at v2.6.20 42 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/compiler.h> 19#include <linux/time.h> 20#include <linux/cache.h> 21 22#include <asm/atomic.h> 23#include <asm/types.h> 24#include <linux/spinlock.h> 25#include <linux/net.h> 26#include <linux/textsearch.h> 27#include <net/checksum.h> 28#include <linux/rcupdate.h> 29#include <linux/dmaengine.h> 30 31#define HAVE_ALLOC_SKB /* For the drivers to know */ 32#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 33 34#define CHECKSUM_NONE 0 35#define CHECKSUM_PARTIAL 1 36#define CHECKSUM_UNNECESSARY 2 37#define CHECKSUM_COMPLETE 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 42 sizeof(struct skb_shared_info)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 45#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 46 47/* A. Checksumming of received packets by device. 48 * 49 * NONE: device failed to checksum this packet. 50 * skb->csum is undefined. 51 * 52 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 53 * skb->csum is undefined. 54 * It is bad option, but, unfortunately, many of vendors do this. 55 * Apparently with secret goal to sell you new device, when you 56 * will add new protocol to your host. F.e. IPv6. 8) 57 * 58 * COMPLETE: the most generic way. Device supplied checksum of _all_ 59 * the packet as seen by netif_rx in skb->csum. 60 * NOTE: Even if device supports only some protocols, but 61 * is able to produce some skb->csum, it MUST use COMPLETE, 62 * not UNNECESSARY. 63 * 64 * B. Checksumming on output. 65 * 66 * NONE: skb is checksummed by protocol or csum is not required. 67 * 68 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 69 * from skb->h.raw to the end and to record the checksum 70 * at skb->h.raw+skb->csum. 71 * 72 * Device must show its capabilities in dev->features, set 73 * at device setup time. 74 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 75 * everything. 76 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 77 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 78 * TCP/UDP over IPv4. Sigh. Vendors like this 79 * way by an unknown reason. Though, see comment above 80 * about CHECKSUM_UNNECESSARY. 8) 81 * 82 * Any questions? No questions, good. --ANK 83 */ 84 85struct net_device; 86 87#ifdef CONFIG_NETFILTER 88struct nf_conntrack { 89 atomic_t use; 90 void (*destroy)(struct nf_conntrack *); 91}; 92 93#ifdef CONFIG_BRIDGE_NETFILTER 94struct nf_bridge_info { 95 atomic_t use; 96 struct net_device *physindev; 97 struct net_device *physoutdev; 98#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 99 struct net_device *netoutdev; 100#endif 101 unsigned int mask; 102 unsigned long data[32 / sizeof(unsigned long)]; 103}; 104#endif 105 106#endif 107 108struct sk_buff_head { 109 /* These two members must be first. */ 110 struct sk_buff *next; 111 struct sk_buff *prev; 112 113 __u32 qlen; 114 spinlock_t lock; 115}; 116 117struct sk_buff; 118 119/* To allow 64K frame to be packed as single skb without frag_list */ 120#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 121 122typedef struct skb_frag_struct skb_frag_t; 123 124struct skb_frag_struct { 125 struct page *page; 126 __u16 page_offset; 127 __u16 size; 128}; 129 130/* This data is invariant across clones and lives at 131 * the end of the header data, ie. at skb->end. 132 */ 133struct skb_shared_info { 134 atomic_t dataref; 135 unsigned short nr_frags; 136 unsigned short gso_size; 137 /* Warning: this field is not always filled in (UFO)! */ 138 unsigned short gso_segs; 139 unsigned short gso_type; 140 __be32 ip6_frag_id; 141 struct sk_buff *frag_list; 142 skb_frag_t frags[MAX_SKB_FRAGS]; 143}; 144 145/* We divide dataref into two halves. The higher 16 bits hold references 146 * to the payload part of skb->data. The lower 16 bits hold references to 147 * the entire skb->data. It is up to the users of the skb to agree on 148 * where the payload starts. 149 * 150 * All users must obey the rule that the skb->data reference count must be 151 * greater than or equal to the payload reference count. 152 * 153 * Holding a reference to the payload part means that the user does not 154 * care about modifications to the header part of skb->data. 155 */ 156#define SKB_DATAREF_SHIFT 16 157#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 158 159struct skb_timeval { 160 u32 off_sec; 161 u32 off_usec; 162}; 163 164 165enum { 166 SKB_FCLONE_UNAVAILABLE, 167 SKB_FCLONE_ORIG, 168 SKB_FCLONE_CLONE, 169}; 170 171enum { 172 SKB_GSO_TCPV4 = 1 << 0, 173 SKB_GSO_UDP = 1 << 1, 174 175 /* This indicates the skb is from an untrusted source. */ 176 SKB_GSO_DODGY = 1 << 2, 177 178 /* This indicates the tcp segment has CWR set. */ 179 SKB_GSO_TCP_ECN = 1 << 3, 180 181 SKB_GSO_TCPV6 = 1 << 4, 182}; 183 184/** 185 * struct sk_buff - socket buffer 186 * @next: Next buffer in list 187 * @prev: Previous buffer in list 188 * @sk: Socket we are owned by 189 * @tstamp: Time we arrived 190 * @dev: Device we arrived on/are leaving by 191 * @input_dev: Device we arrived on 192 * @h: Transport layer header 193 * @nh: Network layer header 194 * @mac: Link layer header 195 * @dst: destination entry 196 * @sp: the security path, used for xfrm 197 * @cb: Control buffer. Free for use by every layer. Put private vars here 198 * @len: Length of actual data 199 * @data_len: Data length 200 * @mac_len: Length of link layer header 201 * @csum: Checksum 202 * @local_df: allow local fragmentation 203 * @cloned: Head may be cloned (check refcnt to be sure) 204 * @nohdr: