at v2.6.20-rc2 1169 lines 41 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6#include <linux/capability.h> 7 8#ifdef __KERNEL__ 9 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16#include <linux/mutex.h> 17#include <linux/debug_locks.h> 18#include <linux/backing-dev.h> 19#include <linux/mm_types.h> 20 21struct mempolicy; 22struct anon_vma; 23 24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25extern unsigned long max_mapnr; 26#endif 27 28extern unsigned long num_physpages; 29extern void * high_memory; 30extern unsigned long vmalloc_earlyreserve; 31extern int page_cluster; 32 33#ifdef CONFIG_SYSCTL 34extern int sysctl_legacy_va_layout; 35#else 36#define sysctl_legacy_va_layout 0 37#endif 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* 46 * Linux kernel virtual memory manager primitives. 47 * The idea being to have a "virtual" mm in the same way 48 * we have a virtual fs - giving a cleaner interface to the 49 * mm details, and allowing different kinds of memory mappings 50 * (from shared memory to executable loading to arbitrary 51 * mmap() functions). 52 */ 53 54/* 55 * This struct defines a memory VMM memory area. There is one of these 56 * per VM-area/task. A VM area is any part of the process virtual memory 57 * space that has a special rule for the page-fault handlers (ie a shared 58 * library, the executable area etc). 59 */ 60struct vm_area_struct { 61 struct mm_struct * vm_mm; /* The address space we belong to. */ 62 unsigned long vm_start; /* Our start address within vm_mm. */ 63 unsigned long vm_end; /* The first byte after our end address 64 within vm_mm. */ 65 66 /* linked list of VM areas per task, sorted by address */ 67 struct vm_area_struct *vm_next; 68 69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 70 unsigned long vm_flags; /* Flags, listed below. */ 71 72 struct rb_node vm_rb; 73 74 /* 75 * For areas with an address space and backing store, 76 * linkage into the address_space->i_mmap prio tree, or 77 * linkage to the list of like vmas hanging off its node, or 78 * linkage of vma in the address_space->i_mmap_nonlinear list. 79 */ 80 union { 81 struct { 82 struct list_head list; 83 void *parent; /* aligns with prio_tree_node parent */ 84 struct vm_area_struct *head; 85 } vm_set; 86 87 struct raw_prio_tree_node prio_tree_node; 88 } shared; 89 90 /* 91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 92 * list, after a COW of one of the file pages. A MAP_SHARED vma 93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 94 * or brk vma (with NULL file) can only be in an anon_vma list. 95 */ 96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 98 99 /* Function pointers to deal with this struct. */ 100 struct vm_operations_struct * vm_ops; 101 102 /* Information about our backing store: */ 103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 104 units, *not* PAGE_CACHE_SIZE */ 105 struct file * vm_file; /* File we map to (can be NULL). */ 106 void * vm_private_data; /* was vm_pte (shared mem) */ 107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 108 109#ifndef CONFIG_MMU 110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 111#endif 112#ifdef CONFIG_NUMA 113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 114#endif 115}; 116 117extern struct kmem_cache *vm_area_cachep; 118 119/* 120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 121 * disabled, then there's a single shared list of VMAs maintained by the 122 * system, and mm's subscribe to these individually 123 */ 124struct vm_list_struct { 125 struct vm_list_struct *next; 126 struct vm_area_struct *vma; 127}; 128 129#ifndef CONFIG_MMU 130extern struct rb_root nommu_vma_tree; 131extern struct rw_semaphore nommu_vma_sem; 132 133extern unsigned int kobjsize(const void *objp); 134#endif 135 136/* 137 * vm_flags.. 138 */ 139#define VM_READ 0x00000001 /* currently active flags */ 140#define VM_WRITE 0x00000002 141#define VM_EXEC 0x00000004 142#define VM_SHARED 0x00000008 143 144/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 145#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 146#define VM_MAYWRITE 0x00000020 147#define VM_MAYEXEC 0x00000040 148#define VM_MAYSHARE 0x00000080 149 150#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 151#define VM_GROWSUP 0x00000200 152#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 153#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 154 155#define VM_EXECUTABLE 0x00001000 156#define VM_LOCKED 0x00002000 157#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 158 159 /* Used by sys_madvise() */ 160#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 161#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 162 163#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 164#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 165#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 166#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 167#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 168#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 169#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 170#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 