at v2.6.20-rc4 628 lines 19 kB view raw
1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 1995 Waldorf GmbH 7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 10 * Author: Maciej W. Rozycki <macro@mips.com> 11 */ 12#ifndef _ASM_IO_H 13#define _ASM_IO_H 14 15#include <linux/compiler.h> 16#include <linux/kernel.h> 17#include <linux/types.h> 18 19#include <asm/addrspace.h> 20#include <asm/byteorder.h> 21#include <asm/cpu.h> 22#include <asm/cpu-features.h> 23#include <asm/page.h> 24#include <asm/pgtable-bits.h> 25#include <asm/processor.h> 26#include <asm/string.h> 27 28#include <ioremap.h> 29#include <mangle-port.h> 30 31/* 32 * Slowdown I/O port space accesses for antique hardware. 33 */ 34#undef CONF_SLOWDOWN_IO 35 36/* 37 * Raw operations are never swapped in software. OTOH values that raw 38 * operations are working on may or may not have been swapped by the bus 39 * hardware. An example use would be for flash memory that's used for 40 * execute in place. 41 */ 42# define __raw_ioswabb(a,x) (x) 43# define __raw_ioswabw(a,x) (x) 44# define __raw_ioswabl(a,x) (x) 45# define __raw_ioswabq(a,x) (x) 46# define ____raw_ioswabq(a,x) (x) 47 48/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ 49 50#define IO_SPACE_LIMIT 0xffff 51 52/* 53 * On MIPS I/O ports are memory mapped, so we access them using normal 54 * load/store instructions. mips_io_port_base is the virtual address to 55 * which all ports are being mapped. For sake of efficiency some code 56 * assumes that this is an address that can be loaded with a single lui 57 * instruction, so the lower 16 bits must be zero. Should be true on 58 * on any sane architecture; generic code does not use this assumption. 59 */ 60extern const unsigned long mips_io_port_base; 61 62/* 63 * Gcc will generate code to load the value of mips_io_port_base after each 64 * function call which may be fairly wasteful in some cases. So we don't 65 * play quite by the book. We tell gcc mips_io_port_base is a long variable 66 * which solves the code generation issue. Now we need to violate the 67 * aliasing rules a little to make initialization possible and finally we 68 * will need the barrier() to fight side effects of the aliasing chat. 69 * This trickery will eventually collapse under gcc's optimizer. Oh well. 70 */ 71static inline void set_io_port_base(unsigned long base) 72{ 73 * (unsigned long *) &mips_io_port_base = base; 74 barrier(); 75} 76 77/* 78 * Thanks to James van Artsdalen for a better timing-fix than 79 * the two short jumps: using outb's to a nonexistent port seems 80 * to guarantee better timings even on fast machines. 81 * 82 * On the other hand, I'd like to be sure of a non-existent port: 83 * I feel a bit unsafe about using 0x80 (should be safe, though) 84 * 85 * Linus 86 * 87 */ 88 89#define __SLOW_DOWN_IO \ 90 __asm__ __volatile__( \ 91 "sb\t$0,0x80(%0)" \ 92 : : "r" (mips_io_port_base)); 93 94#ifdef CONF_SLOWDOWN_IO 95#ifdef REALLY_SLOW_IO 96#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } 97#else 98#define SLOW_DOWN_IO __SLOW_DOWN_IO 99#endif 100#else 101#define SLOW_DOWN_IO 102#endif 103 104/* 105 * virt_to_phys - map virtual addresses to physical 106 * @address: address to remap 107 * 108 * The returned physical address is the physical (CPU) mapping for 109 * the memory address given. It is only valid to use this function on 110 * addresses directly mapped or allocated via kmalloc. 