Payload reference only, must not modify header 205 * @pkt_type: Packet class 206 * @fclone: skbuff clone status 207 * @ip_summed: Driver fed us an IP checksum 208 * @priority: Packet queueing priority 209 * @users: User count - see {datagram,tcp}.c 210 * @protocol: Packet protocol from driver 211 * @truesize: Buffer size 212 * @head: Head of buffer 213 * @data: Data head pointer 214 * @tail: Tail pointer 215 * @end: End pointer 216 * @destructor: Destruct function 217 * @mark: Generic packet mark 218 * @nfct: Associated connection, if any 219 * @ipvs_property: skbuff is owned by ipvs 220 * @nfctinfo: Relationship of this skb to the connection 221 * @nfct_reasm: netfilter conntrack re-assembly pointer 222 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 223 * @tc_index: Traffic control index 224 * @tc_verd: traffic control verdict 225 * @dma_cookie: a cookie to one of several possible DMA operations 226 * done by skb DMA functions 227 * @secmark: security marking 228 */ 229 230struct sk_buff { 231 /* These two members must be first. */ 232 struct sk_buff *next; 233 struct sk_buff *prev; 234 235 struct sock *sk; 236 struct skb_timeval tstamp; 237 struct net_device *dev; 238 struct net_device *input_dev; 239 240 union { 241 struct tcphdr *th; 242 struct udphdr *uh; 243 struct icmphdr *icmph; 244 struct igmphdr *igmph; 245 struct iphdr *ipiph; 246 struct ipv6hdr *ipv6h; 247 unsigned char *raw; 248 } h; 249 250 union { 251 struct iphdr *iph; 252 struct ipv6hdr *ipv6h; 253 struct arphdr *arph; 254 unsigned char *raw; 255 } nh; 256 257 union { 258 unsigned char *raw; 259 } mac; 260 261 struct dst_entry *dst; 262 struct sec_path *sp; 263 264 /* 265 * This is the control buffer. It is free to use for every 266 * layer. Please put your private variables there. If you 267 * want to keep them across layers you have to do a skb_clone() 268 * first. This is owned by whoever has the skb queued ATM. 269 */ 270 char cb[48]; 271 272 unsigned int len, 273 data_len, 274 mac_len; 275 union { 276 __wsum csum; 277 __u32 csum_offset; 278 }; 279 __u32 priority; 280 __u8 local_df:1, 281 cloned:1, 282 ip_summed:2, 283 nohdr:1, 284 nfctinfo:3; 285 __u8 pkt_type:3, 286 fclone:2, 287 ipvs_property:1; 288 __be16 protocol; 289 290 void (*destructor)(struct sk_buff *skb); 291#ifdef CONFIG_NETFILTER 292 struct nf_conntrack *nfct; 293#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 294 struct sk_buff *nfct_reasm; 295#endif 296#ifdef CONFIG_BRIDGE_NETFILTER 297 struct nf_bridge_info *nf_bridge; 298#endif 299#endif /* CONFIG_NETFILTER */ 300#ifdef CONFIG_NET_SCHED 301 __u16 tc_index; /* traffic control index */ 302#ifdef CONFIG_NET_CLS_ACT 303 __u16 tc_verd; /* traffic control verdict */ 304#endif 305#endif 306#ifdef CONFIG_NET_DMA 307 dma_cookie_t dma_cookie; 308#endif 309#ifdef CONFIG_NETWORK_SECMARK 310 __u32 secmark; 311#endif 312 313 __u32 mark; 314 315 /* These elements must be at the end, see alloc_skb() for details. */ 316 unsigned int truesize; 317 atomic_t users; 318 unsigned char *head, 319 *data, 320 *tail, 321 *end; 322}; 323 324#ifdef __KERNEL__ 325/* 326 * Handling routines are only of interest to the kernel 327 */ 328#include <linux/slab.h> 329 330#include <asm/system.h> 331 332extern void kfree_skb(struct sk_buff *skb); 333extern void __kfree_skb(struct sk_buff *skb); 334extern struct sk_buff *__alloc_skb(unsigned int size, 335 gfp_t priority, int fclone, int node); 336static inline struct sk_buff *alloc_skb(unsigned int size, 337 gfp_t priority) 338{ 339 return __alloc_skb(size, priority, 0, -1); 340} 341 342static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 343 gfp_t priority) 344{ 345 return __alloc_skb(size, priority, 1, -1); 346} 347 348extern struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp, 349 unsigned int size, 350 gfp_t priority); 351extern void kfree_skbmem(struct sk_buff *skb); 352extern struct sk_buff *skb_clone(struct sk_buff *skb, 353 gfp_t priority); 354extern struct sk_buff *skb_copy(const struct sk_buff *skb, 355 gfp_t priority); 356extern struct sk_buff *pskb_copy(struct sk_buff *skb, 357 gfp_t gfp_mask); 358extern int pskb_expand_head(struct sk_buff *skb, 359 int nhead, int ntail, 360 gfp_t gfp_mask); 361extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 362 unsigned int headroom); 363extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 364 int newheadroom, int newtailroom, 365 gfp_t priority); 366extern int skb_pad(struct sk_buff *skb, int pad); 367#define dev_kfree_skb(a) kfree_skb(a) 368extern void skb_over_panic(struct sk_buff *skb, int len, 369 void *here); 370extern void skb_under_panic(struct sk_buff *skb, int len, 371 void *here); 372extern void skb_truesize_bug(struct sk_buff *skb); 373 374static inline void skb_truesize_check(struct sk_buff *skb) 375{ 376 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len)) 377 skb_truesize_bug(skb); 378} 379 380extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 381 int getfrag(void *from, char *to, int offset, 382 int len,int odd, struct sk_buff *skb), 383 void *from, int length); 384 385struct skb_seq_state 386{ 387 __u32 lower_offset; 388 __u32 upper_offset; 389 __u32 frag_idx; 390 __u32 stepped_offset; 391 struct sk_buff *root_skb; 392 struct sk_buff *cur_skb; 393 __u8 *frag_data; 394}; 395 396extern void skb_prepare_seq_read(struct sk_buff *skb, 397 unsigned int from, unsigned int to, 398 struct skb_seq_state *st); 399extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 400 struct skb_seq_state *st); 401extern void skb_abort_seq_read(struct skb_seq_state *st); 402 403extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 404 unsigned int to, struct ts_config *config, 405 struct ts_state *state); 406 407/* Internal */ 408#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 409 410/** 411 * skb_queue_empty - check if a queue is empty 412 * @list: queue head 413 * 414 * Returns true if the queue is empty, false otherwise. 