at v2.6.20 1654 lines 52 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6/* 7 * cloning flags: 8 */ 9#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17#define CLONE_THREAD 0x00010000 /* Same thread group? */ 18#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 28#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 29 30/* 31 * Scheduling policies 32 */ 33#define SCHED_NORMAL 0 34#define SCHED_FIFO 1 35#define SCHED_RR 2 36#define SCHED_BATCH 3 37 38#ifdef __KERNEL__ 39 40struct sched_param { 41 int sched_priority; 42}; 43 44#include <asm/param.h> /* for HZ */ 45 46#include <linux/capability.h> 47#include <linux/threads.h> 48#include <linux/kernel.h> 49#include <linux/types.h> 50#include <linux/timex.h> 51#include <linux/jiffies.h> 52#include <linux/rbtree.h> 53#include <linux/thread_info.h> 54#include <linux/cpumask.h> 55#include <linux/errno.h> 56#include <linux/nodemask.h> 57 58#include <asm/system.h> 59#include <asm/semaphore.h> 60#include <asm/page.h> 61#include <asm/ptrace.h> 62#include <asm/mmu.h> 63#include <asm/cputime.h> 64 65#include <linux/smp.h> 66#include <linux/sem.h> 67#include <linux/signal.h> 68#include <linux/securebits.h> 69#include <linux/fs_struct.h> 70#include <linux/compiler.h> 71#include <linux/completion.h> 72#include <linux/pid.h> 73#include <linux/percpu.h> 74#include <linux/topology.h> 75#include <linux/seccomp.h> 76#include <linux/rcupdate.h> 77#include <linux/futex.h> 78#include <linux/rtmutex.h> 79 80#include <linux/time.h> 81#include <linux/param.h> 82#include <linux/resource.h> 83#include <linux/timer.h> 84#include <linux/hrtimer.h> 85#include <linux/task_io_accounting.h> 86 87#include <asm/processor.h> 88 89struct exec_domain; 90struct futex_pi_state; 91 92/* 93 * List of flags we want to share for kernel threads, 94 * if only because they are not used by them anyway. 95 */ 96#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 97 98/* 99 * These are the constant used to fake the fixed-point load-average 100 * counting. Some notes: 101 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 102 * a load-average precision of 10 bits integer + 11 bits fractional 103 * - if you want to count load-averages more often, you need more 104 * precision, or rounding will get you. With 2-second counting freq, 105 * the EXP_n values would be 1981, 2034 and 2043 if still using only 106 * 11 bit fractions. 107 */ 108extern unsigned long avenrun[]; /* Load averages */ 109 110#define FSHIFT 11 /* nr of bits of precision */ 111#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 112#define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 113#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 114#define EXP_5 2014 /* 1/exp(5sec/5min) */ 115#define EXP_15 2037 /* 1/exp(5sec/15min) */ 116 117#define CALC_LOAD(load,exp,n) \ 118 load *= exp; \ 119 load += n*(FIXED_1-exp); \ 120 load >>= FSHIFT; 121 122extern unsigned long total_forks; 123extern int nr_threads; 124DECLARE_PER_CPU(unsigned long, process_counts); 125extern int nr_processes(void); 126extern unsigned long nr_running(void); 127extern unsigned long nr_uninterruptible(void); 128extern unsigned long nr_active(void); 129extern unsigned long nr_iowait(void); 130extern unsigned long weighted_cpuload(const int cpu); 131 132 133/* 134 * Task state bitmask. NOTE! These bits are also 135 * encoded in fs/proc/array.c: get_task_state(). 136 * 137 * We have two separate sets of flags: task->state 138 * is about runnability, while task->exit_state are 139 * about the task exiting. Confusing, but this way 140 * modifying one set can't modify the other one by 141 * mistake. 142 */ 143#define TASK_RUNNING 0 144#define TASK_INTERRUPTIBLE 1 145#define TASK_UNINTERRUPTIBLE 2 146#define TASK_STOPPED 4 147#define TASK_TRACED 8 148/* in tsk->exit_state */ 149#define EXIT_ZOMBIE 16 150#define EXIT_DEAD 32 151/* in tsk->state again */ 152#define TASK_NONINTERACTIVE 64 153#define TASK_DEAD 128 154 155#define __set_task_state(tsk, state_value) \ 156 do { (tsk)->state = (state_value); } while (0) 157#define set_task_state(tsk, state_value) \ 158 set_mb((tsk)->state, (state_value)) 159 160/* 161 * set_current_state() includes a barrier so that the write of current->state 162 * is correctly serialised wrt the caller's subsequent test of whether to 163 * actually sleep: 164 * 165 * set_current_state(TASK_UNINTERRUPTIBLE); 166 * if (do_i_need_to_sleep()) 167 * schedule(); 168 * 169 * If the caller does not need such serialisation then use __set_current_state() 170 */ 171#define __set_current_state(state_value) \ 172 do { current->state = (state_value); } while (0) 173#define set_current_state(state_value) \ 174 set_mb(current->state, (state_value)) 175 176/* Task command name length */ 177#define TASK_COMM_LEN 16 178 179#include <linux/spinlock.h> 180 181/* 182 * This serializes "schedule()" and also protects 183 * the run-queue from deletions/modifications (but 184 * _adding_ to the beginning of the run-queue has 185 * a separate lock). 186 */ 187extern rwlock_t tasklist_lock; 188extern spinlock_t mmlist_lock; 189 190struct task_struct; 191 192extern void sched_init(void); 193extern void sched_init_smp(void); 194extern void init_idle(struct task_struct *idle, int cpu); 195 196extern cpumask_t nohz_cpu_mask; 197 198/* 199 * Only dump TASK_* tasks. (-1 for all tasks) 200 */ 201extern void show_state_filter(unsigned long state_filter); 202 203static inline void show_state(void) 204{ 205 show_state_filter(-1); 206} 207 208extern void show_regs(struct pt_regs *); 209 210/* 211 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 212 * task), SP is the stack pointer of the first frame that should be shown in the back 213 * trace (or NULL if the entire call-chain of the task should be shown). 