at v2.6.20 33 kB view raw
1/* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31#include <linux/kernel.h> 32#include <linux/module.h> 33#include <linux/init.h> 34#include <linux/cpufreq.h> 35#include <linux/proc_fs.h> 36#include <linux/seq_file.h> 37#include <linux/acpi.h> 38#include <linux/dmi.h> 39#include <linux/moduleparam.h> 40#include <linux/sched.h> /* need_resched() */ 41#include <linux/latency.h> 42 43#include <asm/io.h> 44#include <asm/uaccess.h> 45 46#include <acpi/acpi_bus.h> 47#include <acpi/processor.h> 48 49#define ACPI_PROCESSOR_COMPONENT 0x01000000 50#define ACPI_PROCESSOR_CLASS "processor" 51#define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver" 52#define _COMPONENT ACPI_PROCESSOR_COMPONENT 53ACPI_MODULE_NAME("acpi_processor") 54#define ACPI_PROCESSOR_FILE_POWER "power" 55#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000) 56#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 57#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 58static void (*pm_idle_save) (void) __read_mostly; 59module_param(max_cstate, uint, 0644); 60 61static unsigned int nocst __read_mostly; 62module_param(nocst, uint, 0000); 63 64/* 65 * bm_history -- bit-mask with a bit per jiffy of bus-master activity 66 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms 67 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms 68 * 100 HZ: 0x0000000F: 4 jiffies = 40ms 69 * reduce history for more aggressive entry into C3 70 */ 71static unsigned int bm_history __read_mostly = 72 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); 73module_param(bm_history, uint, 0644); 74/* -------------------------------------------------------------------------- 75 Power Management 76 -------------------------------------------------------------------------- */ 77 78/* 79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 80 * For now disable this. Probably a bug somewhere else. 81 * 82 * To skip this limit, boot/load with a large max_cstate limit. 83 */ 84static int set_max_cstate(struct dmi_system_id *id) 85{ 86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 87 return 0; 88 89 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 90 " Override with \"processor.max_cstate=%d\"\n", id->ident, 91 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 92 93 max_cstate = (long)id->driver_data; 94 95 return 0; 96} 97 98/* Actually this shouldn't be __cpuinitdata, would be better to fix the 99 callers to only run once -AK */ 100static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 101 { set_max_cstate, "IBM ThinkPad R40e", { 102 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 103 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, 104 { set_max_cstate, "IBM ThinkPad R40e", { 105 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 106 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, 107 { set_max_cstate, "IBM ThinkPad R40e", { 108 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 109 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, 110 { set_max_cstate, "IBM ThinkPad R40e", { 111 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 112 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, 113 { set_max_cstate, "IBM ThinkPad R40e", { 114 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 115 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, 116 { set_max_cstate, "IBM ThinkPad R40e", { 117 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 118 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, 119 { set_max_cstate, "IBM ThinkPad R40e", { 120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 121 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, 122 { set_max_cstate, "IBM ThinkPad R40e", { 123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 124 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, 125 { set_max_cstate, "IBM ThinkPad R40e", { 126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 127 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, 128 { set_max_cstate, "IBM ThinkPad R40e", { 129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 130 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, 131 { set_max_cstate, "IBM ThinkPad R40e", { 132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 133 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, 