at v2.6.20 846 lines 26 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16#include <asm-generic/4level-fixup.h> 17 18/* 19 * The Linux memory management assumes a three-level page table setup. For 20 * s390 31 bit we "fold" the mid level into the top-level page table, so 21 * that we physically have the same two-level page table as the s390 mmu 22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 23 * the hardware provides (region first and region second tables are not 24 * used). 25 * 26 * The "pgd_xxx()" functions are trivial for a folded two-level 27 * setup: the pgd is never bad, and a pmd always exists (as it's folded 28 * into the pgd entry) 29 * 30 * This file contains the functions and defines necessary to modify and use 31 * the S390 page table tree. 32 */ 33#ifndef __ASSEMBLY__ 34#include <linux/mm_types.h> 35#include <asm/bug.h> 36#include <asm/processor.h> 37 38struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ 39struct mm_struct; 40 41extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 42extern void paging_init(void); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, pte) do { } while (0) 49 50/* 51 * ZERO_PAGE is a global shared page that is always zero: used 52 * for zero-mapped memory areas etc.. 53 */ 54extern char empty_zero_page[PAGE_SIZE]; 55#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 56#endif /* !__ASSEMBLY__ */ 57 58/* 59 * PMD_SHIFT determines the size of the area a second-level page 60 * table can map 61 * PGDIR_SHIFT determines what a third-level page table entry can map 62 */ 63#ifndef __s390x__ 64# define PMD_SHIFT 22 65# define PGDIR_SHIFT 22 66#else /* __s390x__ */ 67# define PMD_SHIFT 21 68# define PGDIR_SHIFT 31 69#endif /* __s390x__ */ 70 71#define PMD_SIZE (1UL << PMD_SHIFT) 72#define PMD_MASK (~(PMD_SIZE-1)) 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76/* 77 * entries per page directory level: the S390 is two-level, so 78 * we don't really have any PMD directory physically. 79 * for S390 segment-table entries are combined to one PGD 80 * that leads to 1024 pte per pgd 81 */ 82#ifndef __s390x__ 83# define PTRS_PER_PTE 1024 84# define PTRS_PER_PMD 1 85# define PTRS_PER_PGD 512 86#else /* __s390x__ */ 87# define PTRS_PER_PTE 512 88# define PTRS_PER_PMD 1024 89# define PTRS_PER_PGD 2048 90#endif /* __s390x__ */ 91 92#define FIRST_USER_ADDRESS 0 93 94#define pte_ERROR(e) \ 95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 96#define pmd_ERROR(e) \ 97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 98#define pgd_ERROR(e) \ 99 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 100 101#ifndef __ASSEMBLY__ 102/* 103 * Just any arbitrary offset to the start of the vmalloc VM area: the 104 * current 8MB value just means that there will be a 8MB "hole" after the 105 * physical memory until the kernel virtual memory starts. That means that 106 * any out-of-bounds memory accesses will hopefully be caught. 107 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 108 * area for the same reason. ;) 109 */ 110extern unsigned long vmalloc_end; 111#define VMALLOC_OFFSET (8*1024*1024) 112#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ 113 & ~(VMALLOC_OFFSET-1)) 114#define VMALLOC_END vmalloc_end 115 116/* 117 * We need some free virtual space to be able to do vmalloc. 118 * VMALLOC_MIN_SIZE defines the minimum size of the vmalloc 119 * area. On a machine with 2GB memory we make sure that we 120 * have at least 128MB free space for vmalloc. On a machine 121 * with 4TB we make sure we have at least 128GB. 122 */ 123#ifndef __s390x__ 124#define VMALLOC_MIN_SIZE 0x8000000UL 125#define VMALLOC_END_INIT 0x80000000UL 126#else /* __s390x__ */ 127#define VMALLOC_MIN_SIZE 0x2000000000UL 128#define VMALLOC_END_INIT 0x40000000000UL 129#endif /* __s390x__ */ 130 131/* 132 * A 31 bit pagetable entry of S390 has following format: 133 * | PFRA | | OS | 134 * 0 0IP0 135 * 00000000001111111111222222222233 136 * 01234567890123456789012345678901 137 * 138 * I Page-Invalid Bit: Page is not available for address-translation 139 * P Page-Protection Bit: Store access not possible for page 140 * 141 * A 31 bit segmenttable entry of S390 has following format: 142 * | P-table origin | |PTL 143 * 0 IC 144 * 00000000001111111111222222222233 145 * 01234567890123456789012345678901 146 * 147 * I Segment-Invalid Bit: Segment is not available for address-translation 148 * C Common-Segment Bit: Segment is not private (PoP 3-30) 149 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 150 * 151 * The 31 bit segmenttable origin of S390 has following format: 152 * 153 * |S-table origin | | STL | 154 * X **GPS 155 * 00000000001111111111222222222233 156 * 01234567890123456789012345678901 157 * 158 * X Space-Switch event: 159 * G Segment-Invalid Bit: * 160 * P Private-Space Bit: Segment is not private (PoP 3-30) 161 * S Storage-Alteration: 162 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 163 * 164 * A 64 bit pagetable entry of S390 has following format: 165 * | PFRA |0IP0| OS | 166 * 0000000000111111111122222222223333333333444444444455555555556666 167 * 0123456789012345678901234567890123456789012345678901234567890123 168 * 169 * I Page-Invalid Bit: Page is not available for address-translation 170 * P Page-Protection Bit: Store access not possible for page 171 * 172 * A 64 bit segmenttable entry of S390 has following format: 173 * | P-table origin | TT 174 * 0000000000111111111122222222223333333333444444444455555555556666 175 * 0123456789012345678901234567890123456789012345678901234567890123 176 * 177 * I Segment-Invalid Bit: Segment is not available for address-translation 178 * C Common-Segment Bit: Segment is not private (PoP 3-30) 179 * P Page-Protection Bit: Store access not possible for page 180 * TT Type 00 181 * 182 * A 64 bit region table entry of S390 has following format: 183 * | S-table origin | TF TTTL 184 * 0000000000111111111122222222223333333333444444444455555555556666 185 * 0123456789012345678901234567890123456789012345678901234567890123 186 * 187 * I Segment-Invalid Bit: Segment is not available for address-translation 188 * TT Type 01 189 * TF 190 * TL Table lenght 191 * 192 * The 64 bit regiontable origin of S390 has following format: 193 * | region table origon | DTTL 194 * 0000000000111111111122222222223333333333444444444455555555556666 195 * 0123456789012345678901234567890123456789012345678901234567890123 196 * 197 * X Space-Switch event: 198 * G Segment-Invalid Bit: 199 * P Private-Space Bit: 200 * S Storage-Alteration: 201 * R Real space 202 * TL Table-Length: 203 * 204 * A storage key has the following format: 205 * | ACC |F|R|C|0| 206 * 0 3 4 5 6 7 207 * ACC: access key 208 * F : fetch protection bit 209 * R : referenced bit 210 * C : changed bit 211 */ 212 213/* Hardware bits in the page table entry */ 214#define _PAGE_RO 0x200 /* HW read-only bit */ 215#define _PAGE_INVALID 0x400 /* HW invalid bit */ 216#define _PAGE_SWT 0x001 /* SW pte type bit t */ 217#define _PAGE_SWX 0x002 /* SW pte type bit x */ 218 219/* Six different types of pages. */ 220#define _PAGE_TYPE_EMPTY 0x400 221#define _PAGE_TYPE_NONE 0x401 222#define _PAGE_TYPE_SWAP 0x403 223#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 224#define _PAGE_TYPE_RO 0x200 225#define _PAGE_TYPE_RW 0x000 226 227/* 228 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 229 * pte_none and pte_file to find out the pte type WITHOUT holding the page 230 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 231 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 232 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 233 * This change is done while holding the lock, but the intermediate step 234 * of a previously valid pte with the hw invalid bit set can be observed by 235 * handle_pte_fault. That makes it necessary that all valid pte types with 236 * the hw invalid bit set must be distinguishable from the four pte types 237 * empty, none, swap and file. 238 * 239 * irxt ipte irxt 240 * _PAGE_TYPE_EMPTY 1000 -> 1000 241 * _PAGE_TYPE_NONE 1001 -> 1001 242 * _PAGE_TYPE_SWAP 1011 -> 1011 243 * _PAGE_TYPE_FILE 11?1 -> 11?1 244 * _PAGE_TYPE_RO 0100 -> 1100 245 * _PAGE_TYPE_RW 0000 -> 1000 246 * 247 * pte_none is true for bits combinations 1000, 1100 248 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 249 * pte_file is true for bits combinations 1101, 1111 250 * swap pte is 1011 and 0001, 0011, 0101, 0111, 1010 and 1110 are invalid. 