111 * 112 * This function does not give bus mappings for DMA transfers. In 113 * almost all conceivable cases a device driver should not be using 114 * this function 115 */ 116static inline unsigned long virt_to_phys(volatile const void *address) 117{ 118 return (unsigned long)address - PAGE_OFFSET; 119} 120 121/* 122 * phys_to_virt - map physical address to virtual 123 * @address: address to remap 124 * 125 * The returned virtual address is a current CPU mapping for 126 * the memory address given. It is only valid to use this function on 127 * addresses that have a kernel mapping 128 * 129 * This function does not handle bus mappings for DMA transfers. In 130 * almost all conceivable cases a device driver should not be using 131 * this function 132 */ 133static inline void * phys_to_virt(unsigned long address) 134{ 135 return (void *)(address + PAGE_OFFSET); 136} 137 138/* 139 * ISA I/O bus memory addresses are 1:1 with the physical address. 140 */ 141static inline unsigned long isa_virt_to_bus(volatile void * address) 142{ 143 return (unsigned long)address - PAGE_OFFSET; 144} 145 146static inline void * isa_bus_to_virt(unsigned long address) 147{ 148 return (void *)(address + PAGE_OFFSET); 149} 150 151#define isa_page_to_bus page_to_phys 152 153/* 154 * However PCI ones are not necessarily 1:1 and therefore these interfaces 155 * are forbidden in portable PCI drivers. 156 * 157 * Allow them for x86 for legacy drivers, though. 158 */ 159#define virt_to_bus virt_to_phys 160#define bus_to_virt phys_to_virt 161 162/* 163 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped 164 * for the processor. This implies the assumption that there is only 165 * one of these busses. 166 */ 167extern unsigned long isa_slot_offset; 168 169/* 170 * Change "struct page" to physical address. 171 */ 172#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) 173 174extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags); 175extern void __iounmap(const volatile void __iomem *addr); 176 177static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size, 178 unsigned long flags) 179{ 180#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL)) 181 182 if (cpu_has_64bit_addresses) { 183 u64 base = UNCAC_BASE; 184 185 /* 186 * R10000 supports a 2 bit uncached attribute therefore 187 * UNCAC_BASE may not equal IO_BASE. 188 */ 189 if (flags == _CACHE_UNCACHED) 190 base = (u64) IO_BASE; 191 return (void __iomem *) (unsigned long) (base + offset); 192 } else if (__builtin_constant_p(offset) && 193 __builtin_constant_p(size) && __builtin_constant_p(flags)) { 194 phys_t phys_addr, last_addr; 195 196 phys_addr = fixup_bigphys_addr(offset, size); 197 198 /* Don't allow wraparound or zero size. */ 199 last_addr = phys_addr + size - 1; 200 if (!size || last_addr < phys_addr) 201 return NULL; 202 203 /* 204 * Map uncached objects in the low 512MB of address 205 * space using KSEG1. 206 */ 207 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && 208 flags == _CACHE_UNCACHED) 209 return (void __iomem *)CKSEG1ADDR(phys_addr); 210 } 211 212 return __ioremap(offset, size, flags); 213 214#undef __IS_LOW512 215} 216 217/* 218 * ioremap - map bus memory into CPU space 219 * @offset: bus address of the memory 220 * @size: size of the resource to map 221 * 222 * ioremap performs a platform specific sequence of operations to 223 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 224 * writew/writel functions and the other mmio helpers. The returned 225 * address is not guaranteed to be usable directly as a virtual 226 * address. 227 */ 228#define ioremap(offset, size) \ 229 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 230 231/* 232 * ioremap_nocache - map bus memory into CPU space 233 * @offset: bus address of the memory 234 * @size: size of the resource to map 235 * 236 * ioremap_nocache performs a platform specific sequence of operations to 237 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 238 * writew/writel functions and the other mmio helpers. The returned 239 * address is not guaranteed to be usable directly as a virtual 240 * address. 