134 { set_max_cstate, "IBM ThinkPad R40e", { 135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 136 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, 137 { set_max_cstate, "IBM ThinkPad R40e", { 138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 139 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, 140 { set_max_cstate, "IBM ThinkPad R40e", { 141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 142 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, 143 { set_max_cstate, "IBM ThinkPad R40e", { 144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 145 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, 146 { set_max_cstate, "IBM ThinkPad R40e", { 147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 148 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, 149 { set_max_cstate, "Medion 41700", { 150 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 151 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, 152 { set_max_cstate, "Clevo 5600D", { 153 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 154 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 155 (void *)2}, 156 {}, 157}; 158 159static inline u32 ticks_elapsed(u32 t1, u32 t2) 160{ 161 if (t2 >= t1) 162 return (t2 - t1); 163 else if (!acpi_fadt.tmr_val_ext) 164 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); 165 else 166 return ((0xFFFFFFFF - t1) + t2); 167} 168 169static void 170acpi_processor_power_activate(struct acpi_processor *pr, 171 struct acpi_processor_cx *new) 172{ 173 struct acpi_processor_cx *old; 174 175 if (!pr || !new) 176 return; 177 178 old = pr->power.state; 179 180 if (old) 181 old->promotion.count = 0; 182 new->demotion.count = 0; 183 184 /* Cleanup from old state. */ 185 if (old) { 186 switch (old->type) { 187 case ACPI_STATE_C3: 188 /* Disable bus master reload */ 189 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) 190 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, 191 ACPI_MTX_DO_NOT_LOCK); 192 break; 193 } 194 } 195 196 /* Prepare to use new state. */ 197 switch (new->type) { 198 case ACPI_STATE_C3: 199 /* Enable bus master reload */ 200 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) 201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, 202 ACPI_MTX_DO_NOT_LOCK); 203 break; 204 } 205 206 pr->power.state = new; 207 208 return; 209} 210 211static void acpi_safe_halt(void) 212{ 213 current_thread_info()->status &= ~TS_POLLING; 214 /* 215 * TS_POLLING-cleared state must be visible before we 216 * test NEED_RESCHED: 217 */ 218 smp_mb(); 219 if (!need_resched()) 220 safe_halt(); 221 current_thread_info()->status |= TS_POLLING; 222} 223 224static atomic_t c3_cpu_count; 225 226/* Common C-state entry for C2, C3, .. */ 227static void acpi_cstate_enter(struct acpi_processor_cx *cstate) 228{ 229 if (cstate->space_id == ACPI_CSTATE_FFH) { 230 /* Call into architectural FFH based C-state */ 231 acpi_processor_ffh_cstate_enter(cstate); 232 } else { 233 int unused; 234 /* IO port based C-state */ 235 inb(cstate->address); 236 /* Dummy wait op - must do something useless after P_LVL2 read 237 because chipsets cannot guarantee that STPCLK# signal 238 gets asserted in time to freeze execution properly. */ 239 unused = inl(acpi_fadt.xpm_tmr_blk.address); 240 } 241} 242 243static void acpi_processor_idle(void) 244{ 245 struct acpi_processor *pr = NULL; 246 struct acpi_processor_cx *cx = NULL; 247 struct acpi_processor_cx *next_state = NULL; 248 int sleep_ticks = 0; 249 u32 t1, t2 = 0; 250 251 pr = processors[smp_processor_id()]; 252 if (!pr) 253 return; 254 255 /* 256 * Interrupts must be disabled during bus mastering calculations and 257 * for C2/C3 transitions. 258 */ 259 local_irq_disable(); 260 261 /* 262 * Check whether we truly need to go idle, or should 263 * reschedule: 264 */ 265 if (unlikely(need_resched())) { 266 local_irq_enable(); 267 return; 268 } 269 270 cx = pr->power.state; 271 if (!cx) { 272 if (pm_idle_save) 273 pm_idle_save(); 274 else 275 acpi_safe_halt(); 276 return; 277 } 278 279 /* 280 * Check BM Activity 281 * ----------------- 282 * Check for bus mastering activity (if required), record, and check 283 * for demotion. 