251 */ 252 253#ifndef __s390x__ 254 255/* Bits in the segment table entry */ 256#define _PAGE_TABLE_LEN 0xf /* only full page-tables */ 257#define _PAGE_TABLE_COM 0x10 /* common page-table */ 258#define _PAGE_TABLE_INV 0x20 /* invalid page-table */ 259#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ 260 261/* Bits int the storage key */ 262#define _PAGE_CHANGED 0x02 /* HW changed bit */ 263#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 264 265#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ 266#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ 267 268/* 269 * User and Kernel pagetables are identical 270 */ 271#define _PAGE_TABLE _PAGE_TABLE_LEN 272#define _KERNPG_TABLE _PAGE_TABLE_LEN 273 274/* 275 * The Kernel segment-tables includes the User segment-table 276 */ 277 278#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) 279#define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN 280 281#define USER_STD_MASK 0x00000080UL 282 283#else /* __s390x__ */ 284 285/* Bits in the segment table entry */ 286#define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ 287#define _PMD_ENTRY 0x00 288 289/* Bits in the region third table entry */ 290#define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ 291#define _PGD_ENTRY 0x07 292 293/* 294 * User and kernel page directory 295 */ 296#define _REGION_THIRD 0x4 297#define _REGION_THIRD_LEN 0x3 298#define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) 299#define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) 300 301#define USER_STD_MASK 0x0000000000000080UL 302 303/* Bits in the storage key */ 304#define _PAGE_CHANGED 0x02 /* HW changed bit */ 305#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 306 307#endif /* __s390x__ */ 308 309/* 310 * Page protection definitions. 311 */ 312#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 313#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 314#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 315 316#define PAGE_KERNEL PAGE_RW 317#define PAGE_COPY PAGE_RO 318 319/* 320 * The S390 can't do page protection for execute, and considers that the 321 * same are read. Also, write permissions imply read permissions. This is 322 * the closest we can get.. 323 */ 324 /*xwr*/ 325#define __P000 PAGE_NONE 326#define __P001 PAGE_RO 327#define __P010 PAGE_RO 328#define __P011 PAGE_RO 329#define __P100 PAGE_RO 330#define __P101 PAGE_RO 331#define __P110 PAGE_RO 332#define __P111 PAGE_RO 333 334#define __S000 PAGE_NONE 335#define __S001 PAGE_RO 336#define __S010 PAGE_RW 337#define __S011 PAGE_RW 338#define __S100 PAGE_RO 339#define __S101 PAGE_RO 340#define __S110 PAGE_RW 341#define __S111 PAGE_RW 342 343/* 344 * Certain architectures need to do special things when PTEs 345 * within a page table are directly modified. Thus, the following 346 * hook is made available. 347 */ 348static inline void set_pte(pte_t *pteptr, pte_t pteval) 349{ 350 *pteptr = pteval; 351} 352#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 353 354/* 355 * pgd/pmd/pte query functions 356 */ 357#ifndef __s390x__ 358 359static inline int pgd_present(pgd_t pgd) { return 1; } 360static inline int pgd_none(pgd_t pgd) { return 0; } 361static inline int pgd_bad(pgd_t pgd) { return 0; } 362 363static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } 364static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } 365static inline int pmd_bad(pmd_t pmd) 366{ 367 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; 368} 369 370#else /* __s390x__ */ 371 372static inline int pgd_present(pgd_t pgd) 373{ 374 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; 375} 376 377static inline int pgd_none(pgd_t pgd) 378{ 379 return pgd_val(pgd) & _PGD_ENTRY_INV; 380} 381 382static inline int pgd_bad(pgd_t pgd) 383{ 384 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; 385} 386 387static inline int pmd_present(pmd_t pmd) 388{ 389 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; 390} 391 392static inline int pmd_none(pmd_t pmd) 393{ 394 return pmd_val(pmd) & _PMD_ENTRY_INV; 395} 396 397static inline int pmd_bad(pmd_t pmd) 398{ 399 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; 400} 401 402#endif /* __s390x__ */ 403 404static inline int pte_none(pte_t pte) 405{ 406 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 407} 408 409static inline int pte_present(pte_t pte) 410{ 411 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 412 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 413 (!(pte_val(pte) & _PAGE_INVALID) && 414 !