415 */ 416static inline int skb_queue_empty(const struct sk_buff_head *list) 417{ 418 return list->next == (struct sk_buff *)list; 419} 420 421/** 422 * skb_get - reference buffer 423 * @skb: buffer to reference 424 * 425 * Makes another reference to a socket buffer and returns a pointer 426 * to the buffer. 427 */ 428static inline struct sk_buff *skb_get(struct sk_buff *skb) 429{ 430 atomic_inc(&skb->users); 431 return skb; 432} 433 434/* 435 * If users == 1, we are the only owner and are can avoid redundant 436 * atomic change. 437 */ 438 439/** 440 * skb_cloned - is the buffer a clone 441 * @skb: buffer to check 442 * 443 * Returns true if the buffer was generated with skb_clone() and is 444 * one of multiple shared copies of the buffer. Cloned buffers are 445 * shared data so must not be written to under normal circumstances. 446 */ 447static inline int skb_cloned(const struct sk_buff *skb) 448{ 449 return skb->cloned && 450 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 451} 452 453/** 454 * skb_header_cloned - is the header a clone 455 * @skb: buffer to check 456 * 457 * Returns true if modifying the header part of the buffer requires 458 * the data to be copied. 459 */ 460static inline int skb_header_cloned(const struct sk_buff *skb) 461{ 462 int dataref; 463 464 if (!skb->cloned) 465 return 0; 466 467 dataref = atomic_read(&skb_shinfo(skb)->dataref); 468 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 469 return dataref != 1; 470} 471 472/** 473 * skb_header_release - release reference to header 474 * @skb: buffer to operate on 475 * 476 * Drop a reference to the header part of the buffer. This is done 477 * by acquiring a payload reference. You must not read from the header 478 * part of skb->data after this. 479 */ 480static inline void skb_header_release(struct sk_buff *skb) 481{ 482 BUG_ON(skb->nohdr); 483 skb->nohdr = 1; 484 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 485} 486 487/** 488 * skb_shared - is the buffer shared 489 * @skb: buffer to check 490 * 491 * Returns true if more than one person has a reference to this 492 * buffer. 493 */ 494static inline int skb_shared(const struct sk_buff *skb) 495{ 496 return atomic_read(&skb->users) != 1; 497} 498 499/** 500 * skb_share_check - check if buffer is shared and if so clone it 501 * @skb: buffer to check 502 * @pri: priority for memory allocation 503 * 504 * If the buffer is shared the buffer is cloned and the old copy 505 * drops a reference. A new clone with a single reference is returned. 506 * If the buffer is not shared the original buffer is returned. When 507 * being called from interrupt status or with spinlocks held pri must 508 * be GFP_ATOMIC. 509 * 510 * NULL is returned on a memory allocation failure. 511 */ 512static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 513 gfp_t pri) 514{ 515 might_sleep_if(pri & __GFP_WAIT); 516 if (skb_shared(skb)) { 517 struct sk_buff *nskb = skb_clone(skb, pri); 518 kfree_skb(skb); 519 skb = nskb; 520 } 521 return skb; 522} 523 524/* 525 * Copy shared buffers into a new sk_buff. We effectively do COW on 526 * packets to handle cases where we have a local reader and forward 527 * and a couple of other messy ones. The normal one is tcpdumping 528 * a packet thats being forwarded. 529 */ 530 531/** 532 * skb_unshare - make a copy of a shared buffer 533 * @skb: buffer to check 534 * @pri: priority for memory allocation 535 * 536 * If the socket buffer is a clone then this function creates a new 537 * copy of the data, drops a reference count on the old copy and returns 538 * the new copy with the reference count at 1. If the buffer is not a clone 539 * the original buffer is returned. When called with a spinlock held or 540 * from interrupt state @pri must be %GFP_ATOMIC 541 * 542 * %NULL is returned on a memory allocation failure. 543 */ 544static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 545 gfp_t pri) 546{ 547 might_sleep_if(pri & __GFP_WAIT); 548 if (skb_cloned(skb)) { 549 struct sk_buff *nskb = skb_copy(skb, pri); 550 kfree_skb(skb); /* Free our shared copy */ 551 skb = nskb; 552 } 553 return skb; 554} 555 556/** 557 * skb_peek 558 * @list_: list to peek at 559 * 560 * Peek an &sk_buff. Unlike most other operations you _MUST_ 561 * be careful with this one. A peek leaves the buffer on the 562 * list and someone else may run off with it. You must hold 563 * the appropriate locks or have a private queue to do this. 564 * 565 * Returns %NULL for an empty list or a pointer to the head element. 566 * The reference count is not incremented and the reference is therefore 567 * volatile. Use with caution. 568 */ 569static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 570{ 571 struct sk_buff *list = ((struct sk_buff *)list_)->next; 572 if (list == (struct sk_buff *)list_) 573 list = NULL; 574 return list; 575} 576 577/** 578 * skb_peek_tail 579 * @list_: list to peek at 580 * 581 * Peek an &sk_buff. Unlike most other operations you _MUST_ 582 * be careful with this one. A peek leaves the buffer on the 583 * list and someone else may run off with it. You must hold 584 * the appropriate locks or have a private queue to do this. 585 * 586 * Returns %NULL for an empty list or a pointer to the tail element. 