284 */ 285 if (pr->flags.bm_check) { 286 u32 bm_status = 0; 287 unsigned long diff = jiffies - pr->power.bm_check_timestamp; 288 289 if (diff > 31) 290 diff = 31; 291 292 pr->power.bm_activity <<= diff; 293 294 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, 295 &bm_status, ACPI_MTX_DO_NOT_LOCK); 296 if (bm_status) { 297 pr->power.bm_activity |= 0x1; 298 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 299 1, ACPI_MTX_DO_NOT_LOCK); 300 } 301 /* 302 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 303 * the true state of bus mastering activity; forcing us to 304 * manually check the BMIDEA bit of each IDE channel. 305 */ 306 else if (errata.piix4.bmisx) { 307 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 308 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 309 pr->power.bm_activity |= 0x1; 310 } 311 312 pr->power.bm_check_timestamp = jiffies; 313 314 /* 315 * If bus mastering is or was active this jiffy, demote 316 * to avoid a faulty transition. Note that the processor 317 * won't enter a low-power state during this call (to this 318 * function) but should upon the next. 319 * 320 * TBD: A better policy might be to fallback to the demotion 321 * state (use it for this quantum only) istead of 322 * demoting -- and rely on duration as our sole demotion 323 * qualification. This may, however, introduce DMA 324 * issues (e.g. floppy DMA transfer overrun/underrun). 325 */ 326 if ((pr->power.bm_activity & 0x1) && 327 cx->demotion.threshold.bm) { 328 local_irq_enable(); 329 next_state = cx->demotion.state; 330 goto end; 331 } 332 } 333 334#ifdef CONFIG_HOTPLUG_CPU 335 /* 336 * Check for P_LVL2_UP flag before entering C2 and above on 337 * an SMP system. We do it here instead of doing it at _CST/P_LVL 338 * detection phase, to work cleanly with logical CPU hotplug. 339 */ 340 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 341 !pr->flags.has_cst && !acpi_fadt.plvl2_up) 342 cx = &pr->power.states[ACPI_STATE_C1]; 343#endif 344 345 /* 346 * Sleep: 347 * ------ 348 * Invoke the current Cx state to put the processor to sleep. 349 */ 350 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { 351 current_thread_info()->status &= ~TS_POLLING; 352 /* 353 * TS_POLLING-cleared state must be visible before we 354 * test NEED_RESCHED: 355 */ 356 smp_mb(); 357 if (need_resched()) { 358 current_thread_info()->status |= TS_POLLING; 359 local_irq_enable(); 360 return; 361 } 362 } 363 364 switch (cx->type) { 365 366 case ACPI_STATE_C1: 367 /* 368 * Invoke C1. 369 * Use the appropriate idle routine, the one that would 370 * be used without acpi C-states. 371 */ 372 if (pm_idle_save) 373 pm_idle_save(); 374 else 375 acpi_safe_halt(); 376 377 /* 378 * TBD: Can't get time duration while in C1, as resumes 379 * go to an ISR rather than here. Need to instrument 380 * base interrupt handler. 381 */ 382 sleep_ticks = 0xFFFFFFFF; 383 break; 384 385 case ACPI_STATE_C2: 386 /* Get start time (ticks) */ 387 t1 = inl(acpi_fadt.xpm_tmr_blk.address); 388 /* Invoke C2 */ 389 acpi_cstate_enter(cx); 390 /* Get end time (ticks) */ 391 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 392 393#ifdef CONFIG_GENERIC_TIME 394 /* TSC halts in C2, so notify users */ 395 mark_tsc_unstable(); 396#endif 397 /* Re-enable interrupts */ 398 local_irq_enable(); 399 current_thread_info()->status |= TS_POLLING; 400 /* Compute time (ticks) that we were actually asleep */ 401 sleep_ticks = 402 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD; 403 break; 404 405 case ACPI_STATE_C3: 406 407 if (pr->flags.bm_check) { 408 if (atomic_inc_return(&c3_cpu_count) == 409 num_online_cpus()) { 410 /* 411 * All CPUs are trying to go to C3 412 * Disable bus master arbitration 413 */ 414 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, 415 ACPI_MTX_DO_NOT_LOCK); 416 } 417 } else { 418 /* SMP with no shared cache... Invalidate cache */ 419 ACPI_FLUSH_CPU_CACHE(); 420 } 421 422 /* Get start time (ticks) */ 423 t1 = inl(acpi_fadt.xpm_tmr_blk.address); 424 /* Invoke C3 */ 425 acpi_cstate_enter(cx); 426 /* Get end time (ticks) */ 427 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 428 if (pr->flags.bm_check) { 429 /* Enable bus master arbitration */ 430 atomic_dec(&c3_cpu_count); 431 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, 432 ACPI_MTX_DO_NOT_LOCK); 433 } 434 435#ifdef CONFIG_GENERIC_TIME 436 /* TSC halts in