171 172#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 173#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 174#endif 175 176#ifdef CONFIG_STACK_GROWSUP 177#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 178#else 179#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 180#endif 181 182#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 183#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 184#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 185#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 186#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 187 188/* 189 * mapping from the currently active vm_flags protection bits (the 190 * low four bits) to a page protection mask.. 191 */ 192extern pgprot_t protection_map[16]; 193 194 195/* 196 * These are the virtual MM functions - opening of an area, closing and 197 * unmapping it (needed to keep files on disk up-to-date etc), pointer 198 * to the functions called when a no-page or a wp-page exception occurs. 199 */ 200struct vm_operations_struct { 201 void (*open)(struct vm_area_struct * area); 202 void (*close)(struct vm_area_struct * area); 203 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 204 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); 205 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 206 207 /* notification that a previously read-only page is about to become 208 * writable, if an error is returned it will cause a SIGBUS */ 209 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 210#ifdef CONFIG_NUMA 211 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 212 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 213 unsigned long addr); 214 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 215 const nodemask_t *to, unsigned long flags); 216#endif 217}; 218 219struct mmu_gather; 220struct inode; 221 222#define page_private(page) ((page)->private) 223#define set_page_private(page, v) ((page)->private = (v)) 224 225/* 226 * FIXME: take this include out, include page-flags.h in 227 * files which need it (119 of them) 228 */ 229#include <linux/page-flags.h> 230 231#ifdef CONFIG_DEBUG_VM 232#define VM_BUG_ON(cond) BUG_ON(cond) 233#else 234#define VM_BUG_ON(condition) do { } while(0) 235#endif 236 237/* 238 * Methods to modify the page usage count. 239 * 240 * What counts for a page usage: 241 * - cache mapping (page->mapping) 242 * - private data (page->private) 243 * - page mapped in a task's page tables, each mapping 244 * is counted separately 245 * 246 * Also, many kernel routines increase the page count before a critical 247 * routine so they can be sure the page doesn't go away from under them. 248 */ 249 250/* 251 * Drop a ref, return true if the refcount fell to zero (the page has no users) 252 */ 253static inline int put_page_testzero(struct page *page) 254{ 255 VM_BUG_ON(atomic_read(&page->_count) == 0); 256 return atomic_dec_and_test(&page->_count); 257} 258 259/* 260 * Try to grab a ref unless the page has a refcount of zero, return false if 261 * that is the case. 262 */ 263static inline int get_page_unless_zero(struct page *page) 264{ 265 VM_BUG_ON(PageCompound(page)); 266 return atomic_inc_not_zero(&page->_count); 267} 268 269static inline int page_count(struct page *page) 270{ 271 if (unlikely(PageCompound(page))) 272 page = (struct page *)page_private(page); 273 return atomic_read(&page->_count); 274} 275 276static inline void get_page(struct page *page) 277{ 278 if (unlikely(PageCompound(page))) 279 page = (struct page *)page_private(page); 280 VM_BUG_ON(atomic_read(&page->_count) == 0); 281 atomic_inc(&page->_count); 282} 283 284/* 285 * Setup the page count before being freed into the page allocator for 286 * the first time (boot or memory hotplug) 287 */ 288static inline void init_page_count(struct page *page) 289{ 290 atomic_set(&page->_count, 1); 291} 292 293void put_page(struct page *page); 294void put_pages_list(struct list_head *pages); 295 296void split_page(struct page *page, unsigned int order); 297 298/* 299 * Compound pages have a destructor function. Provide a 300 * prototype for that function and accessor functions. 301 * These are _only_ valid on the head of a PG_compound page. 302 */ 303typedef void compound_page_dtor(struct page *); 304 305static inline void set_compound_page_dtor(struct page *page, 306 compound_page_dtor *dtor) 307{ 308 page[1].lru.next = (void *)dtor; 309} 310 311static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 312{ 313 return (compound_page_dtor *)page[1].lru.next; 314} 315 316/* 317 * Multiple processes may "see" the same page. E.g. for untouched 318 * mappings of /dev/null, all processes see the same page full of 319 * zeroes, and text pages of executables and shared libraries have 320 * only one copy in memory, at most, normally. 321 * 322 * For the non-reserved pages, page_count(page) denotes a reference count. 323 * page_count() == 0 means the page is free. page->lru is then used for 324 * freelist management in the buddy allocator. 325 * page_count() > 0 means the page has been allocated. 