587 * The reference count is not incremented and the reference is therefore 588 * volatile. Use with caution. 589 */ 590static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 591{ 592 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 593 if (list == (struct sk_buff *)list_) 594 list = NULL; 595 return list; 596} 597 598/** 599 * skb_queue_len - get queue length 600 * @list_: list to measure 601 * 602 * Return the length of an &sk_buff queue. 603 */ 604static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 605{ 606 return list_->qlen; 607} 608 609/* 610 * This function creates a split out lock class for each invocation; 611 * this is needed for now since a whole lot of users of the skb-queue 612 * infrastructure in drivers have different locking usage (in hardirq) 613 * than the networking core (in softirq only). In the long run either the 614 * network layer or drivers should need annotation to consolidate the 615 * main types of usage into 3 classes. 616 */ 617static inline void skb_queue_head_init(struct sk_buff_head *list) 618{ 619 spin_lock_init(&list->lock); 620 list->prev = list->next = (struct sk_buff *)list; 621 list->qlen = 0; 622} 623 624/* 625 * Insert an sk_buff at the start of a list. 626 * 627 * The "__skb_xxxx()" functions are the non-atomic ones that 628 * can only be called with interrupts disabled. 629 */ 630 631/** 632 * __skb_queue_after - queue a buffer at the list head 633 * @list: list to use 634 * @prev: place after this buffer 635 * @newsk: buffer to queue 636 * 637 * Queue a buffer int the middle of a list. This function takes no locks 638 * and you must therefore hold required locks before calling it. 639 * 640 * A buffer cannot be placed on two lists at the same time. 641 */ 642static inline void __skb_queue_after(struct sk_buff_head *list, 643 struct sk_buff *prev, 644 struct sk_buff *newsk) 645{ 646 struct sk_buff *next; 647 list->qlen++; 648 649 next = prev->next; 650 newsk->next = next; 651 newsk->prev = prev; 652 next->prev = prev->next = newsk; 653} 654 655/** 656 * __skb_queue_head - queue a buffer at the list head 657 * @list: list to use 658 * @newsk: buffer to queue 659 * 660 * Queue a buffer at the start of a list. This function takes no locks 661 * and you must therefore hold required locks before calling it. 662 * 663 * A buffer cannot be placed on two lists at the same time. 664 */ 665extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 666static inline void __skb_queue_head(struct sk_buff_head *list, 667 struct sk_buff *newsk) 668{ 669 __skb_queue_after(list, (struct sk_buff *)list, newsk); 670} 671 672/** 673 * __skb_queue_tail - queue a buffer at the list tail 674 * @list: list to use 675 * @newsk: buffer to queue 676 * 677 * Queue a buffer at the end of a list. This function takes no locks 678 * and you must therefore hold required locks before calling it. 679 * 680 * A buffer cannot be placed on two lists at the same time. 681 */ 682extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 683static inline void __skb_queue_tail(struct sk_buff_head *list, 684 struct sk_buff *newsk) 685{ 686 struct sk_buff *prev, *next; 687 688 list->qlen++; 689 next = (struct sk_buff *)list; 690 prev = next->prev; 691 newsk->next = next; 692 newsk->prev = prev; 693 next->prev = prev->next = newsk; 694} 695 696 697/** 698 * __skb_dequeue - remove from the head of the queue 699 * @list: list to dequeue from 700 * 701 * Remove the head of the list. This function does not take any locks 702 * so must be used with appropriate locks held only. The head item is 703 * returned or %NULL if the list is empty. 704 */ 705extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 706static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 707{ 708 struct sk_buff *next, *prev, *result; 709 710 prev = (struct sk_buff *) list; 711 next = prev->next; 712 result = NULL; 713 if (next != prev) { 714 result = next; 715 next = next->next; 716 list->qlen--; 717 next->prev = prev; 718 prev->next = next; 719 result->next = result->prev = NULL; 720 } 721 return result; 722} 723 724 725/* 726 * Insert a packet on a list. 727 */ 728extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 729static inline void __skb_insert(struct sk_buff *newsk, 730 struct sk_buff *prev, struct sk_buff *next, 731 struct sk_buff_head *list) 732{ 733 newsk->next = next; 734 newsk->prev = prev; 735 next->prev = prev->next = newsk; 736 list->qlen++; 737} 738 739/* 740 * Place a packet after a given packet in a list. 741 */ 742extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 743static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 744{ 745 __skb_insert(newsk, old, old->next, list); 746} 747 748/* 749 * remove sk_buff from list. _Must_ be called atomically, and with 750 * the list known.. 751 */ 752extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 753static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 754{ 755 struct sk_buff *next, *prev; 756 757 list->qlen--; 758 next = skb->next; 759 prev = skb->prev; 760 skb->next = skb->prev = NULL; 761 next->prev = prev; 762 prev->next = next; 763} 764 765 766/* XXX: more streamlined implementation */ 767 768/** 769 * __skb_dequeue_tail - remove from the tail of the queue 770 * @list: list to dequeue from 771 * 772 * Remove the tail of the list. This function does not take any locks 773 * so must be used with appropriate locks held only. The tail item is 774 * returned or %NULL if the list is empty. 