214 */ 215extern void show_stack(struct task_struct *task, unsigned long *sp); 216 217void io_schedule(void); 218long io_schedule_timeout(long timeout); 219 220extern void cpu_init (void); 221extern void trap_init(void); 222extern void update_process_times(int user); 223extern void scheduler_tick(void); 224 225#ifdef CONFIG_DETECT_SOFTLOCKUP 226extern void softlockup_tick(void); 227extern void spawn_softlockup_task(void); 228extern void touch_softlockup_watchdog(void); 229#else 230static inline void softlockup_tick(void) 231{ 232} 233static inline void spawn_softlockup_task(void) 234{ 235} 236static inline void touch_softlockup_watchdog(void) 237{ 238} 239#endif 240 241 242/* Attach to any functions which should be ignored in wchan output. */ 243#define __sched __attribute__((__section__(".sched.text"))) 244/* Is this address in the __sched functions? */ 245extern int in_sched_functions(unsigned long addr); 246 247#define MAX_SCHEDULE_TIMEOUT LONG_MAX 248extern signed long FASTCALL(schedule_timeout(signed long timeout)); 249extern signed long schedule_timeout_interruptible(signed long timeout); 250extern signed long schedule_timeout_uninterruptible(signed long timeout); 251asmlinkage void schedule(void); 252 253struct nsproxy; 254 255/* Maximum number of active map areas.. This is a random (large) number */ 256#define DEFAULT_MAX_MAP_COUNT 65536 257 258extern int sysctl_max_map_count; 259 260#include <linux/aio.h> 261 262extern unsigned long 263arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 264 unsigned long, unsigned long); 265extern unsigned long 266arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 267 unsigned long len, unsigned long pgoff, 268 unsigned long flags); 269extern void arch_unmap_area(struct mm_struct *, unsigned long); 270extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 271 272#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 273/* 274 * The mm counters are not protected by its page_table_lock, 275 * so must be incremented atomically. 276 */ 277#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 278#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 279#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 280#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 281#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 282typedef atomic_long_t mm_counter_t; 283 284#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 285/* 286 * The mm counters are protected by its page_table_lock, 287 * so can be incremented directly. 288 */ 289#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 290#define get_mm_counter(mm, member) ((mm)->_##member) 291#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 292#define inc_mm_counter(mm, member) (mm)->_##member++ 293#define dec_mm_counter(mm, member) (mm)->_##member-- 294typedef unsigned long mm_counter_t; 295 296#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 297 298#define get_mm_rss(mm) \ 299 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 300#define update_hiwater_rss(mm) do { \ 301 unsigned long _rss = get_mm_rss(mm); \ 302 if ((mm)->hiwater_rss < _rss) \ 303 (mm)->hiwater_rss = _rss; \ 304} while (0) 305#define update_hiwater_vm(mm) do { \ 306 if ((mm)->hiwater_vm < (mm)->total_vm) \ 307 (mm)->hiwater_vm = (mm)->total_vm; \ 308} while (0) 309 310struct mm_struct { 311 struct vm_area_struct * mmap; /* list of VMAs */ 312 struct rb_root mm_rb; 313 struct vm_area_struct * mmap_cache; /* last find_vma result */ 314 unsigned long (*get_unmapped_area) (struct file *filp, 315 unsigned long addr, unsigned long len, 316 unsigned long pgoff, unsigned long flags); 317 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 318 unsigned long mmap_base; /* base of mmap area */ 319 unsigned long task_size; /* size of task vm space */ 320 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 321 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 322 pgd_t * pgd; 323 atomic_t mm_users; /* How many users with user space? */ 324 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 325 int map_count; /* number of VMAs */ 326 struct rw_semaphore mmap_sem; 327 spinlock_t page_table_lock; /* Protects page tables and some counters */ 328 329 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 330 * together off init_mm.mmlist, and are protected 331 * by mmlist_lock 332 */ 333 334 /* Special counters, in some configurations protected by the 335 * page_table_lock, in other configurations by being atomic. 336 */ 337 mm_counter_t _file_rss; 338 mm_counter_t _anon_rss; 339 340 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 341 unsigned long hiwater_vm; /* High-water virtual memory usage */ 342 343 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 344 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 345 unsigned long start_code, end_code, start_data, end_data; 346 unsigned long start_brk, brk, start_stack; 347 unsigned long arg_start, arg_end, env_start, env_end; 348 349 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 350 351 cpumask_t cpu_vm_mask; 352 353 /* Architecture-specific MM context */ 354 mm_context_t context; 355 356 /* Swap token stuff */ 357 /* 358 * Last value of global fault stamp as seen by this process. 359 * In other words, this value gives an indication of how long 360 * it has been since this task got the token. 361 * Look at mm/thrash.c 362 */ 363 unsigned int faultstamp; 364 unsigned int token_priority; 365 unsigned int last_interval; 366 367 unsigned char dumpable:2; 368 369 /* coredumping support */ 370 int core_waiters; 371 struct completion *core_startup_done, core_done; 372 373 /* aio bits */ 374 rwlock_t ioctx_list_lock; 375 struct kioctx *ioctx_list; 376}; 377 378struct sighand_struct { 379 atomic_t count; 380 struct k_sigaction action[_NSIG]; 381 spinlock_t siglock; 382}; 383 384struct pacct_struct { 385 int ac_flag; 386 long ac_exitcode; 387 unsigned long ac_mem; 388 cputime_t ac_utime, ac_stime; 389 unsigned long ac_minflt, ac_majflt; 390}; 391 392/* 393 * NOTE! "signal_struct" does not have it's own 394 * locking, because a shared signal_struct always 395 * implies a shared sighand_struct, so locking 396 * sighand_struct is always a proper superset of 397 * the locking of signal_struct. 398 */ 399struct signal_struct { 400 atomic_t count; 401 atomic_t live; 402 403 wait_queue_head_t wait_chldexit; /* for wait4() */ 404 405 /* current thread group signal load-balancing target: */ 406 struct task_struct *curr_target; 407 408 /* shared signal handling: */ 409 struct sigpending shared_pending; 410 411 /* thread group exit support */ 412 int group_exit_code; 413 /* overloaded: 414 * - notify group_exit_task when ->count is equal to notify_count 415 * - everyone except group_exit_task is stopped during signal delivery 416 * of fatal signals, group_exit_task processes the signal. 417 */ 418 struct task_struct *group_exit_task; 419 int notify_count; 420 421 /* thread group stop support, overloads group_exit_code too */ 422 int group_stop_count; 423 unsigned int flags; /* see SIGNAL_* flags below */ 424 425 /* POSIX.1b Interval Timers */ 426 struct list_head posix_timers; 427 428 /* ITIMER_REAL timer for the process */ 429 struct hrtimer real_timer; 430 struct task_struct *tsk; 431 ktime_t it_real_incr; 432 433 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 434 cputime_t it_prof_expires, it_virt_expires; 435 cputime_t it_prof_incr, it_virt_incr; 436 437 /* job control IDs */ 438 pid_t pgrp; 439 pid_t tty_old_pgrp; 440 441 union { 442 pid_t session __deprecated; 443 pid_t __session; 444 }; 445 446 /* boolean value for session group leader */ 447 int leader; 448 449 struct tty_struct *tty; /* NULL if no tty */ 450 451 /* 452 * Cumulative resource counters for dead threads in the group, 453 * and for reaped dead child processes forked by this group. 