326 * 327 * Pages are allocated by the slab allocator in order to provide memory 328 * to kmalloc and kmem_cache_alloc. In this case, the management of the 329 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 330 * unless a particular usage is carefully commented. (the responsibility of 331 * freeing the kmalloc memory is the caller's, of course). 332 * 333 * A page may be used by anyone else who does a __get_free_page(). 334 * In this case, page_count still tracks the references, and should only 335 * be used through the normal accessor functions. The top bits of page->flags 336 * and page->virtual store page management information, but all other fields 337 * are unused and could be used privately, carefully. The management of this 338 * page is the responsibility of the one who allocated it, and those who have 339 * subsequently been given references to it. 340 * 341 * The other pages (we may call them "pagecache pages") are completely 342 * managed by the Linux memory manager: I/O, buffers, swapping etc. 343 * The following discussion applies only to them. 344 * 345 * A pagecache page contains an opaque `private' member, which belongs to the 346 * page's address_space. Usually, this is the address of a circular list of 347 * the page's disk buffers. PG_private must be set to tell the VM to call 348 * into the filesystem to release these pages. 349 * 350 * A page may belong to an inode's memory mapping. In this case, page->mapping 351 * is the pointer to the inode, and page->index is the file offset of the page, 352 * in units of PAGE_CACHE_SIZE. 353 * 354 * If pagecache pages are not associated with an inode, they are said to be 355 * anonymous pages. These may become associated with the swapcache, and in that 356 * case PG_swapcache is set, and page->private is an offset into the swapcache. 357 * 358 * In either case (swapcache or inode backed), the pagecache itself holds one 359 * reference to the page. Setting PG_private should also increment the 360 * refcount. The each user mapping also has a reference to the page. 361 * 362 * The pagecache pages are stored in a per-mapping radix tree, which is 363 * rooted at mapping->page_tree, and indexed by offset. 364 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 365 * lists, we instead now tag pages as dirty/writeback in the radix tree. 366 * 367 * All pagecache pages may be subject to I/O: 368 * - inode pages may need to be read from disk, 369 * - inode pages which have been modified and are MAP_SHARED may need 370 * to be written back to the inode on disk, 371 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 372 * modified may need to be swapped out to swap space and (later) to be read 373 * back into memory. 374 */ 375 376/* 377 * The zone field is never updated after free_area_init_core() 378 * sets it, so none of the operations on it need to be atomic. 379 */ 380 381 382/* 383 * page->flags layout: 384 * 385 * There are three possibilities for how page->flags get 386 * laid out. The first is for the normal case, without 387 * sparsemem. The second is for sparsemem when there is 388 * plenty of space for node and section. The last is when 389 * we have run out of space and have to fall back to an 390 * alternate (slower) way of determining the node. 391 * 392 * No sparsemem: | NODE | ZONE | ... | FLAGS | 393 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 394 * no space for node: | SECTION | ZONE | ... | FLAGS | 395 */ 396#ifdef CONFIG_SPARSEMEM 397#define SECTIONS_WIDTH SECTIONS_SHIFT 398#else 399#define SECTIONS_WIDTH 0 400#endif 401 402#define ZONES_WIDTH ZONES_SHIFT 403 404#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 405#define NODES_WIDTH NODES_SHIFT 406#else 407#define NODES_WIDTH 0 408#endif 409 410/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 411#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 412#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 413#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 414 415/* 416 * We are going to use the flags for the page to node mapping if its in 417 * there. This includes the case where there is no node, so it is implicit. 418 */ 419#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 420#define NODE_NOT_IN_PAGE_FLAGS 421#endif 422 423#ifndef PFN_SECTION_SHIFT 424#define PFN_SECTION_SHIFT 0 425#endif 426 427/* 428 * Define the bit shifts to access each section. For non-existant 429 * sections we define the shift as 0; that plus a 0 mask ensures 430 * the compiler will optimise away reference to them. 431 */ 432#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 433#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 434#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 435 436/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 437#ifdef NODE_NOT_IN_PAGEFLAGS 438#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 439#else 440#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 441#endif 442 443#if ZONES_WIDTH > 0 444#define ZONEID_PGSHIFT ZONES_PGSHIFT 445#else 446#define ZONEID_PGSHIFT NODES_PGOFF 447#endif 448 449#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 450#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 451#endif 452 453#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 454#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 455#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 456#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 457 458static inline enum zone_type page_zonenum(struct page *page) 459{ 460 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 461} 462 463/* 464 * The identification function is only used by the buddy allocator for 465 * determining if two pages could be buddies. We are not really 466 * identifying a zone since we could be using a the section number 467 * id if we have not node id available in page flags. 