(pte_val(pte) & _PAGE_SWT)); 415} 416 417static inline int pte_file(pte_t pte) 418{ 419 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 420 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 421} 422 423#define pte_same(a,b) (pte_val(a) == pte_val(b)) 424 425/* 426 * query functions pte_write/pte_dirty/pte_young only work if 427 * pte_present() is true. Undefined behaviour if not.. 428 */ 429static inline int pte_write(pte_t pte) 430{ 431 return (pte_val(pte) & _PAGE_RO) == 0; 432} 433 434static inline int pte_dirty(pte_t pte) 435{ 436 /* A pte is neither clean nor dirty on s/390. The dirty bit 437 * is in the storage key. See page_test_and_clear_dirty for 438 * details. 439 */ 440 return 0; 441} 442 443static inline int pte_young(pte_t pte) 444{ 445 /* A pte is neither young nor old on s/390. The young bit 446 * is in the storage key. See page_test_and_clear_young for 447 * details. 448 */ 449 return 0; 450} 451 452static inline int pte_read(pte_t pte) 453{ 454 /* All pages are readable since we don't use the fetch 455 * protection bit in the storage key. 456 */ 457 return 1; 458} 459 460/* 461 * pgd/pmd/pte modification functions 462 */ 463 464#ifndef __s390x__ 465 466static inline void pgd_clear(pgd_t * pgdp) { } 467 468static inline void pmd_clear(pmd_t * pmdp) 469{ 470 pmd_val(pmdp[0]) = _PAGE_TABLE_INV; 471 pmd_val(pmdp[1]) = _PAGE_TABLE_INV; 472 pmd_val(pmdp[2]) = _PAGE_TABLE_INV; 473 pmd_val(pmdp[3]) = _PAGE_TABLE_INV; 474} 475 476#else /* __s390x__ */ 477 478static inline void pgd_clear(pgd_t * pgdp) 479{ 480 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; 481} 482 483static inline void pmd_clear(pmd_t * pmdp) 484{ 485 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 486 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 487} 488 489#endif /* __s390x__ */ 490 491static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 492{ 493 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 494} 495 496/* 497 * The following pte modification functions only work if 498 * pte_present() is true. Undefined behaviour if not.. 499 */ 500static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 501{ 502 pte_val(pte) &= PAGE_MASK; 503 pte_val(pte) |= pgprot_val(newprot); 504 return pte; 505} 506 507static inline pte_t pte_wrprotect(pte_t pte) 508{ 509 /* Do not clobber _PAGE_TYPE_NONE pages! */ 510 if (!(pte_val(pte) & _PAGE_INVALID)) 511 pte_val(pte) |= _PAGE_RO; 512 return pte; 513} 514 515static inline pte_t pte_mkwrite(pte_t pte) 516{ 517 pte_val(pte) &= ~_PAGE_RO; 518 return pte; 519} 520 521static inline pte_t pte_mkclean(pte_t pte) 522{ 523 /* The only user of pte_mkclean is the fork() code. 524 We must *not* clear the *physical* page dirty bit 525 just because fork() wants to clear the dirty bit in 526 *one* of the page's mappings. So we just do nothing. */ 527 return pte; 528} 529 530static inline pte_t pte_mkdirty(pte_t pte) 531{ 532 /* We do not explicitly set the dirty bit because the 533 * sske instruction is slow. It is faster to let the 534 * next instruction set the dirty bit. 535 */ 536 return pte; 537} 538 539static inline pte_t pte_mkold(pte_t pte) 540{ 541 /* S/390 doesn't keep its dirty/referenced bit in the pte. 542 * There is no point in clearing the real referenced bit. 543 */ 544 return pte; 545} 546 547static inline pte_t pte_mkyoung(pte_t pte) 548{ 549 /* S/390 doesn't keep its dirty/referenced bit in the pte. 550 * There is no point in setting the real referenced bit. 551 */ 552 return pte; 553} 554 555static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 556{ 557 return 0; 558} 559 560static inline int 561ptep_clear_flush_young(struct vm_area_struct *vma, 562 unsigned long address, pte_t *ptep) 563{ 564 /* No need to flush TLB; bits are in storage key */ 565 return ptep_test_and_clear_young(vma, address, ptep); 566} 567 568static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 569{ 570 return 0; 571} 572 573static inline int 574ptep_clear_flush_dirty(struct vm_area_struct *vma, 575 unsigned long address, pte_t *ptep) 576{ 577 /* No need to flush TLB; bits are in storage key */ 578 return ptep_test_and_clear_dirty(vma, address, ptep); 579} 580 581static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 582{ 583 pte_t pte = *ptep; 584 pte_clear(mm, addr, ptep); 