C3, so notify users */ 437 mark_tsc_unstable(); 438#endif 439 /* Re-enable interrupts */ 440 local_irq_enable(); 441 current_thread_info()->status |= TS_POLLING; 442 /* Compute time (ticks) that we were actually asleep */ 443 sleep_ticks = 444 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD; 445 break; 446 447 default: 448 local_irq_enable(); 449 return; 450 } 451 cx->usage++; 452 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) 453 cx->time += sleep_ticks; 454 455 next_state = pr->power.state; 456 457#ifdef CONFIG_HOTPLUG_CPU 458 /* Don't do promotion/demotion */ 459 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && 460 !pr->flags.has_cst && !acpi_fadt.plvl2_up) { 461 next_state = cx; 462 goto end; 463 } 464#endif 465 466 /* 467 * Promotion? 468 * ---------- 469 * Track the number of longs (time asleep is greater than threshold) 470 * and promote when the count threshold is reached. Note that bus 471 * mastering activity may prevent promotions. 472 * Do not promote above max_cstate. 473 */ 474 if (cx->promotion.state && 475 ((cx->promotion.state - pr->power.states) <= max_cstate)) { 476 if (sleep_ticks > cx->promotion.threshold.ticks && 477 cx->promotion.state->latency <= system_latency_constraint()) { 478 cx->promotion.count++; 479 cx->demotion.count = 0; 480 if (cx->promotion.count >= 481 cx->promotion.threshold.count) { 482 if (pr->flags.bm_check) { 483 if (! 484 (pr->power.bm_activity & cx-> 485 promotion.threshold.bm)) { 486 next_state = 487 cx->promotion.state; 488 goto end; 489 } 490 } else { 491 next_state = cx->promotion.state; 492 goto end; 493 } 494 } 495 } 496 } 497 498 /* 499 * Demotion? 500 * --------- 501 * Track the number of shorts (time asleep is less than time threshold) 502 * and demote when the usage threshold is reached. 503 */ 504 if (cx->demotion.state) { 505 if (sleep_ticks < cx->demotion.threshold.ticks) { 506 cx->demotion.count++; 507 cx->promotion.count = 0; 508 if (cx->demotion.count >= cx->demotion.threshold.count) { 509 next_state = cx->demotion.state; 510 goto end; 511 } 512 } 513 } 514 515 end: 516 /* 517 * Demote if current state exceeds max_cstate 518 * or if the latency of the current state is unacceptable 519 */ 520 if ((pr->power.state - pr->power.states) > max_cstate || 521 pr->power.state->latency > system_latency_constraint()) { 522 if (cx->demotion.state) 523 next_state = cx->demotion.state; 524 } 525 526 /* 527 * New Cx State? 528 * ------------- 529 * If we're going to start using a new Cx state we must clean up 530 * from the previous and prepare to use the new. 531 */ 532 if (next_state != pr->power.state) 533 acpi_processor_power_activate(pr, next_state); 534} 535 536static int acpi_processor_set_power_policy(struct acpi_processor *pr) 537{ 538 unsigned int i; 539 unsigned int state_is_set = 0; 540 struct acpi_processor_cx *lower = NULL; 541 struct acpi_processor_cx *higher = NULL; 542 struct acpi_processor_cx *cx; 543 544 545 if (!pr) 546 return -EINVAL; 547 548 /* 549 * This function sets the default Cx state policy (OS idle handler). 550 * Our scheme is to promote quickly to C2 but more conservatively 551 * to C3. We're favoring C2 for its characteristics of low latency 552 * (quick response), good power savings, and ability to allow bus 553 * mastering activity. Note that the Cx state policy is completely 554 * customizable and can be altered dynamically. 555 */ 556 557 /* startup state */ 558 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 559 cx = &pr->power.states[i]; 560 if (!cx->valid) 561 continue; 562 563 if (!state_is_set) 564 pr->power.state = cx; 565 state_is_set++; 566 break; 567 } 568 569 if (!state_is_set) 570 return -ENODEV; 571 572 /* demotion */ 573 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 574 cx = &pr->power.states[i]; 575 if (!cx->valid) 576 continue; 577 578 if (lower) { 579 cx->demotion.state = lower; 580 cx->demotion.threshold.ticks = cx->latency_ticks; 581 cx->demotion.threshold.count = 1; 582 if (cx->type == ACPI_STATE_C3) 583 cx->demotion.threshold.bm = bm_history; 584 } 585 586 lower = cx; 587 } 588 589 /* promotion */ 590 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { 591 cx = &pr->power.states[i]; 592 if (!cx->valid) 593 continue; 594 595 if (higher) { 596 cx->promotion.state = higher; 