454 * Live threads maintain their own counters and add to these 455 * in __exit_signal, except for the group leader. 456 */ 457 cputime_t utime, stime, cutime, cstime; 458 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 459 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 460 461 /* 462 * Cumulative ns of scheduled CPU time for dead threads in the 463 * group, not including a zombie group leader. (This only differs 464 * from jiffies_to_ns(utime + stime) if sched_clock uses something 465 * other than jiffies.) 466 */ 467 unsigned long long sched_time; 468 469 /* 470 * We don't bother to synchronize most readers of this at all, 471 * because there is no reader checking a limit that actually needs 472 * to get both rlim_cur and rlim_max atomically, and either one 473 * alone is a single word that can safely be read normally. 474 * getrlimit/setrlimit use task_lock(current->group_leader) to 475 * protect this instead of the siglock, because they really 476 * have no need to disable irqs. 477 */ 478 struct rlimit rlim[RLIM_NLIMITS]; 479 480 struct list_head cpu_timers[3]; 481 482 /* keep the process-shared keyrings here so that they do the right 483 * thing in threads created with CLONE_THREAD */ 484#ifdef CONFIG_KEYS 485 struct key *session_keyring; /* keyring inherited over fork */ 486 struct key *process_keyring; /* keyring private to this process */ 487#endif 488#ifdef CONFIG_BSD_PROCESS_ACCT 489 struct pacct_struct pacct; /* per-process accounting information */ 490#endif 491#ifdef CONFIG_TASKSTATS 492 struct taskstats *stats; 493#endif 494}; 495 496/* Context switch must be unlocked if interrupts are to be enabled */ 497#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 498# define __ARCH_WANT_UNLOCKED_CTXSW 499#endif 500 501/* 502 * Bits in flags field of signal_struct. 503 */ 504#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 505#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 506#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 507#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 508 509 510/* 511 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 512 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 513 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 514 * values are inverted: lower p->prio value means higher priority. 515 * 516 * The MAX_USER_RT_PRIO value allows the actual maximum 517 * RT priority to be separate from the value exported to 518 * user-space. This allows kernel threads to set their 519 * priority to a value higher than any user task. Note: 520 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 521 */ 522 523#define MAX_USER_RT_PRIO 100 524#define MAX_RT_PRIO MAX_USER_RT_PRIO 525 526#define MAX_PRIO (MAX_RT_PRIO + 40) 527 528#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) 529#define rt_task(p) rt_prio((p)->prio) 530#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 531#define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH) 532#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) 533 534/* 535 * Some day this will be a full-fledged user tracking system.. 536 */ 537struct user_struct { 538 atomic_t __count; /* reference count */ 539 atomic_t processes; /* How many processes does this user have? */ 540 atomic_t files; /* How many open files does this user have? */ 541 atomic_t sigpending; /* How many pending signals does this user have? */ 542#ifdef CONFIG_INOTIFY_USER 543 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 544 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 545#endif 546 /* protected by mq_lock */ 547 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 548 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 549 550#ifdef CONFIG_KEYS 551 struct key *uid_keyring; /* UID specific keyring */ 552 struct key *session_keyring; /* UID's default session keyring */ 553#endif 554 555 /* Hash table maintenance information */ 556 struct list_head uidhash_list; 557 uid_t uid; 558}; 559 560extern struct user_struct *find_user(uid_t); 561 562extern struct user_struct root_user; 563#define INIT_USER (&root_user) 564 565struct backing_dev_info; 566struct reclaim_state; 567 568#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 569struct sched_info { 570 /* cumulative counters */ 571 unsigned long cpu_time, /* time spent on the cpu */ 572 run_delay, /* time spent waiting on a runqueue */ 573 pcnt; /* # of timeslices run on this cpu */ 574 575 /* timestamps */ 576 unsigned long last_arrival, /* when we last ran on a cpu */ 577 last_queued; /* when we were last queued to run */ 578}; 579#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 580 581#ifdef CONFIG_SCHEDSTATS 582extern const struct file_operations proc_schedstat_operations; 583#endif /* CONFIG_SCHEDSTATS */ 584 585#ifdef CONFIG_TASK_DELAY_ACCT 586struct task_delay_info { 587 spinlock_t lock; 588 unsigned int flags; /* Private per-task flags */ 589 590 /* For each stat XXX, add following, aligned appropriately 591 * 592 * struct timespec XXX_start, XXX_end; 593 * u64 XXX_delay; 594 * u32 XXX_count; 595 * 596 * Atomicity of updates to XXX_delay, XXX_count protected by 597 * single lock above (split into XXX_lock if contention is an issue). 598 */ 599 600 /* 601 * XXX_count is incremented on every XXX operation, the delay 602 * associated with the operation is added to XXX_delay. 603 * XXX_delay contains the accumulated delay time in nanoseconds. 604 */ 605 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 606 u64 blkio_delay; /* wait for sync block io completion */ 607 u64 swapin_delay; /* wait for swapin block io completion */ 608 u32 blkio_count; /* total count of the number of sync block */ 609 /* io operations performed */ 610 u32 swapin_count; /* total count of the number of swapin block */ 611 /* io operations performed */ 612}; 613#endif /* CONFIG_TASK_DELAY_ACCT */ 614 615static inline int sched_info_on(void) 616{ 617#ifdef CONFIG_SCHEDSTATS 618 return 1; 619#elif defined(CONFIG_TASK_DELAY_ACCT) 620 extern int delayacct_on; 621 return delayacct_on; 622#else 623 return 0; 624#endif 625} 626 627enum idle_type 628{ 629 SCHED_IDLE, 630 NOT_IDLE, 631 NEWLY_IDLE, 632 MAX_IDLE_TYPES 633}; 634 635/* 636 * sched-domains (multiprocessor balancing) declarations: 637 */ 638#define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 639 640#ifdef CONFIG_SMP 641#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 642#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 643#define SD_BALANCE_EXEC 4 /* Balance on exec */ 644#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 645#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 646#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 647#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 648#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 649#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 650#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 651#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 652 653#define BALANCE_FOR_MC_POWER \ 654 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 655 656#define BALANCE_FOR_PKG_POWER \ 657 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 658 SD_POWERSAVINGS_BALANCE : 0) 659 660#define test_sd_parent(sd, flag) ((sd->parent && \ 661 (sd->parent->flags & flag)) ? 