585 return pte; 586} 587 588static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 589{ 590 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 591#ifndef __s390x__ 592 /* S390 has 1mb segments, we are emulating 4MB segments */ 593 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 594#else 595 /* ipte in zarch mode can do the math */ 596 pte_t *pto = ptep; 597#endif 598 asm volatile( 599 " ipte %2,%3" 600 : "=m" (*ptep) : "m" (*ptep), 601 "a" (pto), "a" (address)); 602 } 603 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 604} 605 606static inline pte_t 607ptep_clear_flush(struct vm_area_struct *vma, 608 unsigned long address, pte_t *ptep) 609{ 610 pte_t pte = *ptep; 611 612 __ptep_ipte(address, ptep); 613 return pte; 614} 615 616static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 617{ 618 pte_t old_pte = *ptep; 619 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 620} 621 622static inline void 623ptep_establish(struct vm_area_struct *vma, 624 unsigned long address, pte_t *ptep, 625 pte_t entry) 626{ 627 ptep_clear_flush(vma, address, ptep); 628 set_pte(ptep, entry); 629} 630 631#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 632 ptep_establish(__vma, __address, __ptep, __entry) 633 634/* 635 * Test and clear dirty bit in storage key. 636 * We can't clear the changed bit atomically. This is a potential 637 * race against modification of the referenced bit. This function 638 * should therefore only be called if it is not mapped in any 639 * address space. 640 */ 641static inline int page_test_and_clear_dirty(struct page *page) 642{ 643 unsigned long physpage = page_to_phys(page); 644 int skey = page_get_storage_key(physpage); 645 646 if (skey & _PAGE_CHANGED) 647 page_set_storage_key(physpage, skey & ~_PAGE_CHANGED); 648 return skey & _PAGE_CHANGED; 649} 650 651/* 652 * Test and clear referenced bit in storage key. 653 */ 654static inline int page_test_and_clear_young(struct page *page) 655{ 656 unsigned long physpage = page_to_phys(page); 657 int ccode; 658 659 asm volatile( 660 " rrbe 0,%1\n" 661 " ipm %0\n" 662 " srl %0,28\n" 663 : "=d" (ccode) : "a" (physpage) : "cc" ); 664 return ccode & 2; 665} 666 667/* 668 * Conversion functions: convert a page and protection to a page entry, 669 * and a page entry and page directory to the page they refer to. 670 */ 671static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 672{ 673 pte_t __pte; 674 pte_val(__pte) = physpage + pgprot_val(pgprot); 675 return __pte; 676} 677 678static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 679{ 680 unsigned long physpage = page_to_phys(page); 681 682 return mk_pte_phys(physpage, pgprot); 683} 684 685static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 686{ 687 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 688 689 return mk_pte_phys(physpage, pgprot); 690} 691 692#ifdef __s390x__ 693 694static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 695{ 696 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 697 698 return __pmd(physpage + pgprot_val(pgprot)); 699} 700 701#endif /* __s390x__ */ 702 703#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 704#define pte_page(x) pfn_to_page(pte_pfn(x)) 705 706#define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK) 707 708#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 709 710#define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK) 711 712#define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 713 714/* to find an entry in a page-table-directory */ 715#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 716#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 717 718/* to find an entry in a kernel page-table-directory */ 719#define pgd_offset_k(address) pgd_offset(&init_mm, address) 720 721#ifndef __s390x__ 722 723/* Find an entry in the second-level page table.. */ 724static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 725{ 726 return (pmd_t *) dir; 727} 728 729#else /* __s390x__ */ 730 731/* Find an entry in the second-level page table.. */ 732#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 733#define pmd_offset(dir,addr) \ 734 ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr)) 735 736#endif /* __s390x__ */ 737 738/* Find an entry in the third-level page table.. */ 