468 * We guarantee only that it will return the same value for two 469 * combinable pages in a zone. 470 */ 471static inline int page_zone_id(struct page *page) 472{ 473 BUILD_BUG_ON(ZONEID_PGSHIFT == 0 && ZONEID_MASK); 474 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 475} 476 477static inline int zone_to_nid(struct zone *zone) 478{ 479#ifdef CONFIG_NUMA 480 return zone->node; 481#else 482 return 0; 483#endif 484} 485 486#ifdef NODE_NOT_IN_PAGE_FLAGS 487extern int page_to_nid(struct page *page); 488#else 489static inline int page_to_nid(struct page *page) 490{ 491 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 492} 493#endif 494 495static inline struct zone *page_zone(struct page *page) 496{ 497 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 498} 499 500static inline unsigned long page_to_section(struct page *page) 501{ 502 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 503} 504 505static inline void set_page_zone(struct page *page, enum zone_type zone) 506{ 507 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 508 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 509} 510 511static inline void set_page_node(struct page *page, unsigned long node) 512{ 513 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 514 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 515} 516 517static inline void set_page_section(struct page *page, unsigned long section) 518{ 519 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 520 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 521} 522 523static inline void set_page_links(struct page *page, enum zone_type zone, 524 unsigned long node, unsigned long pfn) 525{ 526 set_page_zone(page, zone); 527 set_page_node(page, node); 528 set_page_section(page, pfn_to_section_nr(pfn)); 529} 530 531/* 532 * Some inline functions in vmstat.h depend on page_zone() 533 */ 534#include <linux/vmstat.h> 535 536static __always_inline void *lowmem_page_address(struct page *page) 537{ 538 return __va(page_to_pfn(page) << PAGE_SHIFT); 539} 540 541#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 542#define HASHED_PAGE_VIRTUAL 543#endif 544 545#if defined(WANT_PAGE_VIRTUAL) 546#define page_address(page) ((page)->virtual) 547#define set_page_address(page, address) \ 548 do { \ 549 (page)->virtual = (address); \ 550 } while(0) 551#define page_address_init() do { } while(0) 552#endif 553 554#if defined(HASHED_PAGE_VIRTUAL) 555void *page_address(struct page *page); 556void set_page_address(struct page *page, void *virtual); 557void page_address_init(void); 558#endif 559 560#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 561#define page_address(page) lowmem_page_address(page) 562#define set_page_address(page, address) do { } while(0) 563#define page_address_init() do { } while(0) 564#endif 565 566/* 567 * On an anonymous page mapped into a user virtual memory area, 568 * page->mapping points to its anon_vma, not to a struct address_space; 569 * with the PAGE_MAPPING_ANON bit set to distinguish it. 570 * 571 * Please note that, confusingly, "page_mapping" refers to the inode 572 * address_space which maps the page from disk; whereas "page_mapped" 573 * refers to user virtual address space into which the page is mapped. 574 */ 575#define PAGE_MAPPING_ANON 1 576 577extern struct address_space swapper_space; 578static inline struct address_space *page_mapping(struct page *page) 579{ 580 struct address_space *mapping = page->mapping; 581 582 if (unlikely(PageSwapCache(page))) 583 mapping = &swapper_space; 584 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 585 mapping = NULL; 586 return mapping; 587} 588 589static inline int PageAnon(struct page *page) 590{ 591 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 592} 593 594/* 595 * Return the pagecache index of the passed page. Regular pagecache pages 596 * use ->index whereas swapcache pages use ->private 597 */ 598static inline pgoff_t page_index(struct page *page) 599{ 600 if (unlikely(PageSwapCache(page))) 601 return page_private(page); 602 return page->index; 603} 604 605/* 606 * The atomic page->_mapcount, like _count, starts from -1: 607 * so that transitions both from it and to it can be tracked, 608 * using atomic_inc_and_test and atomic_add_negative(-1). 609 */ 610static inline void reset_page_mapcount(struct page *page) 611{ 612 atomic_set(&(page)->_mapcount, -1); 613} 614 615static inline int page_mapcount(struct page *page) 616{ 617 return atomic_read(&(page)->_mapcount) + 1; 618} 619 620/* 621 * Return true if this page is mapped into pagetables. 