1 : 0) 662 663 664struct sched_group { 665 struct sched_group *next; /* Must be a circular list */ 666 cpumask_t cpumask; 667 668 /* 669 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 670 * single CPU. This is read only (except for setup, hotplug CPU). 671 */ 672 unsigned long cpu_power; 673}; 674 675struct sched_domain { 676 /* These fields must be setup */ 677 struct sched_domain *parent; /* top domain must be null terminated */ 678 struct sched_domain *child; /* bottom domain must be null terminated */ 679 struct sched_group *groups; /* the balancing groups of the domain */ 680 cpumask_t span; /* span of all CPUs in this domain */ 681 unsigned long min_interval; /* Minimum balance interval ms */ 682 unsigned long max_interval; /* Maximum balance interval ms */ 683 unsigned int busy_factor; /* less balancing by factor if busy */ 684 unsigned int imbalance_pct; /* No balance until over watermark */ 685 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 686 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 687 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 688 unsigned int busy_idx; 689 unsigned int idle_idx; 690 unsigned int newidle_idx; 691 unsigned int wake_idx; 692 unsigned int forkexec_idx; 693 int flags; /* See SD_* */ 694 695 /* Runtime fields. */ 696 unsigned long last_balance; /* init to jiffies. units in jiffies */ 697 unsigned int balance_interval; /* initialise to 1. units in ms. */ 698 unsigned int nr_balance_failed; /* initialise to 0 */ 699 700#ifdef CONFIG_SCHEDSTATS 701 /* load_balance() stats */ 702 unsigned long lb_cnt[MAX_IDLE_TYPES]; 703 unsigned long lb_failed[MAX_IDLE_TYPES]; 704 unsigned long lb_balanced[MAX_IDLE_TYPES]; 705 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 706 unsigned long lb_gained[MAX_IDLE_TYPES]; 707 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 708 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 709 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 710 711 /* Active load balancing */ 712 unsigned long alb_cnt; 713 unsigned long alb_failed; 714 unsigned long alb_pushed; 715 716 /* SD_BALANCE_EXEC stats */ 717 unsigned long sbe_cnt; 718 unsigned long sbe_balanced; 719 unsigned long sbe_pushed; 720 721 /* SD_BALANCE_FORK stats */ 722 unsigned long sbf_cnt; 723 unsigned long sbf_balanced; 724 unsigned long sbf_pushed; 725 726 /* try_to_wake_up() stats */ 727 unsigned long ttwu_wake_remote; 728 unsigned long ttwu_move_affine; 729 unsigned long ttwu_move_balance; 730#endif 731}; 732 733extern int partition_sched_domains(cpumask_t *partition1, 734 cpumask_t *partition2); 735 736/* 737 * Maximum cache size the migration-costs auto-tuning code will 738 * search from: 739 */ 740extern unsigned int max_cache_size; 741 742#endif /* CONFIG_SMP */ 743 744 745struct io_context; /* See blkdev.h */ 746struct cpuset; 747 748#define NGROUPS_SMALL 32 749#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 750struct group_info { 751 int ngroups; 752 atomic_t usage; 753 gid_t small_block[NGROUPS_SMALL]; 754 int nblocks; 755 gid_t *blocks[0]; 756}; 757 758/* 759 * get_group_info() must be called with the owning task locked (via task_lock()) 760 * when task != current. The reason being that the vast majority of callers are 761 * looking at current->group_info, which can not be changed except by the 762 * current task. Changing current->group_info requires the task lock, too. 763 */ 764#define get_group_info(group_info) do { \ 765 atomic_inc(&(group_info)->usage); \ 766} while (0) 767 768#define put_group_info(group_info) do { \ 769 if (atomic_dec_and_test(&(group_info)->usage)) \ 770 groups_free(group_info); \ 771} while (0) 772 773extern struct group_info *groups_alloc(int gidsetsize); 774extern void groups_free(struct group_info *group_info); 775extern int set_current_groups(struct group_info *group_info); 776extern int groups_search(struct group_info *group_info, gid_t grp); 777/* access the groups "array" with this macro */ 778#define GROUP_AT(gi, i) \ 779 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 780 781#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 782extern void prefetch_stack(struct task_struct *t); 783#else 784static inline void prefetch_stack(struct task_struct *t) { } 785#endif 786 787struct audit_context; /* See audit.c */ 788struct mempolicy; 789struct pipe_inode_info; 790struct uts_namespace; 791 792enum sleep_type { 793 SLEEP_NORMAL, 794 SLEEP_NONINTERACTIVE, 795 SLEEP_INTERACTIVE, 796 SLEEP_INTERRUPTED, 797}; 798 799struct prio_array; 800 801struct task_struct { 802 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 803 struct thread_info *thread_info; 804 atomic_t usage; 805 unsigned long flags; /* per process flags, defined below */ 806 unsigned long ptrace; 807 808 int lock_depth; /* BKL lock depth */ 809 810#ifdef CONFIG_SMP 811#ifdef __ARCH_WANT_UNLOCKED_CTXSW 812 int oncpu; 813#endif 814#endif 815 int load_weight; /* for niceness load balancing purposes */ 816 int prio, static_prio, normal_prio; 817 struct list_head run_list; 818 struct prio_array *array; 819 820 unsigned short ioprio; 821#ifdef CONFIG_BLK_DEV_IO_TRACE 822 unsigned int btrace_seq; 823#endif 824 unsigned long sleep_avg; 825 unsigned long long timestamp, last_ran; 826 unsigned long long sched_time; /* sched_clock time spent running */ 827 enum sleep_type sleep_type; 828 829 unsigned long policy; 830 cpumask_t cpus_allowed; 831 unsigned int time_slice, first_time_slice; 832 833#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 834 struct sched_info sched_info; 835#endif 836 837 struct list_head tasks; 838 /* 839 * ptrace_list/ptrace_children forms the list of my children 840 * that were stolen by a ptracer. 