775 */ 776extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 777static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 778{ 779 struct sk_buff *skb = skb_peek_tail(list); 780 if (skb) 781 __skb_unlink(skb, list); 782 return skb; 783} 784 785 786static inline int skb_is_nonlinear(const struct sk_buff *skb) 787{ 788 return skb->data_len; 789} 790 791static inline unsigned int skb_headlen(const struct sk_buff *skb) 792{ 793 return skb->len - skb->data_len; 794} 795 796static inline int skb_pagelen(const struct sk_buff *skb) 797{ 798 int i, len = 0; 799 800 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 801 len += skb_shinfo(skb)->frags[i].size; 802 return len + skb_headlen(skb); 803} 804 805static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 806 struct page *page, int off, int size) 807{ 808 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 809 810 frag->page = page; 811 frag->page_offset = off; 812 frag->size = size; 813 skb_shinfo(skb)->nr_frags = i + 1; 814} 815 816#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 817#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 818#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 819 820/* 821 * Add data to an sk_buff 822 */ 823static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 824{ 825 unsigned char *tmp = skb->tail; 826 SKB_LINEAR_ASSERT(skb); 827 skb->tail += len; 828 skb->len += len; 829 return tmp; 830} 831 832/** 833 * skb_put - add data to a buffer 834 * @skb: buffer to use 835 * @len: amount of data to add 836 * 837 * This function extends the used data area of the buffer. If this would 838 * exceed the total buffer size the kernel will panic. A pointer to the 839 * first byte of the extra data is returned. 840 */ 841static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 842{ 843 unsigned char *tmp = skb->tail; 844 SKB_LINEAR_ASSERT(skb); 845 skb->tail += len; 846 skb->len += len; 847 if (unlikely(skb->tail>skb->end)) 848 skb_over_panic(skb, len, current_text_addr()); 849 return tmp; 850} 851 852static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 853{ 854 skb->data -= len; 855 skb->len += len; 856 return skb->data; 857} 858 859/** 860 * skb_push - add data to the start of a buffer 861 * @skb: buffer to use 862 * @len: amount of data to add 863 * 864 * This function extends the used data area of the buffer at the buffer 865 * start. If this would exceed the total buffer headroom the kernel will 866 * panic. A pointer to the first byte of the extra data is returned. 867 */ 868static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 869{ 870 skb->data -= len; 871 skb->len += len; 872 if (unlikely(skb->data<skb->head)) 873 skb_under_panic(skb, len, current_text_addr()); 874 return skb->data; 875} 876 877static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 878{ 879 skb->len -= len; 880 BUG_ON(skb->len < skb->data_len); 881 return skb->data += len; 882} 883 884/** 885 * skb_pull - remove data from the start of a buffer 886 * @skb: buffer to use 887 * @len: amount of data to remove 888 * 889 * This function removes data from the start of a buffer, returning 890 * the memory to the headroom. A pointer to the next data in the buffer 891 * is returned. Once the data has been pulled future pushes will overwrite 892 * the old data. 893 */ 894static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 895{ 896 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 897} 898 899extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 900 901static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 902{ 903 if (len > skb_headlen(skb) && 904 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 905 return NULL; 906 skb->len -= len; 907 return skb->data += len; 908} 909 910static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 911{ 912 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 913} 914 915static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 916{ 917 if (likely(len <= skb_headlen(skb))) 918 return 1; 919 if (unlikely(len > skb->len)) 920 return 0; 921 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 922} 923 924/** 925 * skb_headroom - bytes at buffer head 926 * @skb: buffer to check 927 * 928 * Return the number of bytes of free space at the head of an &sk_buff. 929 */ 930static inline int skb_headroom(const struct sk_buff *skb) 931{ 932 return skb->data - skb->head; 933} 934 935/** 936 * skb_tailroom - bytes at buffer end 937 * @skb: buffer to check 938 * 939 * Return the number of bytes of free space at the tail of an sk_buff 940 */ 941static inline int skb_tailroom(const struct sk_buff *skb) 942{ 943 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 944} 945 946/** 947 * skb_reserve - adjust headroom 948 * @skb: buffer to alter 949 * @len: bytes to move 950 * 951 * Increase the headroom of an empty &sk_buff by reducing the tail 952 * room. This is only allowed for an empty buffer. 953 */ 954static inline void skb_reserve(struct sk_buff *skb, int len) 955{ 956 skb->data += len; 957 skb->tail += len; 958} 959 960/* 961 * CPUs often take a performance hit when accessing unaligned memory 962 * locations. The actual performance hit varies, it can be small if the 963 * hardware handles it or large if we have to take an exception and fix it 964 * in software. 