1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/sched.h> 14#include <linux/mm.h> 15 16#include <asm/glue.h> 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * Cache Model 23 * =========== 24 */ 25#undef _CACHE 26#undef MULTI_CACHE 27 28#if defined(CONFIG_CPU_CACHE_V3) 29# ifdef _CACHE 30# define MULTI_CACHE 1 31# else 32# define _CACHE v3 33# endif 34#endif 35 36#if defined(CONFIG_CPU_CACHE_V4) 37# ifdef _CACHE 38# define MULTI_CACHE 1 39# else 40# define _CACHE v4 41# endif 42#endif 43 44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46# define MULTI_CACHE 1 47#endif 48 49#if defined(CONFIG_CPU_ARM926T) 50# ifdef _CACHE 51# define MULTI_CACHE 1 52# else 53# define _CACHE arm926 54# endif 55#endif 56 57#if defined(CONFIG_CPU_ARM940T) 58# ifdef _CACHE 59# define MULTI_CACHE 1 60# else 61# define _CACHE arm940 62# endif 63#endif 64 65#if defined(CONFIG_CPU_ARM946E) 66# ifdef _CACHE 67# define MULTI_CACHE 1 68# else 69# define _CACHE arm946 70# endif 71#endif 72 73#if defined(CONFIG_CPU_CACHE_V4WB) 74# ifdef _CACHE 75# define MULTI_CACHE 1 76# else 77# define _CACHE v4wb 78# endif 79#endif 80 81#if defined(CONFIG_CPU_XSCALE) 82# ifdef _CACHE 83# define MULTI_CACHE 1 84# else 85# define _CACHE xscale 86# endif 87#endif 88 89#if defined(CONFIG_CPU_XSC3) 90# ifdef _CACHE 91# define MULTI_CACHE 1 92# else 93# define _CACHE xsc3 94# endif 95#endif 96 97#if defined(CONFIG_CPU_V6) 98//# ifdef _CACHE 99# define MULTI_CACHE 1 100//# else 101//# define _CACHE v6 102//# endif 103#endif 104 105#if !defined(_CACHE) && !defined(MULTI_CACHE) 106#error Unknown cache maintainence model 107#endif 108 109/* 110 * This flag is used to indicate that the page pointed to by a pte 111 * is dirty and requires cleaning before returning it to the user. 112 */ 113#define PG_dcache_dirty PG_arch_1 114 115/* 116 * MM Cache Management 117 * =================== 118 * 119 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 120 * implement these methods. 121 * 122 * Start addresses are inclusive and end addresses are exclusive; 123 * start addresses should be rounded down, end addresses up. 124 * 125 * See Documentation/cachetlb.txt for more information. 126 * Please note that the implementation of these, and the required 127 * effects are cache-type (VIVT/VIPT/PIPT) specific. 128 * 129 * flush_cache_kern_all() 130 * 131 * Unconditionally clean and invalidate the entire cache. 132 * 133 * flush_cache_user_mm(mm) 134 * 135 * Clean and invalidate all user space cache entries 136 * before a change of page tables. 137 * 138 * flush_cache_user_range(start, end, flags) 139 * 140 * Clean and invalidate a range of cache entries in the 141 * specified address space before a change of page tables. 142 * - start - user start address (inclusive, page aligned) 143 * - end - user end address (exclusive, page aligned) 144 * - flags - vma->vm_flags field 145 * 146 * coherent_kern_range(start, end) 147 * 148 * Ensure coherency between the Icache and the Dcache in the 149 * region described by start, end. If you have non-snooping 150 * Harvard caches, you need to implement this function. 151 * - start - virtual start address 152 * - end - virtual end address 153 * 154 * DMA Cache Coherency 155 * =================== 156 * 157 * dma_inv_range(start, end) 158 * 159 * Invalidate (discard) the specified virtual address range. 160 * May not write back any entries. If 'start' or 'end' 161 * are not cache line aligned, those lines must be written 162 * back. 163 * - start - virtual start address 164 * - end - virtual end address 165 * 166 * dma_clean_range(start, end) 167 * 168 * Clean (write back) the specified virtual address range. 169 * - start - virtual start address 170 * - end - virtual end address 171 * 172 * dma_flush_range(start, end) 173 * 174 * Clean and invalidate the specified virtual address range. 175 * - start - virtual start address 176 * - end - virtual end address 177 */ 178 179struct cpu_cache_fns { 180 void (*flush_kern_all)(void); 181 void (*flush_user_all)(void); 182 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 183 184 void (*coherent_kern_range)(unsigned long, unsigned long); 185 void (*coherent_user_range)(unsigned long, unsigned long); 186 void (*flush_kern_dcache_page)(void *); 187 188 void (*dma_inv_range)(unsigned long, unsigned long); 189 void (*dma_clean_range)(unsigned long, unsigned long); 190 void (*dma_flush_range)(unsigned long, unsigned long); 191}; 192 193/* 194 * Select the calling method 195 */ 196#ifdef MULTI_CACHE 197 198extern struct cpu_cache_fns cpu_cache; 199 200#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 201#define __cpuc_flush_user_all cpu_cache.flush_user_all 202#define __cpuc_flush_user_range cpu_cache.flush_user_range 203#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 204#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 205#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 206 207/* 208 * These are private to the dma-mapping API. Do not use directly. 209 * Their sole purpose is to ensure that data held in the cache 210 * is visible to DMA, or data written by DMA to system memory is 211 * visible to the CPU. 212 */ 213#define dmac_inv_range cpu_cache.dma_inv_range 214#define dmac_clean_range cpu_cache.dma_clean_range 215#define dmac_flush_range cpu_cache.dma_flush_range 216 217#else 218 219#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 220#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 221#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 222#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 223#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 224#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 225 226extern void __cpuc_flush_kern_all(void); 227extern void __cpuc_flush_user_all(void); 228extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 229extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 230extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 231extern void __cpuc_flush_dcache_page(void *); 232 233/* 234 * These are private to the dma-mapping API. Do not use directly. 