841 */ 842 struct list_head ptrace_children; 843 struct list_head ptrace_list; 844 845 struct mm_struct *mm, *active_mm; 846 847/* task state */ 848 struct linux_binfmt *binfmt; 849 long exit_state; 850 int exit_code, exit_signal; 851 int pdeath_signal; /* The signal sent when the parent dies */ 852 /* ??? */ 853 unsigned long personality; 854 unsigned did_exec:1; 855 pid_t pid; 856 pid_t tgid; 857 858#ifdef CONFIG_CC_STACKPROTECTOR 859 /* Canary value for the -fstack-protector gcc feature */ 860 unsigned long stack_canary; 861#endif 862 /* 863 * pointers to (original) parent process, youngest child, younger sibling, 864 * older sibling, respectively. (p->father can be replaced with 865 * p->parent->pid) 866 */ 867 struct task_struct *real_parent; /* real parent process (when being debugged) */ 868 struct task_struct *parent; /* parent process */ 869 /* 870 * children/sibling forms the list of my children plus the 871 * tasks I'm ptracing. 872 */ 873 struct list_head children; /* list of my children */ 874 struct list_head sibling; /* linkage in my parent's children list */ 875 struct task_struct *group_leader; /* threadgroup leader */ 876 877 /* PID/PID hash table linkage. */ 878 struct pid_link pids[PIDTYPE_MAX]; 879 struct list_head thread_group; 880 881 struct completion *vfork_done; /* for vfork() */ 882 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 883 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 884 885 unsigned long rt_priority; 886 cputime_t utime, stime; 887 unsigned long nvcsw, nivcsw; /* context switch counts */ 888 struct timespec start_time; 889/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 890 unsigned long min_flt, maj_flt; 891 892 cputime_t it_prof_expires, it_virt_expires; 893 unsigned long long it_sched_expires; 894 struct list_head cpu_timers[3]; 895 896/* process credentials */ 897 uid_t uid,euid,suid,fsuid; 898 gid_t gid,egid,sgid,fsgid; 899 struct group_info *group_info; 900 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 901 unsigned keep_capabilities:1; 902 struct user_struct *user; 903#ifdef CONFIG_KEYS 904 struct key *request_key_auth; /* assumed request_key authority */ 905 struct key *thread_keyring; /* keyring private to this thread */ 906 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 907#endif 908 /* 909 * fpu_counter contains the number of consecutive context switches 910 * that the FPU is used. If this is over a threshold, the lazy fpu 911 * saving becomes unlazy to save the trap. This is an unsigned char 912 * so that after 256 times the counter wraps and the behavior turns 913 * lazy again; this to deal with bursty apps that only use FPU for 914 * a short time 915 */ 916 unsigned char fpu_counter; 917 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 918 char comm[TASK_COMM_LEN]; /* executable name excluding path 919 - access with [gs]et_task_comm (which lock 920 it with task_lock()) 921 - initialized normally by flush_old_exec */ 922/* file system info */ 923 int link_count, total_link_count; 924#ifdef CONFIG_SYSVIPC 925/* ipc stuff */ 926 struct sysv_sem sysvsem; 927#endif 928/* CPU-specific state of this task */ 929 struct thread_struct thread; 930/* filesystem information */ 931 struct fs_struct *fs; 932/* open file information */ 933 struct files_struct *files; 934/* namespaces */ 935 struct nsproxy *nsproxy; 936/* signal handlers */ 937 struct signal_struct *signal; 938 struct sighand_struct *sighand; 939 940 sigset_t blocked, real_blocked; 941 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 942 struct sigpending pending; 943 944 unsigned long sas_ss_sp; 945 size_t sas_ss_size; 946 int (*notifier)(void *priv); 947 void *notifier_data; 948 sigset_t *notifier_mask; 949 950 void *security; 951 struct audit_context *audit_context; 952 seccomp_t seccomp; 953 954/* Thread group tracking */ 955 u32 parent_exec_id; 956 u32 self_exec_id; 957/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 958 spinlock_t alloc_lock; 959 960 /* Protection of the PI data structures: */ 961 spinlock_t pi_lock; 962 963#ifdef CONFIG_RT_MUTEXES 964 /* PI waiters blocked on a rt_mutex held by this task */ 965 struct plist_head pi_waiters; 966 /* Deadlock detection and priority inheritance handling */ 967 struct rt_mutex_waiter *pi_blocked_on; 968#endif 969 970#ifdef CONFIG_DEBUG_MUTEXES 971 /* mutex deadlock detection */ 972 struct mutex_waiter *blocked_on; 973#endif 974#ifdef CONFIG_TRACE_IRQFLAGS 975 unsigned int irq_events; 976 int hardirqs_enabled; 977 unsigned long hardirq_enable_ip; 978 unsigned int hardirq_enable_event; 979 unsigned long hardirq_disable_ip; 980 unsigned int hardirq_disable_event; 981 int softirqs_enabled; 982 unsigned long softirq_disable_ip; 983 unsigned int softirq_disable_event; 984 unsigned long softirq_enable_ip; 985 unsigned int softirq_enable_event; 986 int hardirq_context; 987 int softirq_context; 988#endif 989#ifdef CONFIG_LOCKDEP 990# define MAX_LOCK_DEPTH 30UL 991 u64 curr_chain_key; 992 int lockdep_depth; 993 struct held_lock held_locks[MAX_LOCK_DEPTH]; 994 unsigned int lockdep_recursion; 995#endif 996 997/* journalling filesystem info */ 998 void *journal_info; 999 1000/* VM state */ 1001 struct reclaim_state *reclaim_state; 1002 1003 struct backing_dev_info *backing_dev_info; 1004 1005 struct io_context *io_context; 1006 1007 unsigned long ptrace_message; 1008 siginfo_t *last_siginfo; /* For ptrace use. */ 1009/* 1010 * current io wait handle: wait queue entry to use for io waits 1011 * If this thread is processing aio, this points at the waitqueue 1012 * inside the currently handled kiocb. It may be NULL (i.e. default 1013 * to a stack based synchronous wait) if its doing sync IO. 1014 */ 1015 wait_queue_t *io_wait; 1016/* i/o counters(bytes read/written, #syscalls */ 1017 u64 rchar, wchar, syscr, syscw; 1018 struct task_io_accounting ioac; 1019#if defined(CONFIG_TASK_XACCT) 1020 u64 acct_rss_mem1; /* accumulated rss usage */ 1021 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1022 cputime_t acct_stimexpd;/* stime since last update */ 1023#endif 1024#ifdef CONFIG_NUMA 1025 struct mempolicy *mempolicy; 1026 short il_next; 1027#endif 1028#ifdef CONFIG_CPUSETS 1029 struct cpuset *cpuset; 1030 nodemask_t mems_allowed; 1031 int cpuset_mems_generation; 1032 int cpuset_mem_spread_rotor; 1033#endif 1034 struct robust_list_head __user *robust_list; 1035#ifdef CONFIG_COMPAT 1036 struct compat_robust_list_head __user *compat_robust_list; 1037#endif 1038 struct list_head pi_state_list; 1039 struct futex_pi_state *pi_state_cache; 1040 1041 atomic_t fs_excl; /* holding fs exclusive resources */ 1042 struct rcu_head rcu; 1043 1044 /* 1045 * cache last used pipe for splice 1046 */ 1047 struct pipe_inode_info *splice_pipe; 1048#ifdef CONFIG_TASK_DELAY_ACCT 1049 struct task_delay_info *delays; 1050#endif 1051#ifdef CONFIG_FAULT_INJECTION 1052 int make_it_fail; 1053#endif 1054}; 1055 1056static inline pid_t process_group(struct task_struct *tsk) 1057{ 1058 return tsk->signal->pgrp; 1059} 1060 