dev = dev; 1174 urb->pipe = pipe; 1175 urb->transfer_buffer = transfer_buffer; 1176 urb->transfer_buffer_length = buffer_length; 1177 urb->complete = complete_fn; 1178 urb->context = context; 1179} 1180 1181/** 1182 * usb_fill_int_urb - macro to help initialize a interrupt urb 1183 * @urb: pointer to the urb to initialize. 1184 * @dev: pointer to the struct usb_device for this urb. 1185 * @pipe: the endpoint pipe 1186 * @transfer_buffer: pointer to the transfer buffer 1187 * @buffer_length: length of the transfer buffer 1188 * @complete_fn: pointer to the usb_complete_t function 1189 * @context: what to set the urb context to. 1190 * @interval: what to set the urb interval to, encoded like 1191 * the endpoint descriptor's bInterval value. 1192 * 1193 * Initializes a interrupt urb with the proper information needed to submit 1194 * it to a device. 1195 * Note that high speed interrupt endpoints use a logarithmic encoding of 1196 * the endpoint interval, and express polling intervals in microframes 1197 * (eight per millisecond) rather than in frames (one per millisecond). 1198 */ 1199static inline void usb_fill_int_urb (struct urb *urb, 1200 struct usb_device *dev, 1201 unsigned int pipe, 1202 void *transfer_buffer, 1203 int buffer_length, 1204 usb_complete_t complete_fn, 1205 void *context, 1206 int interval) 1207{ 1208 spin_lock_init(&urb->lock); 1209 urb->dev = dev; 1210 urb->pipe = pipe; 1211 urb->transfer_buffer = transfer_buffer; 1212 urb->transfer_buffer_length = buffer_length; 1213 urb->complete = complete_fn; 1214 urb->context = context; 1215 if (dev->speed == USB_SPEED_HIGH) 1216 urb->interval = 1 << (interval - 1); 1217 else 1218 urb->interval = interval; 1219 urb->start_frame = -1; 1220} 1221 1222extern void usb_init_urb(struct urb *urb); 1223extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1224extern void usb_free_urb(struct urb *urb); 1225#define usb_put_urb usb_free_urb 1226extern struct urb *usb_get_urb(struct urb *urb); 1227extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1228extern int usb_unlink_urb(struct urb *urb); 1229extern void usb_kill_urb(struct urb *urb); 1230 1231void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1232 gfp_t mem_flags, dma_addr_t *dma); 1233void usb_buffer_free (struct usb_device *dev, size_t size, 1234 void *addr, dma_addr_t dma); 1235 1236#if 0 1237struct urb *usb_buffer_map (struct urb *urb); 1238void usb_buffer_dmasync (struct urb *urb); 1239void usb_buffer_unmap (struct urb *urb); 1240#endif 1241 1242struct scatterlist; 1243int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1244 struct scatterlist *sg, int nents); 1245#if 0 1246void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1247 struct scatterlist *sg, int n_hw_ents); 1248#endif 1249void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1250 struct scatterlist *sg, int n_hw_ents); 1251 1252/*-------------------------------------------------------------------* 1253 * SYNCHRONOUS CALL SUPPORT * 1254 *-------------------------------------------------------------------*/ 1255 1256extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1257 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1258 void *data, __u16 size, int timeout); 1259extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1260 void *data, int len, int *actual_length, int timeout); 1261extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1262 void *data, int len, int *actual_length, 1263 int timeout); 1264 1265/* wrappers around usb_control_msg() for the most common standard requests */ 1266extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1267 unsigned char descindex, void *buf, int size); 1268extern int usb_get_status(struct usb_device *dev, 1269 int type, int target, void *data); 1270extern int usb_string(struct usb_device *dev, int index, 1271 char *buf, size_t size); 1272 1273/* wrappers that also update important state inside usbcore */ 1274extern int usb_clear_halt(struct usb_device *dev, int pipe); 1275extern int usb_reset_configuration(struct usb_device *dev); 1276extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1277 1278/* this request isn't really synchronous, but it belongs with the others */ 1279extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1280 1281/* 1282 * timeouts, in milliseconds, used for sending/receiving control messages 1283 * they typically complete within a few frames (msec) after they're issued 1284 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1285 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1286 */ 1287#define USB_CTRL_GET_TIMEOUT 5000 1288#define USB_CTRL_SET_TIMEOUT 5000 1289 1290 1291/** 1292 * struct usb_sg_request - support for scatter/gather I/O 1293 * @status: zero indicates success, else negative errno 1294 * @bytes: counts bytes transferred. 1295 * 1296 * These requests are initialized using usb_sg_init(), and then are used 1297 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1298 * members of the request object aren't for driver access. 1299 * 1300 * The status and bytecount values are valid only after usb_sg_wait() 1301 * returns. If the status is zero, then the bytecount matches the total 1302 * from the request. 