622 */ 623static inline int page_mapped(struct page *page) 624{ 625 return atomic_read(&(page)->_mapcount) >= 0; 626} 627 628/* 629 * Error return values for the *_nopage functions 630 */ 631#define NOPAGE_SIGBUS (NULL) 632#define NOPAGE_OOM ((struct page *) (-1)) 633#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */ 634 635/* 636 * Error return values for the *_nopfn functions 637 */ 638#define NOPFN_SIGBUS ((unsigned long) -1) 639#define NOPFN_OOM ((unsigned long) -2) 640 641/* 642 * Different kinds of faults, as returned by handle_mm_fault(). 643 * Used to decide whether a process gets delivered SIGBUS or 644 * just gets major/minor fault counters bumped up. 645 */ 646#define VM_FAULT_OOM 0x00 647#define VM_FAULT_SIGBUS 0x01 648#define VM_FAULT_MINOR 0x02 649#define VM_FAULT_MAJOR 0x03 650 651/* 652 * Special case for get_user_pages. 653 * Must be in a distinct bit from the above VM_FAULT_ flags. 654 */ 655#define VM_FAULT_WRITE 0x10 656 657#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 658 659extern void show_free_areas(void); 660 661#ifdef CONFIG_SHMEM 662struct page *shmem_nopage(struct vm_area_struct *vma, 663 unsigned long address, int *type); 664int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 665struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 666 unsigned long addr); 667int shmem_lock(struct file *file, int lock, struct user_struct *user); 668#else 669#define shmem_nopage filemap_nopage 670 671static inline int shmem_lock(struct file *file, int lock, 672 struct user_struct *user) 673{ 674 return 0; 675} 676 677static inline int shmem_set_policy(struct vm_area_struct *vma, 678 struct mempolicy *new) 679{ 680 return 0; 681} 682 683static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 684 unsigned long addr) 685{ 686 return NULL; 687} 688#endif 689struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 690extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); 691 692int shmem_zero_setup(struct vm_area_struct *); 693 694#ifndef CONFIG_MMU 695extern unsigned long shmem_get_unmapped_area(struct file *file, 696 unsigned long addr, 697 unsigned long len, 698 unsigned long pgoff, 699 unsigned long flags); 700#endif 701 702static inline int can_do_mlock(void) 703{ 704 if (capable(CAP_IPC_LOCK)) 705 return 1; 706 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 707 return 1; 708 return 0; 709} 710extern int user_shm_lock(size_t, struct user_struct *); 711extern void user_shm_unlock(size_t, struct user_struct *); 712 713/* 714 * Parameter block passed down to zap_pte_range in exceptional cases. 715 */ 716struct zap_details { 717 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 718 struct address_space *check_mapping; /* Check page->mapping if set */ 719 pgoff_t first_index; /* Lowest page->index to unmap */ 720 pgoff_t last_index; /* Highest page->index to unmap */ 721 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 722 unsigned long truncate_count; /* Compare vm_truncate_count */ 723}; 724 725struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 726unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 727 unsigned long size, struct zap_details *); 728unsigned long unmap_vmas(struct mmu_gather **tlb, 729 struct vm_area_struct *start_vma, unsigned long start_addr, 730 unsigned long end_addr, unsigned long *nr_accounted, 731 struct zap_details *); 732void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 733 unsigned long end, unsigned long floor, unsigned long ceiling); 734void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 735 unsigned long floor, unsigned long ceiling); 736int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 737 struct vm_area_struct *vma); 738int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 739 unsigned long size, pgprot_t prot); 740void unmap_mapping_range(struct address_space *mapping, 741 loff_t const holebegin, loff_t const holelen, int even_cows); 742 743static inline void unmap_shared_mapping_range(struct address_space *mapping, 744 loff_t const holebegin, loff_t const holelen) 745{ 746 unmap_mapping_range(mapping, holebegin, holelen, 0); 747} 748 749extern int vmtruncate(struct inode * inode, loff_t offset); 750extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 751extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 752extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 753 754#ifdef CONFIG_MMU 755extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 756 unsigned long address, int write_access); 757 758static inline int handle_mm_fault(struct mm_struct *mm, 759 struct vm_area_struct *vma, unsigned long address, 760 int write_access) 761{ 762 return __handle_mm_fault(mm, vma, address, write_access) & 763 (~VM_FAULT_WRITE); 764} 765#else 766static inline int handle_mm_fault(struct mm_struct *mm, 767 struct vm_area_struct *vma, unsigned long address, 768 int write_access) 769{ 770 /* should never happen if there's no MMU */ 771 BUG(); 772 return VM_FAULT_SIGBUS; 773} 774#endif 775 776extern int make_pages_present(unsigned