1061static inline pid_t signal_session(struct signal_struct *sig) 1062{ 1063 return sig->__session; 1064} 1065 1066static inline pid_t process_session(struct task_struct *tsk) 1067{ 1068 return signal_session(tsk->signal); 1069} 1070 1071static inline void set_signal_session(struct signal_struct *sig, pid_t session) 1072{ 1073 sig->__session = session; 1074} 1075 1076static inline struct pid *task_pid(struct task_struct *task) 1077{ 1078 return task->pids[PIDTYPE_PID].pid; 1079} 1080 1081static inline struct pid *task_tgid(struct task_struct *task) 1082{ 1083 return task->group_leader->pids[PIDTYPE_PID].pid; 1084} 1085 1086static inline struct pid *task_pgrp(struct task_struct *task) 1087{ 1088 return task->group_leader->pids[PIDTYPE_PGID].pid; 1089} 1090 1091static inline struct pid *task_session(struct task_struct *task) 1092{ 1093 return task->group_leader->pids[PIDTYPE_SID].pid; 1094} 1095 1096/** 1097 * pid_alive - check that a task structure is not stale 1098 * @p: Task structure to be checked. 1099 * 1100 * Test if a process is not yet dead (at most zombie state) 1101 * If pid_alive fails, then pointers within the task structure 1102 * can be stale and must not be dereferenced. 1103 */ 1104static inline int pid_alive(struct task_struct *p) 1105{ 1106 return p->pids[PIDTYPE_PID].pid != NULL; 1107} 1108 1109/** 1110 * is_init - check if a task structure is init 1111 * @tsk: Task structure to be checked. 1112 * 1113 * Check if a task structure is the first user space task the kernel created. 1114 */ 1115static inline int is_init(struct task_struct *tsk) 1116{ 1117 return tsk->pid == 1; 1118} 1119 1120extern struct pid *cad_pid; 1121 1122extern void free_task(struct task_struct *tsk); 1123#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1124 1125extern void __put_task_struct(struct task_struct *t); 1126 1127static inline void put_task_struct(struct task_struct *t) 1128{ 1129 if (atomic_dec_and_test(&t->usage)) 1130 __put_task_struct(t); 1131} 1132 1133/* 1134 * Per process flags 1135 */ 1136#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1137 /* Not implemented yet, only for 486*/ 1138#define PF_STARTING 0x00000002 /* being created */ 1139#define PF_EXITING 0x00000004 /* getting shut down */ 1140#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1141#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1142#define PF_DUMPCORE 0x00000200 /* dumped core */ 1143#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1144#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1145#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1146#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1147#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1148#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1149#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1150#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1151#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1152#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1153#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1154#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1155#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1156#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1157#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1158#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1159#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1160 1161/* 1162 * Only the _current_ task can read/write to tsk->flags, but other 1163 * tasks can access tsk->flags in readonly mode for example 1164 * with tsk_used_math (like during threaded core dumping). 1165 * There is however an exception to this rule during ptrace 1166 * or during fork: the ptracer task is allowed to write to the 1167 * child->flags of its traced child (same goes for fork, the parent 1168 * can write to the child->flags), because we're guaranteed the 1169 * child is not running and in turn not changing child->flags 1170 * at the same time the parent does it. 1171 */ 1172#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1173#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1174#define clear_used_math() clear_stopped_child_used_math(current) 1175#define set_used_math() set_stopped_child_used_math(current) 1176#define conditional_stopped_child_used_math(condition, child) \ 1177 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1178#define conditional_used_math(condition) \ 1179 conditional_stopped_child_used_math(condition, current) 1180#define copy_to_stopped_child_used_math(child) \ 1181 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1182/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1183#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1184#define used_math() tsk_used_math(current) 1185 1186#ifdef CONFIG_SMP 1187extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1188#else 1189static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1190{ 1191 if (!cpu_isset(0, new_mask)) 1192 return -EINVAL; 1193 return 0; 1194} 1195#endif 1196 1197extern unsigned long long sched_clock(void); 1198extern unsigned long long 1199current_sched_time(const struct task_struct *current_task); 1200 1201/* sched_exec is called by processes performing an exec */ 1202#ifdef CONFIG_SMP 1203extern void sched_exec(void); 1204#else 1205#define sched_exec() {} 1206#endif 1207 1208#ifdef CONFIG_HOTPLUG_CPU 1209extern void idle_task_exit(void); 1210#else 1211static inline void idle_task_exit(void) {} 1212#endif 1213 1214extern void sched_idle_next(void); 1215 1216#ifdef CONFIG_RT_MUTEXES 1217extern int rt_mutex_getprio(struct task_struct *p); 1218extern void rt_mutex_setprio(struct task_struct *p, int prio); 1219extern void rt_mutex_adjust_pi(struct task_struct *p); 1220#else 1221static inline int rt_mutex_getprio(struct task_struct *p) 1222{ 1223 return p->normal_prio; 1224} 1225# define rt_mutex_adjust_pi(p) do { } while (0) 1226#endif 1227 1228extern void set_user_nice(struct task_struct *p, long nice); 1229extern int task_prio(const struct task_struct *p); 1230extern int task_nice(const struct task_struct *p); 1231extern int can_nice(const struct task_struct *p, const int nice); 1232extern int task_curr(const struct task_struct *p); 1233extern int idle_cpu(int cpu); 1234extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1235extern struct task_struct *idle_task(int cpu); 1236extern struct task_struct *curr_task(int cpu); 1237extern void set_curr_task(int cpu, struct task_struct *p); 1238 1239void yield(void); 1240 1241/* 1242 * The default (Linux) execution domain. 