1303 * 1304 * After an error completion, drivers may need to clear a halt condition 1305 * on the endpoint. 1306 */ 1307struct usb_sg_request { 1308 int status; 1309 size_t bytes; 1310 1311 /* 1312 * members below are private: to usbcore, 1313 * and are not provided for driver access! 1314 */ 1315 spinlock_t lock; 1316 1317 struct usb_device *dev; 1318 int pipe; 1319 struct scatterlist *sg; 1320 int nents; 1321 1322 int entries; 1323 struct urb **urbs; 1324 1325 int count; 1326 struct completion complete; 1327}; 1328 1329int usb_sg_init ( 1330 struct usb_sg_request *io, 1331 struct usb_device *dev, 1332 unsigned pipe, 1333 unsigned period, 1334 struct scatterlist *sg, 1335 int nents, 1336 size_t length, 1337 gfp_t mem_flags 1338); 1339void usb_sg_cancel (struct usb_sg_request *io); 1340void usb_sg_wait (struct usb_sg_request *io); 1341 1342 1343/* ----------------------------------------------------------------------- */ 1344 1345/* 1346 * For various legacy reasons, Linux has a small cookie that's paired with 1347 * a struct usb_device to identify an endpoint queue. Queue characteristics 1348 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1349 * an unsigned int encoded as: 1350 * 1351 * - direction: bit 7 (0 = Host-to-Device [Out], 1352 * 1 = Device-to-Host [In] ... 1353 * like endpoint bEndpointAddress) 1354 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1355 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1356 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1357 * 10 = control, 11 = bulk) 1358 * 1359 * Given the device address and endpoint descriptor, pipes are redundant. 1360 */ 1361 1362/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1363/* (yet ... they're the values used by usbfs) */ 1364#define PIPE_ISOCHRONOUS 0 1365#define PIPE_INTERRUPT 1 1366#define PIPE_CONTROL 2 1367#define PIPE_BULK 3 1368 1369#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1370#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1371 1372#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1373#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1374 1375#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1376#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1377#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1378#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1379#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1380 1381/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1382#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1383#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1384#define usb_settoggle(dev, ep, out, bit) \ 1385 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1386 ((bit) << (ep))) 1387 1388 1389static inline unsigned int __create_pipe(struct usb_device *dev, 1390 unsigned int endpoint) 1391{ 1392 return (dev->devnum << 8) | (endpoint << 15); 1393} 1394 1395/* Create various pipes... */ 1396#define usb_sndctrlpipe(dev,endpoint) \ 1397 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1398#define usb_rcvctrlpipe(dev,endpoint) \ 1399 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1400#define usb_sndisocpipe(dev,endpoint) \ 1401 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1402#define usb_rcvisocpipe(dev,endpoint) \ 1403 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1404#define usb_sndbulkpipe(dev,endpoint) \ 1405 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1406#define usb_rcvbulkpipe(dev,endpoint) \ 1407 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1408#define usb_sndintpipe(dev,endpoint) \ 1409 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1410#define usb_rcvintpipe(dev,endpoint) \ 1411 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1412 1413/*-------------------------------------------------------------------------*/ 1414 1415static inline __u16 1416usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1417{ 1418 struct usb_host_endpoint *ep; 1419 unsigned epnum = usb_pipeendpoint(pipe); 1420 1421 if (is_out) { 1422 WARN_ON(usb_pipein(pipe)); 1423 ep = udev->ep_out[epnum]; 1424 } else { 1425 WARN_ON(usb_pipeout(pipe)); 1426 ep = udev->ep_in[epnum]; 1427 } 1428 if (!ep) 1429 return 0; 1430 1431 /* NOTE: only 0x07ff bits are for packet size... */ 1432 return le16_to_cpu(ep->desc.wMaxPacketSize); 1433} 1434 1435/* ----------------------------------------------------------------------- */ 1436 1437/* Events from the usb core */ 1438#define USB_DEVICE_ADD 0x0001 1439#define USB_DEVICE_REMOVE 0x0002 1440#define USB_BUS_ADD 0x0003 1441#define USB_BUS_REMOVE 0x0004 1442extern void usb_register_notify(struct notifier_block *nb); 1443extern void usb_unregister_notify(struct notifier_block *nb); 1444 1445#ifdef DEBUG 1446#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1447 __FILE__ , ## arg) 1448#else 1449#define dbg(format, arg...) do {} while (0) 1450#endif 1451 1452#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1453 __FILE__ , ## arg) 1454#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1455 __FILE__ , ## arg) 1456#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1457 __FILE__ , ## arg) 1458 1459 1460#endif /* __KERNEL__ */ 1461 1462#endif