597 cx->promotion.threshold.ticks = cx->latency_ticks; 598 if (cx->type >= ACPI_STATE_C2) 599 cx->promotion.threshold.count = 4; 600 else 601 cx->promotion.threshold.count = 10; 602 if (higher->type == ACPI_STATE_C3) 603 cx->promotion.threshold.bm = bm_history; 604 } 605 606 higher = cx; 607 } 608 609 return 0; 610} 611 612static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 613{ 614 615 if (!pr) 616 return -EINVAL; 617 618 if (!pr->pblk) 619 return -ENODEV; 620 621 /* if info is obtained from pblk/fadt, type equals state */ 622 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 623 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 624 625#ifndef CONFIG_HOTPLUG_CPU 626 /* 627 * Check for P_LVL2_UP flag before entering C2 and above on 628 * an SMP system. 629 */ 630 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up) 631 return -ENODEV; 632#endif 633 634 /* determine C2 and C3 address from pblk */ 635 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 636 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 637 638 /* determine latencies from FADT */ 639 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat; 640 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat; 641 642 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 643 "lvl2[0x%08x] lvl3[0x%08x]\n", 644 pr->power.states[ACPI_STATE_C2].address, 645 pr->power.states[ACPI_STATE_C3].address)); 646 647 return 0; 648} 649 650static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 651{ 652 if (!pr->power.states[ACPI_STATE_C1].valid) { 653 /* set the first C-State to C1 */ 654 /* all processors need to support C1 */ 655 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 656 pr->power.states[ACPI_STATE_C1].valid = 1; 657 } 658 /* the C0 state only exists as a filler in our array */ 659 pr->power.states[ACPI_STATE_C0].valid = 1; 660 return 0; 661} 662 663static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 664{ 665 acpi_status status = 0; 666 acpi_integer count; 667 int current_count; 668 int i; 669 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 670 union acpi_object *cst; 671 672 673 if (nocst) 674 return -ENODEV; 675 676 current_count = 0; 677 678 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 679 if (ACPI_FAILURE(status)) { 680 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 681 return -ENODEV; 682 } 683 684 cst = buffer.pointer; 685 686 /* There must be at least 2 elements */ 687 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 688 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 689 status = -EFAULT; 690 goto end; 691 } 692 693 count = cst->package.elements[0].integer.value; 694 695 /* Validate number of power states. */ 696 if (count < 1 || count != cst->package.count - 1) { 697 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 698 status = -EFAULT; 699 goto end; 700 } 701 702 /* Tell driver that at least _CST is supported. */ 703 pr->flags.has_cst = 1; 704 705 for (i = 1; i <= count; i++) { 706 union acpi_object *element; 707 union acpi_object *obj; 708 struct acpi_power_register *reg; 709 struct acpi_processor_cx cx; 710 711 memset(&cx, 0, sizeof(cx)); 712 713 element = &(cst->package.elements[i]); 714 if (element->type != ACPI_TYPE_PACKAGE) 715 continue; 716 717 if (element->package.count != 4) 718 continue; 719 720 obj = &(element->package.elements[0]); 721 722 if (obj->type != ACPI_TYPE_BUFFER) 723 continue; 724 725 reg = (struct acpi_power_register *)obj->buffer.pointer; 726 727 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 728 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 729 continue; 730 731 /* There should be an easy way to extract an integer... */ 732 obj = &(element->package.elements[1]); 733 if (obj->type != ACPI_TYPE_INTEGER) 734 continue; 735 736 cx.type = obj->integer.value; 737 /* 738 * Some buggy BIOSes won't list C1 in _CST - 739 * Let acpi_processor_get_power_info_default() handle them later 740 */ 741 if (i == 1 && cx.type != ACPI_STATE_C1) 742 current_count++; 743 744 cx.address = reg->address; 745 cx.index = current_count + 1; 746 747 cx.space_id = ACPI_CSTATE_SYSTEMIO; 748 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 749 if (acpi_processor_ffh_cstate_probe 750 (pr->id, &cx, reg) == 0) { 751 cx.space_id = ACPI_CSTATE_FFH; 752 } else if (cx.type != ACPI_STATE_C1) { 753 /* 754 * C1 is a special case where FIXED_HARDWARE 755 * can be handled in non-MWAIT way as well. 756 * In that case, save this _CST entry info. 757 * That is, we retain space_id of SYSTEM_IO for 758 * halt based C1. 