1243 */ 1244extern struct exec_domain default_exec_domain; 1245 1246union thread_union { 1247 struct thread_info thread_info; 1248 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1249}; 1250 1251#ifndef __HAVE_ARCH_KSTACK_END 1252static inline int kstack_end(void *addr) 1253{ 1254 /* Reliable end of stack detection: 1255 * Some APM bios versions misalign the stack 1256 */ 1257 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1258} 1259#endif 1260 1261extern union thread_union init_thread_union; 1262extern struct task_struct init_task; 1263 1264extern struct mm_struct init_mm; 1265 1266#define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1267extern struct task_struct *find_task_by_pid_type(int type, int pid); 1268extern void __set_special_pids(pid_t session, pid_t pgrp); 1269 1270/* per-UID process charging. */ 1271extern struct user_struct * alloc_uid(uid_t); 1272static inline struct user_struct *get_uid(struct user_struct *u) 1273{ 1274 atomic_inc(&u->__count); 1275 return u; 1276} 1277extern void free_uid(struct user_struct *); 1278extern void switch_uid(struct user_struct *); 1279 1280#include <asm/current.h> 1281 1282extern void do_timer(unsigned long ticks); 1283 1284extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1285extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1286extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1287 unsigned long clone_flags)); 1288#ifdef CONFIG_SMP 1289 extern void kick_process(struct task_struct *tsk); 1290#else 1291 static inline void kick_process(struct task_struct *tsk) { } 1292#endif 1293extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags)); 1294extern void FASTCALL(sched_exit(struct task_struct * p)); 1295 1296extern int in_group_p(gid_t); 1297extern int in_egroup_p(gid_t); 1298 1299extern void proc_caches_init(void); 1300extern void flush_signals(struct task_struct *); 1301extern void flush_signal_handlers(struct task_struct *, int force_default); 1302extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1303 1304static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1305{ 1306 unsigned long flags; 1307 int ret; 1308 1309 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1310 ret = dequeue_signal(tsk, mask, info); 1311 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1312 1313 return ret; 1314} 1315 1316extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1317 sigset_t *mask); 1318extern void unblock_all_signals(void); 1319extern void release_task(struct task_struct * p); 1320extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1321extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1322extern int force_sigsegv(int, struct task_struct *); 1323extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1324extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1325extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1326extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1327extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1328extern int kill_pgrp(struct pid *pid, int sig, int priv); 1329extern int kill_pid(struct pid *pid, int sig, int priv); 1330extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1331extern int kill_pg_info(int, struct siginfo *, pid_t); 1332extern void do_notify_parent(struct task_struct *, int); 1333extern void force_sig(int, struct task_struct *); 1334extern void force_sig_specific(int, struct task_struct *); 1335extern int send_sig(int, struct task_struct *, int); 1336extern void zap_other_threads(struct task_struct *p); 1337extern int kill_pg(pid_t, int, int); 1338extern int kill_proc(pid_t, int, int); 1339extern struct sigqueue *sigqueue_alloc(void); 1340extern void sigqueue_free(struct sigqueue *); 1341extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1342extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1343extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1344extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1345 1346static inline int kill_cad_pid(int sig, int priv) 1347{ 1348 return kill_pid(cad_pid, sig, priv); 1349} 1350 1351/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1352#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1353#define SEND_SIG_PRIV ((struct siginfo *) 1) 1354#define SEND_SIG_FORCED ((struct siginfo *) 2) 1355 1356static inline int is_si_special(const struct siginfo *info) 1357{ 1358 return info <= SEND_SIG_FORCED; 1359} 1360 1361/* True if we are on the alternate signal stack. */ 1362 1363static inline int on_sig_stack(unsigned long sp) 1364{ 1365 return (sp - current->sas_ss_sp < current->sas_ss_size); 1366} 1367 1368static inline int sas_ss_flags(unsigned long sp) 1369{ 1370 return (current->sas_ss_size == 0 ? SS_DISABLE 1371 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1372} 1373 1374/* 1375 * Routines for handling mm_structs 1376 */ 1377extern struct mm_struct * mm_alloc(void); 1378 1379/* mmdrop drops the mm and the page tables */ 1380extern void FASTCALL(__mmdrop(struct mm_struct *)); 1381static inline void mmdrop(struct mm_struct * mm) 1382{ 1383 if (atomic_dec_and_test(&mm->mm_count)) 1384 __mmdrop(mm); 1385} 1386 1387/* mmput gets rid of the mappings and all user-space */ 1388extern void mmput(struct mm_struct *); 1389/* Grab a reference to a task's mm, if it is not already going away */ 1390extern struct mm_struct *get_task_mm(struct task_struct *task); 1391/* Remove the current tasks stale references to the old mm_struct */ 1392extern void mm_release(struct task_struct *, struct mm_struct *); 1393 1394extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1395extern void flush_thread(void); 1396extern void exit_thread(void); 1397 1398extern void exit_files(struct task_struct *); 1399extern void __cleanup_signal(struct signal_struct *); 1400extern void __cleanup_sighand(struct sighand_struct *); 1401extern void exit_itimers(struct signal_struct *); 1402 1403extern NORET_TYPE void do_group_exit(int); 1404 1405extern void daemonize(const char *, ...); 1406extern int allow_signal(int); 1407extern int disallow_signal(int); 1408 1409extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1410extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1411struct task_struct *fork_idle(int); 1412 1413extern void set_task_comm(struct task_struct *tsk, char *from); 1414extern void get_task_comm(char *to, struct task_struct *tsk); 1415 1416#ifdef CONFIG_SMP 1417extern void wait_task_inactive(struct task_struct * p); 1418#else 1419#define wait_task_inactive(p) do { } while (0) 1420#endif 1421 1422#define remove_parent(p) list_del_init(&(p)->sibling) 1423#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1424 1425#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1426 1427#define for_each_process(p) \ 1428 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1429 1430/* 1431 * Careful: do_each_thread/while_each_thread is a double loop so 1432 * 'break' will not work as expected - use goto instead. 