long addr, unsigned long end); 777extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 778void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 779 780int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 781 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 782void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 783 784extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 785extern void do_invalidatepage(struct page *page, unsigned long offset); 786 787int __set_page_dirty_nobuffers(struct page *page); 788int redirty_page_for_writepage(struct writeback_control *wbc, 789 struct page *page); 790int FASTCALL(set_page_dirty(struct page *page)); 791int set_page_dirty_lock(struct page *page); 792int clear_page_dirty_for_io(struct page *page); 793 794extern unsigned long do_mremap(unsigned long addr, 795 unsigned long old_len, unsigned long new_len, 796 unsigned long flags, unsigned long new_addr); 797 798/* 799 * Prototype to add a shrinker callback for ageable caches. 800 * 801 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 802 * scan `nr_to_scan' objects, attempting to free them. 803 * 804 * The callback must return the number of objects which remain in the cache. 805 * 806 * The callback will be passed nr_to_scan == 0 when the VM is querying the 807 * cache size, so a fastpath for that case is appropriate. 808 */ 809typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 810 811/* 812 * Add an aging callback. The int is the number of 'seeks' it takes 813 * to recreate one of the objects that these functions age. 814 */ 815 816#define DEFAULT_SEEKS 2 817struct shrinker; 818extern struct shrinker *set_shrinker(int, shrinker_t); 819extern void remove_shrinker(struct shrinker *shrinker); 820 821/* 822 * Some shared mappigns will want the pages marked read-only 823 * to track write events. If so, we'll downgrade vm_page_prot 824 * to the private version (using protection_map[] without the 825 * VM_SHARED bit). 826 */ 827static inline int vma_wants_writenotify(struct vm_area_struct *vma) 828{ 829 unsigned int vm_flags = vma->vm_flags; 830 831 /* If it was private or non-writable, the write bit is already clear */ 832 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 833 return 0; 834 835 /* The backer wishes to know when pages are first written to? */ 836 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 837 return 1; 838 839 /* The open routine did something to the protections already? */ 840 if (pgprot_val(vma->vm_page_prot) != 841 pgprot_val(protection_map[vm_flags & 842 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) 843 return 0; 844 845 /* Specialty mapping? */ 846 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 847 return 0; 848 849 /* Can the mapping track the dirty pages? */ 850 return vma->vm_file && vma->vm_file->f_mapping && 851 mapping_cap_account_dirty(vma->vm_file->f_mapping); 852} 853 854extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 855 856int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 857int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 858int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 859int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 860 861/* 862 * The following ifdef needed to get the 4level-fixup.h header to work. 863 * Remove it when 4level-fixup.h has been removed. 864 */ 865#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 866static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 867{ 868 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 869 NULL: pud_offset(pgd, address); 870} 871 872static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 873{ 874 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 875 NULL: pmd_offset(pud, address); 876} 877#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 878 879#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 880/* 881 * We tuck a spinlock to guard each pagetable page into its struct page, 882 * at page->private, with BUILD_BUG_ON to make sure that this will not 883 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 884 * When freeing, reset page->mapping so free_pages_check won't complain. 885 */ 886#define __pte_lockptr(page) &((page)->ptl) 887#define pte_lock_init(_page) do { \ 888 spin_lock_init(__pte_lockptr(_page)); \ 889} while (0) 890#define pte_lock_deinit(page) ((page)->mapping = NULL) 891#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 892#else 893/* 894 * We use mm->page_table_lock to guard all pagetable pages of the mm. 895 */ 896#define pte_lock_init(page) do {} while (0) 897#define pte_lock_deinit(page) do {} while (0) 898#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 899#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 900 901#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 902({ \ 903 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 904 pte_t *__pte = pte_offset_map(pmd, address); \ 905 *(ptlp) = __ptl; \ 906 spin_lock(__ptl); \ 907 __pte; \ 908}) 909 910#define pte_unmap_unlock(pte, ptl) do { \ 911 spin_unlock(ptl); \ 912 pte_unmap(pte); \ 913} while (0) 914 915#define pte_alloc_map(mm, pmd, address) \ 916 