965 * 966 * Since an ethernet header is 14 bytes network drivers often end up with 967 * the IP header at an unaligned offset. The IP header can be aligned by 968 * shifting the start of the packet by 2 bytes. Drivers should do this 969 * with: 970 * 971 * skb_reserve(NET_IP_ALIGN); 972 * 973 * The downside to this alignment of the IP header is that the DMA is now 974 * unaligned. On some architectures the cost of an unaligned DMA is high 975 * and this cost outweighs the gains made by aligning the IP header. 976 * 977 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 978 * to be overridden. 979 */ 980#ifndef NET_IP_ALIGN 981#define NET_IP_ALIGN 2 982#endif 983 984/* 985 * The networking layer reserves some headroom in skb data (via 986 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 987 * the header has to grow. In the default case, if the header has to grow 988 * 16 bytes or less we avoid the reallocation. 989 * 990 * Unfortunately this headroom changes the DMA alignment of the resulting 991 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 992 * on some architectures. An architecture can override this value, 993 * perhaps setting it to a cacheline in size (since that will maintain 994 * cacheline alignment of the DMA). It must be a power of 2. 995 * 996 * Various parts of the networking layer expect at least 16 bytes of 997 * headroom, you should not reduce this. 998 */ 999#ifndef NET_SKB_PAD 1000#define NET_SKB_PAD 16 1001#endif 1002 1003extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1004 1005static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1006{ 1007 if (unlikely(skb->data_len)) { 1008 WARN_ON(1); 1009 return; 1010 } 1011 skb->len = len; 1012 skb->tail = skb->data + len; 1013} 1014 1015/** 1016 * skb_trim - remove end from a buffer 1017 * @skb: buffer to alter 1018 * @len: new length 1019 * 1020 * Cut the length of a buffer down by removing data from the tail. If 1021 * the buffer is already under the length specified it is not modified. 1022 * The skb must be linear. 1023 */ 1024static inline void skb_trim(struct sk_buff *skb, unsigned int len) 1025{ 1026 if (skb->len > len) 1027 __skb_trim(skb, len); 1028} 1029 1030 1031static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1032{ 1033 if (skb->data_len) 1034 return ___pskb_trim(skb, len); 1035 __skb_trim(skb, len); 1036 return 0; 1037} 1038 1039static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1040{ 1041 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1042} 1043 1044/** 1045 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1046 * @skb: buffer to alter 1047 * @len: new length 1048 * 1049 * This is identical to pskb_trim except that the caller knows that 1050 * the skb is not cloned so we should never get an error due to out- 1051 * of-memory. 1052 */ 1053static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1054{ 1055 int err = pskb_trim(skb, len); 1056 BUG_ON(err); 1057} 1058 1059/** 1060 * skb_orphan - orphan a buffer 1061 * @skb: buffer to orphan 1062 * 1063 * If a buffer currently has an owner then we call the owner's 1064 * destructor function and make the @skb unowned. The buffer continues 1065 * to exist but is no longer charged to its former owner. 1066 */ 1067static inline void skb_orphan(struct sk_buff *skb) 1068{ 1069 if (skb->destructor) 1070 skb->destructor(skb); 1071 skb->destructor = NULL; 1072 skb->sk = NULL; 1073} 1074 1075/** 1076 * __skb_queue_purge - empty a list 1077 * @list: list to empty 1078 * 1079 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1080 * the list and one reference dropped. This function does not take the 1081 * list lock and the caller must hold the relevant locks to use it. 1082 */ 1083extern void skb_queue_purge(struct sk_buff_head *list); 1084static inline void __skb_queue_purge(struct sk_buff_head *list) 1085{ 1086 struct sk_buff *skb; 1087 while ((skb = __skb_dequeue(list)) != NULL) 1088 kfree_skb(skb); 1089} 1090 1091/** 1092 * __dev_alloc_skb - allocate an skbuff for receiving 1093 * @length: length to allocate 1094 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1095 * 1096 * Allocate a new &sk_buff and assign it a usage count of one. The 1097 * buffer has unspecified headroom built in. Users should allocate 1098 * the headroom they think they need without accounting for the 1099 * built in space. The built in space is used for optimisations. 1100 * 1101 * %NULL is returned if there is no free memory. 1102 */ 1103static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1104 gfp_t gfp_mask) 1105{ 1106 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1107 if (likely(skb)) 1108 skb_reserve(skb, NET_SKB_PAD); 1109 return skb; 1110} 1111 1112/** 1113 * dev_alloc_skb - allocate an skbuff for receiving 1114 * @length: length to allocate 1115 * 1116 * Allocate a new &sk_buff and assign it a usage count of one. The 1117 * buffer has unspecified headroom built in. Users should allocate 1118 * the headroom they think they need without accounting for the 1119 * built in space. The built in space is used for optimisations. 1120 * 1121 * %NULL is returned if there is no free memory. Although this function 1122 * allocates memory it can be called from an interrupt. 