241 * 242 * This version of ioremap ensures that the memory is marked uncachable 243 * on the CPU as well as honouring existing caching rules from things like 244 * the PCI bus. Note that there are other caches and buffers on many 245 * busses. In paticular driver authors should read up on PCI writes 246 * 247 * It's useful if some control registers are in such an area and 248 * write combining or read caching is not desirable: 249 */ 250#define ioremap_nocache(offset, size) \ 251 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 252 253/* 254 * ioremap_cachable - map bus memory into CPU space 255 * @offset: bus address of the memory 256 * @size: size of the resource to map 257 * 258 * ioremap_nocache performs a platform specific sequence of operations to 259 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 260 * writew/writel functions and the other mmio helpers. The returned 261 * address is not guaranteed to be usable directly as a virtual 262 * address. 263 * 264 * This version of ioremap ensures that the memory is marked cachable by 265 * the CPU. Also enables full write-combining. Useful for some 266 * memory-like regions on I/O busses. 267 */ 268#define ioremap_cachable(offset, size) \ 269 __ioremap_mode((offset), (size), PAGE_CACHABLE_DEFAULT) 270 271/* 272 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow 273 * requests a cachable mapping, ioremap_uncached_accelerated requests a 274 * mapping using the uncached accelerated mode which isn't supported on 275 * all processors. 276 */ 277#define ioremap_cacheable_cow(offset, size) \ 278 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) 279#define ioremap_uncached_accelerated(offset, size) \ 280 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) 281 282static inline void iounmap(const volatile void __iomem *addr) 283{ 284#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) 285 286 if (cpu_has_64bit_addresses || 287 (__builtin_constant_p(addr) && __IS_KSEG1(addr))) 288 return; 289 290 __iounmap(addr); 291 292#undef __IS_KSEG1 293} 294 295#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ 296 \ 297static inline void pfx##write##bwlq(type val, \ 298 volatile void __iomem *mem) \ 299{ \ 300 volatile type *__mem; \ 301 type __val; \ 302 \ 303 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 304 \ 305 __val = pfx##ioswab##bwlq(__mem, val); \ 306 \ 307 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 308 *__mem = __val; \ 309 else if (cpu_has_64bits) { \ 310 unsigned long __flags; \ 311 type __tmp; \ 312 \ 313 if (irq) \ 314 local_irq_save(__flags); \ 315 __asm__ __volatile__( \ 316 ".set mips3" "\t\t# __writeq""\n\t" \ 317 "dsll32 %L0, %L0, 0" "\n\t" \ 318 "dsrl32 %L0, %L0, 0" "\n\t" \ 319 "dsll32 %M0, %M0, 0" "\n\t" \ 320 "or %L0, %L0, %M0" "\n\t" \ 321 "sd %L0, %2" "\n\t" \ 322 ".set mips0" "\n" \ 323 : "=r" (__tmp) \ 324 : "0" (__val), "m" (*__mem)); \ 325 if (irq) \ 326 local_irq_restore(__flags); \ 327 } else \ 328 BUG(); \ 329} \ 330 \ 331static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ 332{ \ 333 volatile type *__mem; \ 334 type __val; \ 335 \ 336 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 337 \ 338 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 339 __val = *__mem; \ 340 else if (cpu_has_64bits) { \ 341 unsigned long __flags; \ 342 \ 343 if (irq) \ 344 local_irq_save(__flags); \ 345 __asm__ __volatile__( \ 346 ".set mips3" "\t\t# __readq" "\n\t" \ 347 "ld %L0, %1" "\n\t" \ 348 "dsra32 %M0, %L0, 0" "\n\t" \ 349 "sll %L0, %L0, 0" "\n\t" \ 350 ".set mips0" "\n" \ 351 : "=r" (__val) \ 352 : "m" (*__mem)); \ 353 if (irq) \ 354 local_irq_restore(__flags); \ 355 } else { \ 356 __val = 0; \ 357 BUG(); \ 358 } \ 359 \ 360 return pfx##ioswab##bwlq(__mem, __val); \ 361} 362 363#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ 364 \ 365static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 366{ \ 367 volatile type *__addr; \ 368 type __val; \ 369 \ 370 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 371 \ 372 __val = pfx##ioswab##bwlq(__addr, val); \ 373 \ 374 /* Really, we want this to be atomic */ \ 375 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 376 \ 377 *__addr = __val; \ 378 slow; \ 379} \ 380 \ 381static inline type pfx##in##bwlq##p(unsigned long port) \ 382{ \ 383 volatile type *__addr; \ 384 type __val; \ 385 \ 386 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 387 \ 388 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 389 \ 390 __val = *__addr; \ 391 slow; \ 392 \ 393 return pfx##ioswab##bwlq(__addr, __val); \ 394} 395 396#define __BUILD_MEMORY_PFX(bus, bwlq, type) \ 397 \ 398__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) 399 400#define BUILDIO_MEM(bwlq, type) \ 401 \ 402__BUILD_MEMORY_PFX(__raw_, bwlq, type) \ 403__BUILD_MEMORY_PFX(, bwlq, type) \ 404__BUILD_MEMORY_PFX(__mem_, bwlq, type) \ 405 406BUILDIO_MEM(b, u8) 407BUILDIO_MEM(w, u16) 408BUILDIO_MEM(l, u32) 409BUILDIO_MEM(q, u64) 410 411#define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 412 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ 413 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) 414 415#define BUILDIO_IOPORT(bwlq, type) \ 416 __BUILD_IOPORT_PFX(, bwlq, type) \ 417 __BUILD_IOPORT_PFX(__mem_, bwlq, type) 418 419BUILDIO_IOPORT(b, u8) 420BUILDIO_IOPORT(w, u16) 421BUILDIO_IOPORT(l, u32) 422#ifdef CONFIG_64BIT 423BUILDIO_IOPORT(q, u64) 424#endif 425 426#define __BUILDIO(bwlq, type) \ 427 \ 428__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) 429 430__BUILDIO(q, u64) 431 432#define readb_relaxed readb 433#define readw_relaxed readw 434#define readl_relaxed readl 435#define readq_relaxed readq 436 437/* 438 * Some code tests for these symbols 439 */ 440#define readq readq 441#define writeq writeq 442 443#define __BUILD_MEMORY_STRING(bwlq, type) \ 444 \ 445static inline void writes##bwlq(volatile void __iomem *mem, \ 446 const void *addr, unsigned int count) \ 447{ \ 448 const volatile type *__addr = addr; \ 449 \ 450 while (count--) { \ 451 __mem_write##bwlq(*__addr, mem); \ 452 __addr++; \ 453 } \ 454} \ 455 \ 456static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ 457 unsigned int count) \ 458{ \ 459 volatile type *__addr = addr; \ 460 \ 461 while (count--) { \ 462 *__addr = __mem_read##bwlq(mem); \ 463 __addr++; \ 464 } \ 465} 466 467#define __BUILD_IOPORT_STRING(bwlq, type) \ 468 \ 469static inline void outs##bwlq(unsigned long port, const void *addr, \ 470 unsigned int count) \ 471{ \ 472 const volatile type *__addr = addr; \ 473 \ 474 while (count--) { \ 475 __mem_out##bwlq(*__addr, port); \ 476 __addr++; \ 477 } \ 478} \ 479 \ 480static inline void ins##bwlq(unsigned long port, void *addr, \ 481 unsigned int count) \ 482{ \ 483 volatile type *__addr = addr; \ 484 \ 485 while (count--) { \ 486 *__addr = __mem_in##bwlq(port); \ 487 __addr++; \ 488 } \ 489} 490 491#define BUILDSTRING(bwlq, type) \ 492 \ 493__BUILD_MEMORY_STRING(bwlq, type) \ 494__BUILD_IOPORT_STRING(bwlq, type) 495 496BUILDSTRING(b, u8) 497BUILDSTRING(w, u16) 498BUILDSTRING(l, u32) 499#ifdef CONFIG_64BIT 500BUILDSTRING(q, u64) 501#endif 502 503 504/* Depends on MIPS II instruction set */ 505#define mmiowb() asm volatile ("sync" ::: "memory") 506 507static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) 508{ 509 memset((void __force *) addr, val, count); 510} 511static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) 512{ 513 memcpy(dst, (void __force *) src, count); 514} 515static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) 516{ 517 memcpy((void __force *) dst, src, count); 518} 519 520/* 521 * Memory Mapped I/O 522 */ 523#define ioread8(addr) readb(addr) 524#define ioread16(addr) readw(addr) 525#define ioread32(addr) readl(addr) 526 527#define iowrite8(b,addr) writeb(b,addr) 528#define iowrite16(w,addr) writew(w,addr) 529#define iowrite32(l,addr) writel(l,addr) 