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 917 NULL: pte_offset_map(pmd, address)) 918 919#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 920 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 921 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 922 923#define pte_alloc_kernel(pmd, address) \ 924 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 925 NULL: pte_offset_kernel(pmd, address)) 926 927extern void free_area_init(unsigned long * zones_size); 928extern void free_area_init_node(int nid, pg_data_t *pgdat, 929 unsigned long * zones_size, unsigned long zone_start_pfn, 930 unsigned long *zholes_size); 931#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 932/* 933 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 934 * zones, allocate the backing mem_map and account for memory holes in a more 935 * architecture independent manner. This is a substitute for creating the 936 * zone_sizes[] and zholes_size[] arrays and passing them to 937 * free_area_init_node() 938 * 939 * An architecture is expected to register range of page frames backed by 940 * physical memory with add_active_range() before calling 941 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 942 * usage, an architecture is expected to do something like 943 * 944 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 945 * max_highmem_pfn}; 946 * for_each_valid_physical_page_range() 947 * add_active_range(node_id, start_pfn, end_pfn) 948 * free_area_init_nodes(max_zone_pfns); 949 * 950 * If the architecture guarantees that there are no holes in the ranges 951 * registered with add_active_range(), free_bootmem_active_regions() 952 * will call free_bootmem_node() for each registered physical page range. 953 * Similarly sparse_memory_present_with_active_regions() calls 954 * memory_present() for each range when SPARSEMEM is enabled. 955 * 956 * See mm/page_alloc.c for more information on each function exposed by 957 * CONFIG_ARCH_POPULATES_NODE_MAP 958 */ 959extern void free_area_init_nodes(unsigned long *max_zone_pfn); 960extern void add_active_range(unsigned int nid, unsigned long start_pfn, 961 unsigned long end_pfn); 962extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 963 unsigned long new_end_pfn); 964extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 965 unsigned long end_pfn); 966extern void remove_all_active_ranges(void); 967extern unsigned long absent_pages_in_range(unsigned long start_pfn, 968 unsigned long end_pfn); 969extern void get_pfn_range_for_nid(unsigned int nid, 970 unsigned long *start_pfn, unsigned long *end_pfn); 971extern unsigned long find_min_pfn_with_active_regions(void); 972extern unsigned long find_max_pfn_with_active_regions(void); 973extern void free_bootmem_with_active_regions(int nid, 974 unsigned long max_low_pfn); 975extern void sparse_memory_present_with_active_regions(int nid); 976#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 977extern int early_pfn_to_nid(unsigned long pfn); 978#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 979#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 980extern void set_dma_reserve(unsigned long new_dma_reserve); 981extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 982extern void setup_per_zone_pages_min(void); 983extern void mem_init(void); 984extern void show_mem(void); 985extern void si_meminfo(struct sysinfo * val); 986extern void si_meminfo_node(struct sysinfo *val, int nid); 987 988#ifdef CONFIG_NUMA 989extern void setup_per_cpu_pageset(void); 990#else 991static inline void setup_per_cpu_pageset(void) {} 992#endif 993 994/* prio_tree.c */ 995void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 996void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 997void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 998struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 999 struct prio_tree_iter *iter); 1000 1001#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1002 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1003 (vma = vma_prio_tree_next(vma, iter)); ) 1004 1005static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1006 struct list_head *list) 1007{ 1008 vma->shared.vm_set.parent = NULL; 1009 list_add_tail(&vma->shared.vm_set.list, list); 1010} 1011 1012/* mmap.c */ 1013extern int __vm_enough_memory(long pages, int cap_sys_admin); 1014extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1015 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1016extern struct vm_area_struct *vma_merge(struct mm_struct *, 1017 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1018 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1019 struct mempolicy *); 1020extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1021extern int split_vma(struct mm_struct *, 1022 struct vm_area_struct *, unsigned long addr, int new_below); 1023extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1024extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1025 struct rb_node **, struct rb_node *); 1026extern void unlink_file_vma(struct vm_area_struct *); 1027extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1028 unsigned long addr, unsigned long len, pgoff_t pgoff); 1029extern void exit_mmap(struct mm_struct *); 1030extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1031 1032extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1033 1034extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1035 unsigned long len, unsigned long prot, 1036 unsigned long flag, unsigned long pgoff); 1037 1038static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1039 unsigned long len, unsigned long prot, 1040 unsigned long flag, unsigned long offset) 1041{ 1042 unsigned long ret = -EINVAL; 1043 if ((offset + PAGE_ALIGN(len)) < offset) 1044 goto out; 1045 if (!