1123 */ 1124static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1125{ 1126 return __dev_alloc_skb(length, GFP_ATOMIC); 1127} 1128 1129extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1130 unsigned int length, gfp_t gfp_mask); 1131 1132/** 1133 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1134 * @dev: network device to receive on 1135 * @length: length to allocate 1136 * 1137 * Allocate a new &sk_buff and assign it a usage count of one. The 1138 * buffer has unspecified headroom built in. Users should allocate 1139 * the headroom they think they need without accounting for the 1140 * built in space. The built in space is used for optimisations. 1141 * 1142 * %NULL is returned if there is no free memory. Although this function 1143 * allocates memory it can be called from an interrupt. 1144 */ 1145static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1146 unsigned int length) 1147{ 1148 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1149} 1150 1151/** 1152 * skb_cow - copy header of skb when it is required 1153 * @skb: buffer to cow 1154 * @headroom: needed headroom 1155 * 1156 * If the skb passed lacks sufficient headroom or its data part 1157 * is shared, data is reallocated. If reallocation fails, an error 1158 * is returned and original skb is not changed. 1159 * 1160 * The result is skb with writable area skb->head...skb->tail 1161 * and at least @headroom of space at head. 1162 */ 1163static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1164{ 1165 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) - 1166 skb_headroom(skb); 1167 1168 if (delta < 0) 1169 delta = 0; 1170 1171 if (delta || skb_cloned(skb)) 1172 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) & 1173 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC); 1174 return 0; 1175} 1176 1177/** 1178 * skb_padto - pad an skbuff up to a minimal size 1179 * @skb: buffer to pad 1180 * @len: minimal length 1181 * 1182 * Pads up a buffer to ensure the trailing bytes exist and are 1183 * blanked. If the buffer already contains sufficient data it 1184 * is untouched. Otherwise it is extended. Returns zero on 1185 * success. The skb is freed on error. 1186 */ 1187 1188static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1189{ 1190 unsigned int size = skb->len; 1191 if (likely(size >= len)) 1192 return 0; 1193 return skb_pad(skb, len-size); 1194} 1195 1196static inline int skb_add_data(struct sk_buff *skb, 1197 char __user *from, int copy) 1198{ 1199 const int off = skb->len; 1200 1201 if (skb->ip_summed == CHECKSUM_NONE) { 1202 int err = 0; 1203 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1204 copy, 0, &err); 1205 if (!err) { 1206 skb->csum = csum_block_add(skb->csum, csum, off); 1207 return 0; 1208 } 1209 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1210 return 0; 1211 1212 __skb_trim(skb, off); 1213 return -EFAULT; 1214} 1215 1216static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1217 struct page *page, int off) 1218{ 1219 if (i) { 1220 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1221 1222 return page == frag->page && 1223 off == frag->page_offset + frag->size; 1224 } 1225 return 0; 1226} 1227 1228static inline int __skb_linearize(struct sk_buff *skb) 1229{ 1230 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1231} 1232 1233/** 1234 * skb_linearize - convert paged skb to linear one 1235 * @skb: buffer to linarize 1236 * 1237 * If there is no free memory -ENOMEM is returned, otherwise zero 1238 * is returned and the old skb data released. 1239 */ 1240static inline int skb_linearize(struct sk_buff *skb) 1241{ 1242 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1243} 1244 1245/** 1246 * skb_linearize_cow - make sure skb is linear and writable 1247 * @skb: buffer to process 1248 * 1249 * If there is no free memory -ENOMEM is returned, otherwise zero 1250 * is returned and the old skb data released. 1251 */ 1252static inline int skb_linearize_cow(struct sk_buff *skb) 1253{ 1254 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1255 __skb_linearize(skb) : 0; 1256} 1257 1258/** 1259 * skb_postpull_rcsum - update checksum for received skb after pull 1260 * @skb: buffer to update 1261 * @start: start of data before pull 1262 * @len: length of data pulled 1263 * 1264 * After doing a pull on a received packet, you need to call this to 1265 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1266 * CHECKSUM_NONE so that it can be recomputed from scratch. 1267 */ 1268 1269static inline void skb_postpull_rcsum(struct sk_buff *skb, 1270 const void *start, unsigned int len) 1271{ 1272 if (skb->ip_summed == CHECKSUM_COMPLETE) 1273 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1274} 1275 1276unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1277 1278/** 1279 * pskb_trim_rcsum - trim received skb and update checksum 1280 * @skb: buffer to trim 1281 * @len: new length 1282 * 1283 * This is exactly the same as pskb_trim except that it ensures the 1284 * checksum of received packets are still valid after the operation. 