530 531#define ioread8_rep(a,b,c) readsb(a,b,c) 532#define ioread16_rep(a,b,c) readsw(a,b,c) 533#define ioread32_rep(a,b,c) readsl(a,b,c) 534 535#define iowrite8_rep(a,b,c) writesb(a,b,c) 536#define iowrite16_rep(a,b,c) writesw(a,b,c) 537#define iowrite32_rep(a,b,c) writesl(a,b,c) 538 539/* Create a virtual mapping cookie for an IO port range */ 540extern void __iomem *ioport_map(unsigned long port, unsigned int nr); 541extern void ioport_unmap(void __iomem *); 542 543/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ 544struct pci_dev; 545extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); 546extern void pci_iounmap(struct pci_dev *dev, void __iomem *); 547 548/* 549 * ISA space is 'always mapped' on currently supported MIPS systems, no need 550 * to explicitly ioremap() it. The fact that the ISA IO space is mapped 551 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values 552 * are physical addresses. The following constant pointer can be 553 * used as the IO-area pointer (it can be iounmapped as well, so the 554 * analogy with PCI is quite large): 555 */ 556#define __ISA_IO_base ((char *)(isa_slot_offset)) 557 558/* 559 * We don't have csum_partial_copy_fromio() yet, so we cheat here and 560 * just copy it. The net code will then do the checksum later. 561 */ 562#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) 563 564/* 565 * The caches on some architectures aren't dma-coherent and have need to 566 * handle this in software. There are three types of operations that 567 * can be applied to dma buffers. 568 * 569 * - dma_cache_wback_inv(start, size) makes caches and coherent by 570 * writing the content of the caches back to memory, if necessary. 571 * The function also invalidates the affected part of the caches as 572 * necessary before DMA transfers from outside to memory. 573 * - dma_cache_wback(start, size) makes caches and coherent by 574 * writing the content of the caches back to memory, if necessary. 575 * The function also invalidates the affected part of the caches as 576 * necessary before DMA transfers from outside to memory. 577 * - dma_cache_inv(start, size) invalidates the affected parts of the 578 * caches. Dirty lines of the caches may be written back or simply 579 * be discarded. This operation is necessary before dma operations 580 * to the memory. 581 */ 582#ifdef CONFIG_DMA_NONCOHERENT 583 584extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); 585extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); 586extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); 587 588#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size) 589#define dma_cache_wback(start, size) _dma_cache_wback(start,size) 590#define dma_cache_inv(start, size) _dma_cache_inv(start,size) 591 592#else /* Sane hardware */ 593 594#define dma_cache_wback_inv(start,size) \ 595 do { (void) (start); (void) (size); } while (0) 596#define dma_cache_wback(start,size) \ 597 do { (void) (start); (void) (size); } while (0) 598#define dma_cache_inv(start,size) \ 599 do { (void) (start); (void) (size); } while (0) 600 601#endif /* CONFIG_DMA_NONCOHERENT */ 602 603/* 604 * Read a 32-bit register that requires a 64-bit read cycle on the bus. 605 * Avoid interrupt mucking, just adjust the address for 4-byte access. 606 * Assume the addresses are 8-byte aligned. 607 */ 608#ifdef __MIPSEB__ 609#define __CSR_32_ADJUST 4 610#else 611#define __CSR_32_ADJUST 0 612#endif 613 614#define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) 615#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) 616 617/* 618 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 619 * access 620 */ 621#define xlate_dev_mem_ptr(p) __va(p) 622 623/* 624 * Convert a virtual cached pointer to an uncached pointer 625 */ 626#define xlate_dev_kmem_ptr(p) p 627 628#endif /* _ASM_IO_H */