739#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 740#define pte_offset_kernel(pmd, address) \ 741 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 742#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 743#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 744#define pte_unmap(pte) do { } while (0) 745#define pte_unmap_nested(pte) do { } while (0) 746 747/* 748 * 31 bit swap entry format: 749 * A page-table entry has some bits we have to treat in a special way. 750 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 751 * exception will occur instead of a page translation exception. The 752 * specifiation exception has the bad habit not to store necessary 753 * information in the lowcore. 754 * Bit 21 and bit 22 are the page invalid bit and the page protection 755 * bit. We set both to indicate a swapped page. 756 * Bit 30 and 31 are used to distinguish the different page types. For 757 * a swapped page these bits need to be zero. 758 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 759 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 760 * plus 24 for the offset. 761 * 0| offset |0110|o|type |00| 762 * 0 0000000001111111111 2222 2 22222 33 763 * 0 1234567890123456789 0123 4 56789 01 764 * 765 * 64 bit swap entry format: 766 * A page-table entry has some bits we have to treat in a special way. 767 * Bits 52 and bit 55 have to be zero, otherwise an specification 768 * exception will occur instead of a page translation exception. The 769 * specifiation exception has the bad habit not to store necessary 770 * information in the lowcore. 771 * Bit 53 and bit 54 are the page invalid bit and the page protection 772 * bit. We set both to indicate a swapped page. 773 * Bit 62 and 63 are used to distinguish the different page types. For 774 * a swapped page these bits need to be zero. 775 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 776 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 777 * plus 56 for the offset. 778 * | offset |0110|o|type |00| 779 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 780 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 781 */ 782#ifndef __s390x__ 783#define __SWP_OFFSET_MASK (~0UL >> 12) 784#else 785#define __SWP_OFFSET_MASK (~0UL >> 11) 786#endif 787static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 788{ 789 pte_t pte; 790 offset &= __SWP_OFFSET_MASK; 791 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 792 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 793 return pte; 794} 795 796#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 797#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 798#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 799 800#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 801#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 802 803#ifndef __s390x__ 804# define PTE_FILE_MAX_BITS 26 805#else /* __s390x__ */ 806# define PTE_FILE_MAX_BITS 59 807#endif /* __s390x__ */ 808 809#define pte_to_pgoff(__pte) \ 810 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 811 812#define pgoff_to_pte(__off) \ 813 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 814 | _PAGE_TYPE_FILE }) 815 816#endif /* !__ASSEMBLY__ */ 817 818#define kern_addr_valid(addr) (1) 819 820extern int add_shared_memory(unsigned long start, unsigned long size); 821extern int remove_shared_memory(unsigned long start, unsigned long size); 822 823/* 824 * No page table caches to initialise 825 */ 826#define pgtable_cache_init() do { } while (0) 827 828#define __HAVE_ARCH_MEMMAP_INIT 829extern void memmap_init(unsigned long, int, unsigned long, unsigned long); 830 831#define __HAVE_ARCH_PTEP_ESTABLISH 832#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 833#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 834#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 835#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 836#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH 837#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 838#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 839#define __HAVE_ARCH_PTEP_SET_WRPROTECT 840#define __HAVE_ARCH_PTE_SAME 841#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY 842#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 843#include <asm-generic/pgtable.h> 844 845#endif /* _S390_PAGE_H */ 846