759 * Otherwise, ignore this info and continue. 760 */ 761 continue; 762 } 763 } 764 765 obj = &(element->package.elements[2]); 766 if (obj->type != ACPI_TYPE_INTEGER) 767 continue; 768 769 cx.latency = obj->integer.value; 770 771 obj = &(element->package.elements[3]); 772 if (obj->type != ACPI_TYPE_INTEGER) 773 continue; 774 775 cx.power = obj->integer.value; 776 777 current_count++; 778 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 779 780 /* 781 * We support total ACPI_PROCESSOR_MAX_POWER - 1 782 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 783 */ 784 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 785 printk(KERN_WARNING 786 "Limiting number of power states to max (%d)\n", 787 ACPI_PROCESSOR_MAX_POWER); 788 printk(KERN_WARNING 789 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 790 break; 791 } 792 } 793 794 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 795 current_count)); 796 797 /* Validate number of power states discovered */ 798 if (current_count < 2) 799 status = -EFAULT; 800 801 end: 802 kfree(buffer.pointer); 803 804 return status; 805} 806 807static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) 808{ 809 810 if (!cx->address) 811 return; 812 813 /* 814 * C2 latency must be less than or equal to 100 815 * microseconds. 816 */ 817 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 818 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 819 "latency too large [%d]\n", cx->latency)); 820 return; 821 } 822 823 /* 824 * Otherwise we've met all of our C2 requirements. 825 * Normalize the C2 latency to expidite policy 826 */ 827 cx->valid = 1; 828 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 829 830 return; 831} 832 833static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 834 struct acpi_processor_cx *cx) 835{ 836 static int bm_check_flag; 837 838 839 if (!cx->address) 840 return; 841 842 /* 843 * C3 latency must be less than or equal to 1000 844 * microseconds. 845 */ 846 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 847 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 848 "latency too large [%d]\n", cx->latency)); 849 return; 850 } 851 852 /* 853 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 854 * DMA transfers are used by any ISA device to avoid livelock. 855 * Note that we could disable Type-F DMA (as recommended by 856 * the erratum), but this is known to disrupt certain ISA 857 * devices thus we take the conservative approach. 858 */ 859 else if (errata.piix4.fdma) { 860 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 861 "C3 not supported on PIIX4 with Type-F DMA\n")); 862 return; 863 } 864 865 /* All the logic here assumes flags.bm_check is same across all CPUs */ 866 if (!bm_check_flag) { 867 /* Determine whether bm_check is needed based on CPU */ 868 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 869 bm_check_flag = pr->flags.bm_check; 870 } else { 871 pr->flags.bm_check = bm_check_flag; 872 } 873 874 if (pr->flags.bm_check) { 875 /* bus mastering control is necessary */ 876 if (!pr->flags.bm_control) { 877 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 878 "C3 support requires bus mastering control\n")); 879 return; 880 } 881 } else { 882 /* 883 * WBINVD should be set in fadt, for C3 state to be 884 * supported on when bm_check is not required. 885 */ 886 if (acpi_fadt.wb_invd != 1) { 887 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 888 "Cache invalidation should work properly" 889 " for C3 to be enabled on SMP systems\n")); 890 return; 891 } 892 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 893 0, ACPI_MTX_DO_NOT_LOCK); 894 } 895 896 /* 897 * Otherwise we've met all of our C3 requirements. 