(offset & ~PAGE_MASK)) 1046 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1047out: 1048 return ret; 1049} 1050 1051extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1052 1053extern unsigned long do_brk(unsigned long, unsigned long); 1054 1055/* filemap.c */ 1056extern unsigned long page_unuse(struct page *); 1057extern void truncate_inode_pages(struct address_space *, loff_t); 1058extern void truncate_inode_pages_range(struct address_space *, 1059 loff_t lstart, loff_t lend); 1060 1061/* generic vm_area_ops exported for stackable file systems */ 1062extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 1063extern int filemap_populate(struct vm_area_struct *, unsigned long, 1064 unsigned long, pgprot_t, unsigned long, int); 1065 1066/* mm/page-writeback.c */ 1067int write_one_page(struct page *page, int wait); 1068 1069/* readahead.c */ 1070#define VM_MAX_READAHEAD 128 /* kbytes */ 1071#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1072#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 1073 * turning readahead off */ 1074 1075int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1076 pgoff_t offset, unsigned long nr_to_read); 1077int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1078 pgoff_t offset, unsigned long nr_to_read); 1079unsigned long page_cache_readahead(struct address_space *mapping, 1080 struct file_ra_state *ra, 1081 struct file *filp, 1082 pgoff_t offset, 1083 unsigned long size); 1084void handle_ra_miss(struct address_space *mapping, 1085 struct file_ra_state *ra, pgoff_t offset); 1086unsigned long max_sane_readahead(unsigned long nr); 1087 1088/* Do stack extension */ 1089extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1090#ifdef CONFIG_IA64 1091extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1092#endif 1093 1094/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1095extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1096extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1097 struct vm_area_struct **pprev); 1098 1099/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1100 NULL if none. Assume start_addr < end_addr. */ 1101static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1102{ 1103 struct vm_area_struct * vma = find_vma(mm,start_addr); 1104 1105 if (vma && end_addr <= vma->vm_start) 1106 vma = NULL; 1107 return vma; 1108} 1109 1110static inline unsigned long vma_pages(struct vm_area_struct *vma) 1111{ 1112 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1113} 1114 1115pgprot_t vm_get_page_prot(unsigned long vm_flags); 1116struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1117struct page *vmalloc_to_page(void *addr); 1118unsigned long vmalloc_to_pfn(void *addr); 1119int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1120 unsigned long pfn, unsigned long size, pgprot_t); 1121int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1122 1123struct page *follow_page(struct vm_area_struct *, unsigned long address, 1124 unsigned int foll_flags); 1125#define FOLL_WRITE 0x01 /* check pte is writable */ 1126#define FOLL_TOUCH 0x02 /* mark page accessed */ 1127#define FOLL_GET 0x04 /* do get_page on page */ 1128#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1129 1130#ifdef CONFIG_PROC_FS 1131void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1132#else 1133static inline void vm_stat_account(struct mm_struct *mm, 1134 unsigned long flags, struct file *file, long pages) 1135{ 1136} 1137#endif /* CONFIG_PROC_FS */ 1138 1139#ifndef CONFIG_DEBUG_PAGEALLOC 1140static inline void 1141kernel_map_pages(struct page *page, int numpages, int enable) {} 1142#endif 1143 1144extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1145#ifdef __HAVE_ARCH_GATE_AREA 1146int in_gate_area_no_task(unsigned long addr); 1147int in_gate_area(struct task_struct *task, unsigned long addr); 1148#else 1149int in_gate_area_no_task(unsigned long addr); 1150#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1151#endif /* __HAVE_ARCH_GATE_AREA */ 1152 1153int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1154 void __user *, size_t *, loff_t *); 1155unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1156 unsigned long lru_pages); 1157void drop_pagecache(void); 1158void drop_slab(void); 1159 1160#ifndef CONFIG_MMU 1161#define randomize_va_space 0 1162#else 1163extern int randomize_va_space; 1164#endif 1165 1166__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); 1167 1168#endif /* __KERNEL__ */ 1169#endif /* _LINUX_MM_H */