1285 */ 1286 1287static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1288{ 1289 if (likely(len >= skb->len)) 1290 return 0; 1291 if (skb->ip_summed == CHECKSUM_COMPLETE) 1292 skb->ip_summed = CHECKSUM_NONE; 1293 return __pskb_trim(skb, len); 1294} 1295 1296#define skb_queue_walk(queue, skb) \ 1297 for (skb = (queue)->next; \ 1298 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1299 skb = skb->next) 1300 1301#define skb_queue_reverse_walk(queue, skb) \ 1302 for (skb = (queue)->prev; \ 1303 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1304 skb = skb->prev) 1305 1306 1307extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1308 int noblock, int *err); 1309extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1310 struct poll_table_struct *wait); 1311extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1312 int offset, struct iovec *to, 1313 int size); 1314extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1315 int hlen, 1316 struct iovec *iov); 1317extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1318extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1319 unsigned int flags); 1320extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1321 int len, __wsum csum); 1322extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1323 void *to, int len); 1324extern int skb_store_bits(const struct sk_buff *skb, int offset, 1325 void *from, int len); 1326extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1327 int offset, u8 *to, int len, 1328 __wsum csum); 1329extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1330extern void skb_split(struct sk_buff *skb, 1331 struct sk_buff *skb1, const u32 len); 1332 1333extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1334 1335static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1336 int len, void *buffer) 1337{ 1338 int hlen = skb_headlen(skb); 1339 1340 if (hlen - offset >= len) 1341 return skb->data + offset; 1342 1343 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1344 return NULL; 1345 1346 return buffer; 1347} 1348 1349extern void skb_init(void); 1350extern void skb_add_mtu(int mtu); 1351 1352/** 1353 * skb_get_timestamp - get timestamp from a skb 1354 * @skb: skb to get stamp from 1355 * @stamp: pointer to struct timeval to store stamp in 1356 * 1357 * Timestamps are stored in the skb as offsets to a base timestamp. 1358 * This function converts the offset back to a struct timeval and stores 1359 * it in stamp. 1360 */ 1361static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1362{ 1363 stamp->tv_sec = skb->tstamp.off_sec; 1364 stamp->tv_usec = skb->tstamp.off_usec; 1365} 1366 1367/** 1368 * skb_set_timestamp - set timestamp of a skb 1369 * @skb: skb to set stamp of 1370 * @stamp: pointer to struct timeval to get stamp from 1371 * 1372 * Timestamps are stored in the skb as offsets to a base timestamp. 1373 * This function converts a struct timeval to an offset and stores 1374 * it in the skb. 1375 */ 1376static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp) 1377{ 1378 skb->tstamp.off_sec = stamp->tv_sec; 1379 skb->tstamp.off_usec = stamp->tv_usec; 1380} 1381 1382extern void __net_timestamp(struct sk_buff *skb); 1383 1384extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1385 1386/** 1387 * skb_checksum_complete - Calculate checksum of an entire packet 1388 * @skb: packet to process 1389 * 1390 * This function calculates the checksum over the entire packet plus 1391 * the value of skb->csum. The latter can be used to supply the 1392 * checksum of a pseudo header as used by TCP/UDP. It returns the 1393 * checksum. 1394 * 1395 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1396 * this function can be used to verify that checksum on received 1397 * packets. In that case the function should return zero if the 1398 * checksum is correct. In particular, this function will return zero 1399 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1400 * hardware has already verified the correctness of the checksum. 1401 */ 1402static inline unsigned int skb_checksum_complete(struct sk_buff *skb) 1403{ 1404 return skb->ip_summed != CHECKSUM_UNNECESSARY && 1405 __skb_checksum_complete(skb); 1406} 1407 1408#ifdef CONFIG_NETFILTER 1409static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1410{ 1411 if (nfct && atomic_dec_and_test(&nfct->use)) 1412 nfct->destroy(nfct); 1413} 1414static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1415{ 1416 if (nfct) 1417 atomic_inc(&nfct->use); 1418} 1419#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1420static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1421{ 1422 if (skb) 1423 atomic_inc(&skb->users); 1424} 1425static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1426{ 1427 if (skb) 1428 kfree_skb(skb); 1429} 1430#endif 1431#ifdef CONFIG_BRIDGE_NETFILTER 1432static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1433{ 1434 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1435 kfree(nf_bridge); 1436} 1437static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1438{ 1439 if (nf_bridge) 1440 atomic_inc(&nf_bridge->use); 1441} 1442#endif /* CONFIG_BRIDGE_NETFILTER */ 1443static inline void nf_reset(struct sk_buff *skb) 1444{ 1445 nf_conntrack_put(skb->nfct); 1446 skb->nfct = NULL; 1447#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1448 nf_conntrack_put_reasm(skb->nfct_reasm); 1449 skb->nfct_reasm = NULL; 1450#endif 1451#ifdef CONFIG_BRIDGE_NETFILTER 1452 nf_bridge_put(skb->nf_bridge); 1453 skb->nf_bridge = NULL; 1454#endif 1455} 1456 1457#else /* CONFIG_NETFILTER */ 1458static inline void nf_reset(struct sk_buff *skb) {} 1459#endif /* CONFIG_NETFILTER */ 1460 1461#ifdef CONFIG_NETWORK_SECMARK 1462static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1463{ 1464 to->secmark = from->secmark; 1465} 1466 1467static inline void skb_init_secmark(struct sk_buff *skb) 1468{ 1469 skb->secmark = 0; 1470} 1471#else 1472static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1473{ } 1474 1475static inline void skb_init_secmark(struct sk_buff *skb) 1476{ } 1477#endif 1478 1479static inline int skb_is_gso(const struct sk_buff *skb) 1480{ 1481 return skb_shinfo(skb)->gso_size; 1482} 1483 1484#endif /* __KERNEL__ */ 1485#endif /* _LINUX_SKBUFF_H */