1433 */ 1434#define do_each_thread(g, t) \ 1435 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1436 1437#define while_each_thread(g, t) \ 1438 while ((t = next_thread(t)) != g) 1439 1440/* de_thread depends on thread_group_leader not being a pid based check */ 1441#define thread_group_leader(p) (p == p->group_leader) 1442 1443/* Do to the insanities of de_thread it is possible for a process 1444 * to have the pid of the thread group leader without actually being 1445 * the thread group leader. For iteration through the pids in proc 1446 * all we care about is that we have a task with the appropriate 1447 * pid, we don't actually care if we have the right task. 1448 */ 1449static inline int has_group_leader_pid(struct task_struct *p) 1450{ 1451 return p->pid == p->tgid; 1452} 1453 1454static inline struct task_struct *next_thread(const struct task_struct *p) 1455{ 1456 return list_entry(rcu_dereference(p->thread_group.next), 1457 struct task_struct, thread_group); 1458} 1459 1460static inline int thread_group_empty(struct task_struct *p) 1461{ 1462 return list_empty(&p->thread_group); 1463} 1464 1465#define delay_group_leader(p) \ 1466 (thread_group_leader(p) && !thread_group_empty(p)) 1467 1468/* 1469 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1470 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1471 * pins the final release of task.io_context. Also protects ->cpuset. 1472 * 1473 * Nests both inside and outside of read_lock(&tasklist_lock). 1474 * It must not be nested with write_lock_irq(&tasklist_lock), 1475 * neither inside nor outside. 1476 */ 1477static inline void task_lock(struct task_struct *p) 1478{ 1479 spin_lock(&p->alloc_lock); 1480} 1481 1482static inline void task_unlock(struct task_struct *p) 1483{ 1484 spin_unlock(&p->alloc_lock); 1485} 1486 1487extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1488 unsigned long *flags); 1489 1490static inline void unlock_task_sighand(struct task_struct *tsk, 1491 unsigned long *flags) 1492{ 1493 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1494} 1495 1496#ifndef __HAVE_THREAD_FUNCTIONS 1497 1498#define task_thread_info(task) (task)->thread_info 1499#define task_stack_page(task) ((void*)((task)->thread_info)) 1500 1501static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1502{ 1503 *task_thread_info(p) = *task_thread_info(org); 1504 task_thread_info(p)->task = p; 1505} 1506 1507static inline unsigned long *end_of_stack(struct task_struct *p) 1508{ 1509 return (unsigned long *)(p->thread_info + 1); 1510} 1511 1512#endif 1513 1514/* set thread flags in other task's structures 1515 * - see asm/thread_info.h for TIF_xxxx flags available 1516 */ 1517static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1518{ 1519 set_ti_thread_flag(task_thread_info(tsk), flag); 1520} 1521 1522static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1523{ 1524 clear_ti_thread_flag(task_thread_info(tsk), flag); 1525} 1526 1527static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1528{ 1529 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1530} 1531 1532static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1533{ 1534 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1535} 1536 1537static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1538{ 1539 return test_ti_thread_flag(task_thread_info(tsk), flag); 1540} 1541 1542static inline void set_tsk_need_resched(struct task_struct *tsk) 1543{ 1544 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1545} 1546 1547static inline void clear_tsk_need_resched(struct task_struct *tsk) 1548{ 1549 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1550} 1551 1552static inline int signal_pending(struct task_struct *p) 1553{ 1554 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1555} 1556 1557static inline int need_resched(void) 1558{ 1559 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1560} 1561 1562/* 1563 * cond_resched() and cond_resched_lock(): latency reduction via 1564 * explicit rescheduling in places that are safe. The return 1565 * value indicates whether a reschedule was done in fact. 1566 * cond_resched_lock() will drop the spinlock before scheduling, 1567 * cond_resched_softirq() will enable bhs before scheduling. 1568 */ 1569extern int cond_resched(void); 1570extern int cond_resched_lock(spinlock_t * lock); 1571extern int cond_resched_softirq(void); 1572 1573/* 1574 * Does a critical section need to be broken due to another 1575 * task waiting?: 1576 */ 1577#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1578# define need_lockbreak(lock) ((lock)->break_lock) 1579#else 1580# define need_lockbreak(lock) 0 1581#endif 1582 1583/* 1584 * Does a critical section need to be broken due to another 1585 * task waiting or preemption being signalled: 1586 */ 1587static inline int lock_need_resched(spinlock_t *lock) 1588{ 1589 if (need_lockbreak(lock) || need_resched()) 1590 return 1; 1591 return 0; 1592} 1593 1594/* Reevaluate whether the task has signals pending delivery. 1595 This is required every time the blocked sigset_t changes. 1596 callers must hold sighand->siglock. */ 1597 1598extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1599extern void recalc_sigpending(void); 1600 1601extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1602 1603/* 1604 * Wrappers for p->thread_info->cpu access. No-op on UP. 1605 */ 1606#ifdef CONFIG_SMP 1607 1608static inline unsigned int task_cpu(const struct task_struct *p) 1609{ 1610 return task_thread_info(p)->cpu; 1611} 1612 1613static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1614{ 1615 task_thread_info(p)->cpu = cpu; 1616} 1617 1618#else 1619 1620static inline unsigned int task_cpu(const struct task_struct *p) 1621{ 1622 return 0; 1623} 1624 1625static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1626{ 1627} 1628 1629#endif /* CONFIG_SMP */ 1630 1631#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1632extern void arch_pick_mmap_layout(struct mm_struct *mm); 1633#else 1634static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1635{ 1636 mm->mmap_base = TASK_UNMAPPED_BASE; 1637 mm->get_unmapped_area = arch_get_unmapped_area; 1638 mm->unmap_area = arch_unmap_area; 1639} 1640#endif 1641 1642extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1643extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1644 1645#include <linux/sysdev.h> 1646extern int sched_mc_power_savings, sched_smt_power_savings; 1647extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings; 1648extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls); 1649 1650extern void normalize_rt_tasks(void); 1651 1652#endif /* __KERNEL__ */ 1653 1654#endif