235 * Their sole purpose is to ensure that data held in the cache 236 * is visible to DMA, or data written by DMA to system memory is 237 * visible to the CPU. 238 */ 239#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 240#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 241#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 242 243extern void dmac_inv_range(unsigned long, unsigned long); 244extern void dmac_clean_range(unsigned long, unsigned long); 245extern void dmac_flush_range(unsigned long, unsigned long); 246 247#endif 248 249/* 250 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 251 * vmalloc, ioremap etc) in kernel space for pages. Since the 252 * direct-mappings of these pages may contain cached data, we need 253 * to do a full cache flush to ensure that writebacks don't corrupt 254 * data placed into these pages via the new mappings. 255 */ 256#define flush_cache_vmap(start, end) flush_cache_all() 257#define flush_cache_vunmap(start, end) flush_cache_all() 258 259/* 260 * Copy user data from/to a page which is mapped into a different 261 * processes address space. Really, we want to allow our "user 262 * space" model to handle this. 263 */ 264#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 265 do { \ 266 memcpy(dst, src, len); \ 267 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 268 } while (0) 269 270#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 271 do { \ 272 memcpy(dst, src, len); \ 273 } while (0) 274 275/* 276 * Convert calls to our calling convention. 277 */ 278#define flush_cache_all() __cpuc_flush_kern_all() 279#ifndef CONFIG_CPU_CACHE_VIPT 280static inline void flush_cache_mm(struct mm_struct *mm) 281{ 282 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 283 __cpuc_flush_user_all(); 284} 285 286static inline void 287flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 288{ 289 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 290 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 291 vma->vm_flags); 292} 293 294static inline void 295flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 296{ 297 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 298 unsigned long addr = user_addr & PAGE_MASK; 299 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 300 } 301} 302 303static inline void 304flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 305 unsigned long uaddr, void *kaddr, 306 unsigned long len, int write) 307{ 308 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 309 unsigned long addr = (unsigned long)kaddr; 310 __cpuc_coherent_kern_range(addr, addr + len); 311 } 312} 313#else 314extern void flush_cache_mm(struct mm_struct *mm); 315extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 316extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 317extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 318 unsigned long uaddr, void *kaddr, 319 unsigned long len, int write); 320#endif 321 322#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 323 324/* 325 * flush_cache_user_range is used when we want to ensure that the 326 * Harvard caches are synchronised for the user space address range. 327 * This is used for the ARM private sys_cacheflush system call. 328 */ 329#define flush_cache_user_range(vma,start,end) \ 330 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 331 332/* 333 * Perform necessary cache operations to ensure that data previously 334 * stored within this range of addresses can be executed by the CPU. 335 */ 336#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 337 338/* 339 * Perform necessary cache operations to ensure that the TLB will 340 * see data written in the specified area. 341 */ 342#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 343 344/* 345 * flush_dcache_page is used when the kernel has written to the page 346 * cache page at virtual address page->virtual. 347 * 348 * If this page isn't mapped (ie, page_mapping == NULL), or it might 349 * have userspace mappings, then we _must_ always clean + invalidate 350 * the dcache entries associated with the kernel mapping. 351 * 352 * Otherwise we can defer the operation, and clean the cache when we are 353 * about to change to user space. This is the same method as used on SPARC64. 354 * See update_mmu_cache for the user space part. 355 */ 356extern void flush_dcache_page(struct page *); 357 358#define flush_dcache_mmap_lock(mapping) \ 359 write_lock_irq(&(mapping)->tree_lock) 360#define flush_dcache_mmap_unlock(mapping) \ 361 write_unlock_irq(&(mapping)->tree_lock) 362 363#define flush_icache_user_range(vma,page,addr,len) \ 364 flush_dcache_page(page) 365 366/* 367 * We don't appear to need to do anything here. In fact, if we did, we'd 368 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 369 */ 370#define flush_icache_page(vma,page) do { } while (0) 371 372#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 373#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 374#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 375#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 376#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 377 378#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 379 380#define cache_is_vivt() 1 381#define cache_is_vipt() 0 382#define cache_is_vipt_nonaliasing() 0 383#define cache_is_vipt_aliasing() 0 384 385#elif defined(CONFIG_CPU_CACHE_VIPT) 386 387#define cache_is_vivt() 0 388#define cache_is_vipt() 1 389#define cache_is_vipt_nonaliasing() \ 390 ({ \ 391 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 392 __cacheid_vipt_nonaliasing(__val); \ 393 }) 394 395#define cache_is_vipt_aliasing() \ 396 ({ \ 397 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 398 __cacheid_vipt_aliasing(__val); \ 399 }) 400 401#else 402 403#define cache_is_vivt() \ 404 ({ \ 405 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 406 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 407 }) 408 409#define cache_is_vipt() \ 410 ({ \ 411 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 412 __cacheid_present(__val) && __cacheid_vipt(__val); \ 413 }) 414 415#define cache_is_vipt_nonaliasing() \ 416 ({ \ 417 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 418 __cacheid_present(__val) && \ 419 __cacheid_vipt_nonaliasing(__val); \ 420 }) 421 422#define cache_is_vipt_aliasing() \ 423 ({ \ 424 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 425 __cacheid_present(__val) && \ 426 __cacheid_vipt_aliasing(__val); \ 427 }) 428 429#endif 430 431#endif