898 * Normalize the C3 latency to expidite policy. Enable 899 * checking of bus mastering status (bm_check) so we can 900 * use this in our C3 policy 901 */ 902 cx->valid = 1; 903 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 904 905 return; 906} 907 908static int acpi_processor_power_verify(struct acpi_processor *pr) 909{ 910 unsigned int i; 911 unsigned int working = 0; 912 913#ifdef ARCH_APICTIMER_STOPS_ON_C3 914 int timer_broadcast = 0; 915 cpumask_t mask = cpumask_of_cpu(pr->id); 916 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1); 917#endif 918 919 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 920 struct acpi_processor_cx *cx = &pr->power.states[i]; 921 922 switch (cx->type) { 923 case ACPI_STATE_C1: 924 cx->valid = 1; 925 break; 926 927 case ACPI_STATE_C2: 928 acpi_processor_power_verify_c2(cx); 929#ifdef ARCH_APICTIMER_STOPS_ON_C3 930 /* Some AMD systems fake C3 as C2, but still 931 have timer troubles */ 932 if (cx->valid && 933 boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 934 timer_broadcast++; 935#endif 936 break; 937 938 case ACPI_STATE_C3: 939 acpi_processor_power_verify_c3(pr, cx); 940#ifdef ARCH_APICTIMER_STOPS_ON_C3 941 if (cx->valid) 942 timer_broadcast++; 943#endif 944 break; 945 } 946 947 if (cx->valid) 948 working++; 949 } 950 951#ifdef ARCH_APICTIMER_STOPS_ON_C3 952 if (timer_broadcast) 953 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1); 954#endif 955 956 return (working); 957} 958 959static int acpi_processor_get_power_info(struct acpi_processor *pr) 960{ 961 unsigned int i; 962 int result; 963 964 965 /* NOTE: the idle thread may not be running while calling 966 * this function */ 967 968 /* Zero initialize all the C-states info. */ 969 memset(pr->power.states, 0, sizeof(pr->power.states)); 970 971 result = acpi_processor_get_power_info_cst(pr); 972 if (result == -ENODEV) 973 result = acpi_processor_get_power_info_fadt(pr); 974 975 if (result) 976 return result; 977 978 acpi_processor_get_power_info_default(pr); 979 980 pr->power.count = acpi_processor_power_verify(pr); 981 982 /* 983 * Set Default Policy 984 * ------------------ 985 * Now that we know which states are supported, set the default 986 * policy. Note that this policy can be changed dynamically 987 * (e.g. encourage deeper sleeps to conserve battery life when 988 * not on AC). 989 */ 990 result = acpi_processor_set_power_policy(pr); 991 if (result) 992 return result; 993 994 /* 995 * if one state of type C2 or C3 is available, mark this 996 * CPU as being "idle manageable" 997 */ 998 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 999 if (pr->power.states[i].valid) { 1000 pr->power.count = i; 1001 if (pr->power.states[i].type >= ACPI_STATE_C2) 1002 pr->flags.power = 1; 1003 } 1004 } 1005 1006 return 0; 1007} 1008 1009int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1010{ 1011 int result = 0; 1012 1013 1014 if (!pr) 1015 return -EINVAL; 1016 1017 if (nocst) { 1018 return -ENODEV; 1019 } 1020 1021 if (!pr->flags.power_setup_done) 1022 return -ENODEV; 1023 1024 /* Fall back to the default idle loop */ 1025 pm_idle = pm_idle_save; 1026 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */ 1027 1028 pr->flags.power = 0; 1029 result = acpi_processor_get_power_info(pr); 1030 if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) 1031 pm_idle = acpi_processor_idle; 1032 1033 return result; 1034} 1035 1036/* proc interface */ 1037 1038static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 1039{ 1040 struct acpi_processor *pr = seq->private; 1041 unsigned int i; 1042 1043 1044 if (!pr) 1045 goto end; 1046 1047 seq_printf(seq, "active state: C%zd\n" 1048 "max_cstate: C%d\n" 1049 "bus master activity: %08x\n" 1050 "maximum allowed latency: %d usec\n", 1051 pr->power.state ? pr->power.state - pr->power.states : 0, 1052 max_cstate, (unsigned)pr->power.bm_activity, 1053 system_latency_constraint()); 1054 1055 seq_puts(seq, "states:\n"); 1056 1057 for (i = 1; i <= pr->power.count; i++) { 1058 seq_printf(seq, " %cC%d: ", 1059 (&pr->power.states[i] == 1060 pr->power.state ? '*' : ' '), i); 1061 1062 if (!pr->power.states[i].valid) { 1063 seq_puts(seq, "<not supported>\n"); 1064 continue; 1065 } 1066 1067 switch (pr->power.states[i].type) { 1068 case ACPI_STATE_C1: 1069 seq_printf(seq, "type[C1] "); 1070 break; 1071 case ACPI_STATE_C2: 1072 seq_printf(seq, "type[C2] "); 1073 break; 1074 case ACPI_STATE_C3: 1075 seq_printf(seq, "type[C3] "); 1076 break; 1077 default: 1078 seq_printf(seq, "type[--] "); 1079 break; 1080 } 1081 1082 if (pr->power.states[i].promotion.state) 1083 seq_printf(seq, "promotion[C%zd] ", 