at v2.6.20 3.8 kB view raw
1#ifndef _LINUX_PID_H 2#define _LINUX_PID_H 3 4#include <linux/rcupdate.h> 5 6enum pid_type 7{ 8 PIDTYPE_PID, 9 PIDTYPE_PGID, 10 PIDTYPE_SID, 11 PIDTYPE_MAX 12}; 13 14/* 15 * What is struct pid? 16 * 17 * A struct pid is the kernel's internal notion of a process identifier. 18 * It refers to individual tasks, process groups, and sessions. While 19 * there are processes attached to it the struct pid lives in a hash 20 * table, so it and then the processes that it refers to can be found 21 * quickly from the numeric pid value. The attached processes may be 22 * quickly accessed by following pointers from struct pid. 23 * 24 * Storing pid_t values in the kernel and refering to them later has a 25 * problem. The process originally with that pid may have exited and the 26 * pid allocator wrapped, and another process could have come along 27 * and been assigned that pid. 28 * 29 * Referring to user space processes by holding a reference to struct 30 * task_struct has a problem. When the user space process exits 31 * the now useless task_struct is still kept. A task_struct plus a 32 * stack consumes around 10K of low kernel memory. More precisely 33 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison 34 * a struct pid is about 64 bytes. 35 * 36 * Holding a reference to struct pid solves both of these problems. 37 * It is small so holding a reference does not consume a lot of 38 * resources, and since a new struct pid is allocated when the numeric pid 39 * value is reused (when pids wrap around) we don't mistakenly refer to new 40 * processes. 41 */ 42 43struct pid 44{ 45 atomic_t count; 46 /* Try to keep pid_chain in the same cacheline as nr for find_pid */ 47 int nr; 48 struct hlist_node pid_chain; 49 /* lists of tasks that use this pid */ 50 struct hlist_head tasks[PIDTYPE_MAX]; 51 struct rcu_head rcu; 52}; 53 54struct pid_link 55{ 56 struct hlist_node node; 57 struct pid *pid; 58}; 59 60static inline struct pid *get_pid(struct pid *pid) 61{ 62 if (pid) 63 atomic_inc(&pid->count); 64 return pid; 65} 66 67extern void FASTCALL(put_pid(struct pid *pid)); 68extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type)); 69extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid, 70 enum pid_type)); 71 72extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); 73 74/* 75 * attach_pid() and detach_pid() must be called with the tasklist_lock 76 * write-held. 77 */ 78extern int FASTCALL(attach_pid(struct task_struct *task, 79 enum pid_type type, int nr)); 80 81extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type)); 82extern void FASTCALL(transfer_pid(struct task_struct *old, 83 struct task_struct *new, enum pid_type)); 84 85/* 86 * look up a PID in the hash table. Must be called with the tasklist_lock 87 * or rcu_read_lock() held. 88 */ 89extern struct pid *FASTCALL(find_pid(int nr)); 90 91/* 92 * Lookup a PID in the hash table, and return with it's count elevated. 93 */ 94extern struct pid *find_get_pid(int nr); 95extern struct pid *find_ge_pid(int nr); 96 97extern struct pid *alloc_pid(void); 98extern void FASTCALL(free_pid(struct pid *pid)); 99 100static inline pid_t pid_nr(struct pid *pid) 101{ 102 pid_t nr = 0; 103 if (pid) 104 nr = pid->nr; 105 return nr; 106} 107 108 109#define do_each_task_pid(who, type, task) \ 110 do { \ 111 struct hlist_node *pos___; \ 112 struct pid *pid___ = find_pid(who); \ 113 if (pid___ != NULL) \ 114 hlist_for_each_entry_rcu((task), pos___, \ 115 &pid___->tasks[type], pids[type].node) { 116 117#define while_each_task_pid(who, type, task) \ 118 } \ 119 } while (0) 120 121 122#define do_each_pid_task(pid, type, task) \ 123 do { \ 124 struct hlist_node *pos___; \ 125 if (pid != NULL) \ 126 hlist_for_each_entry_rcu((task), pos___, \ 127 &pid->tasks[type], pids[type].node) { 128 129#define while_each_pid_task(pid, type, task) \ 130 } \ 131 } while (0) 132 133#endif /* _LINUX_PID_H */