1084 (pr->power.states[i].promotion.state - 1085 pr->power.states)); 1086 else 1087 seq_puts(seq, "promotion[--] "); 1088 1089 if (pr->power.states[i].demotion.state) 1090 seq_printf(seq, "demotion[C%zd] ", 1091 (pr->power.states[i].demotion.state - 1092 pr->power.states)); 1093 else 1094 seq_puts(seq, "demotion[--] "); 1095 1096 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 1097 pr->power.states[i].latency, 1098 pr->power.states[i].usage, 1099 pr->power.states[i].time); 1100 } 1101 1102 end: 1103 return 0; 1104} 1105 1106static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 1107{ 1108 return single_open(file, acpi_processor_power_seq_show, 1109 PDE(inode)->data); 1110} 1111 1112static const struct file_operations acpi_processor_power_fops = { 1113 .open = acpi_processor_power_open_fs, 1114 .read = seq_read, 1115 .llseek = seq_lseek, 1116 .release = single_release, 1117}; 1118 1119#ifdef CONFIG_SMP 1120static void smp_callback(void *v) 1121{ 1122 /* we already woke the CPU up, nothing more to do */ 1123} 1124 1125/* 1126 * This function gets called when a part of the kernel has a new latency 1127 * requirement. This means we need to get all processors out of their C-state, 1128 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that 1129 * wakes them all right up. 1130 */ 1131static int acpi_processor_latency_notify(struct notifier_block *b, 1132 unsigned long l, void *v) 1133{ 1134 smp_call_function(smp_callback, NULL, 0, 1); 1135 return NOTIFY_OK; 1136} 1137 1138static struct notifier_block acpi_processor_latency_notifier = { 1139 .notifier_call = acpi_processor_latency_notify, 1140}; 1141#endif 1142 1143int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1144 struct acpi_device *device) 1145{ 1146 acpi_status status = 0; 1147 static int first_run; 1148 struct proc_dir_entry *entry = NULL; 1149 unsigned int i; 1150 1151 1152 if (!first_run) { 1153 dmi_check_system(processor_power_dmi_table); 1154 if (max_cstate < ACPI_C_STATES_MAX) 1155 printk(KERN_NOTICE 1156 "ACPI: processor limited to max C-state %d\n", 1157 max_cstate); 1158 first_run++; 1159#ifdef CONFIG_SMP 1160 register_latency_notifier(&acpi_processor_latency_notifier); 1161#endif 1162 } 1163 1164 if (!pr) 1165 return -EINVAL; 1166 1167 if (acpi_fadt.cst_cnt && !nocst) { 1168 status = 1169 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8); 1170 if (ACPI_FAILURE(status)) { 1171 ACPI_EXCEPTION((AE_INFO, status, 1172 "Notifying BIOS of _CST ability failed")); 1173 } 1174 } 1175 1176 acpi_processor_get_power_info(pr); 1177 1178 /* 1179 * Install the idle handler if processor power management is supported. 1180 * Note that we use previously set idle handler will be used on 1181 * platforms that only support C1. 1182 */ 1183 if ((pr->flags.power) && (!boot_option_idle_override)) { 1184 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); 1185 for (i = 1; i <= pr->power.count; i++) 1186 if (pr->power.states[i].valid) 1187 printk(" C%d[C%d]", i, 1188 pr->power.states[i].type); 1189 printk(")\n"); 1190 1191 if (pr->id == 0) { 1192 pm_idle_save = pm_idle; 1193 pm_idle = acpi_processor_idle; 1194 } 1195 } 1196 1197 /* 'power' [R] */ 1198 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1199 S_IRUGO, acpi_device_dir(device)); 1200 if (!entry) 1201 return -EIO; 1202 else { 1203 entry->proc_fops = &acpi_processor_power_fops; 1204 entry->data = acpi_driver_data(device); 1205 entry->owner = THIS_MODULE; 1206 } 1207 1208 pr->flags.power_setup_done = 1; 1209 1210 return 0; 1211} 1212 1213int acpi_processor_power_exit(struct acpi_processor *pr, 1214 struct acpi_device *device) 1215{ 1216 1217 pr->flags.power_setup_done = 0; 1218 1219 if (acpi_device_dir(device)) 1220 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1221 acpi_device_dir(device)); 1222 1223 /* Unregister the idle handler when processor #0 is removed. */ 1224 if (pr->id == 0) { 1225 pm_idle = pm_idle_save; 1226 1227 /* 1228 * We are about to unload the current idle thread pm callback 1229 * (pm_idle), Wait for all processors to update cached/local 1230 * copies of pm_idle before proceeding. 1231 */ 1232 cpu_idle_wait(); 1233#ifdef CONFIG_SMP 1234 unregister_latency_notifier(&acpi_processor_latency_notifier); 1235#endif 1236 } 1237 1238 return 0; 1239}