at v2.6.20-rc2 4012 lines 116 kB view raw
1/* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21/* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46#include <linux/module.h> 47#include <linux/slab.h> 48#include <linux/highmem.h> 49#include <linux/bitops.h> 50#include <linux/kthread.h> 51#include <asm/atomic.h> 52#include "raid6.h" 53 54#include <linux/raid/bitmap.h> 55 56/* 57 * Stripe cache 58 */ 59 60#define NR_STRIPES 256 61#define STRIPE_SIZE PAGE_SIZE 62#define STRIPE_SHIFT (PAGE_SHIFT - 9) 63#define STRIPE_SECTORS (STRIPE_SIZE>>9) 64#define IO_THRESHOLD 1 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 66#define HASH_MASK (NR_HASH - 1) 67 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 69 70/* bio's attached to a stripe+device for I/O are linked together in bi_sector 71 * order without overlap. There may be several bio's per stripe+device, and 72 * a bio could span several devices. 73 * When walking this list for a particular stripe+device, we must never proceed 74 * beyond a bio that extends past this device, as the next bio might no longer 75 * be valid. 76 * This macro is used to determine the 'next' bio in the list, given the sector 77 * of the current stripe+device 78 */ 79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 80/* 81 * The following can be used to debug the driver 82 */ 83#define RAID5_DEBUG 0 84#define RAID5_PARANOIA 1 85#if RAID5_PARANOIA && defined(CONFIG_SMP) 86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 87#else 88# define CHECK_DEVLOCK() 89#endif 90 91#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x))) 92#if RAID5_DEBUG 93#define inline 94#define __inline__ 95#endif 96 97#if !RAID6_USE_EMPTY_ZERO_PAGE 98/* In .bss so it's zeroed */ 99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); 100#endif 101 102static inline int raid6_next_disk(int disk, int raid_disks) 103{ 104 disk++; 105 return (disk < raid_disks) ? disk : 0; 106} 107static void print_raid5_conf (raid5_conf_t *conf); 108 109static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 110{ 111 if (atomic_dec_and_test(&sh->count)) { 112 BUG_ON(!list_empty(&sh->lru)); 113 BUG_ON(atomic_read(&conf->active_stripes)==0); 114 if (test_bit(STRIPE_HANDLE, &sh->state)) { 115 if (test_bit(STRIPE_DELAYED, &sh->state)) { 116 list_add_tail(&sh->lru, &conf->delayed_list); 117 blk_plug_device(conf->mddev->queue); 118 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 119 sh->bm_seq - conf->seq_write > 0) { 120 list_add_tail(&sh->lru, &conf->bitmap_list); 121 blk_plug_device(conf->mddev->queue); 122 } else { 123 clear_bit(STRIPE_BIT_DELAY, &sh->state); 124 list_add_tail(&sh->lru, &conf->handle_list); 125 } 126 md_wakeup_thread(conf->mddev->thread); 127 } else { 128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 129 atomic_dec(&conf->preread_active_stripes); 130 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 131 md_wakeup_thread(conf->mddev->thread); 132 } 133 atomic_dec(&conf->active_stripes); 134 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 135 list_add_tail(&sh->lru, &conf->inactive_list); 136 wake_up(&conf->wait_for_stripe); 137 if (conf->retry_read_aligned) 138 md_wakeup_thread(conf->mddev->thread); 139 } 140 } 141 } 142} 143static void release_stripe(struct stripe_head *sh) 144{ 145 raid5_conf_t *conf = sh->raid_conf; 146 unsigned long flags; 147 148 spin_lock_irqsave(&conf->device_lock, flags); 149 __release_stripe(conf, sh); 150 spin_unlock_irqrestore(&conf->device_lock, flags); 151} 152 153static inline void remove_hash(struct stripe_head *sh) 154{ 155 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); 156 157 hlist_del_init(&sh->hash); 158} 159 160static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 161{ 162 struct hlist_head *hp = stripe_hash(conf, sh->sector); 163 164 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); 165 166 CHECK_DEVLOCK(); 167 hlist_add_head(&sh->hash, hp); 168} 169 170 171/* find an idle stripe, make sure it is unhashed, and return it. */ 172static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 173{ 174 struct stripe_head *sh = NULL; 175 struct list_head *first; 176 177 CHECK_DEVLOCK(); 178 if (list_empty(&conf->inactive_list)) 179 goto out; 180 first = conf->inactive_list.next; 181 sh = list_entry(first, struct stripe_head, lru); 182 list_del_init(first); 183 remove_hash(sh); 184 atomic_inc(&conf->active_stripes); 185out: 186 return sh; 187} 188 189static void shrink_buffers(struct stripe_head *sh, int num) 190{ 191 struct page *p; 192 int i; 193 194 for (i=0; i<num ; i++) { 195 p = sh->dev[i].page; 196 if (!p) 197 continue; 198 sh->dev[i].page = NULL; 199 put_page(p); 200 } 201} 202 203static int grow_buffers(struct stripe_head *sh, int num) 204{ 205 int i; 206 207 for (i=0; i<num; i++) { 208 struct page *page; 209 210 if (!(page = alloc_page(GFP_KERNEL))) { 211 return 1; 212 } 213 sh->dev[i].page = page; 214 } 215 return 0; 216} 217 218static void raid5_build_block (struct stripe_head *sh, int i); 219 220static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 221{ 222 raid5_conf_t *conf = sh->raid_conf; 223 int i; 224 225 BUG_ON(atomic_read(&sh->count) != 0); 226 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 227 228 CHECK_DEVLOCK(); 229 PRINTK("init_stripe called, stripe %llu\n", 230 (unsigned long long)sh->sector); 231 232 remove_hash(sh); 233 234 sh->sector = sector; 235 sh->pd_idx = pd_idx; 236 sh->state = 0; 237 238 sh->disks = disks; 239 240 for (i = sh->disks; i--; ) { 241 struct r5dev *dev = &sh->dev[i]; 242 243 if (dev->toread || dev->towrite || dev->written || 244 test_bit(R5_LOCKED, &dev->flags)) { 245 printk("sector=%llx i=%d %p %p %p %d\n", 246 (unsigned long long)sh->sector, i, dev->toread, 247 dev->towrite, dev->written, 248 test_bit(R5_LOCKED, &dev->flags)); 249 BUG(); 250 } 251 dev->flags = 0; 252 raid5_build_block(sh, i); 253 } 254 insert_hash(conf, sh); 255} 256 257static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 258{ 259 struct stripe_head *sh; 260 struct hlist_node *hn; 261 262 CHECK_DEVLOCK(); 263 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); 264 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 265 if (sh->sector == sector && sh->disks == disks) 266 return sh; 267 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); 268 return NULL; 269} 270 271static void unplug_slaves(mddev_t *mddev); 272static void raid5_unplug_device(request_queue_t *q); 273 274static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 275 int pd_idx, int noblock) 276{ 277 struct stripe_head *sh; 278 279 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); 280 281 spin_lock_irq(&conf->device_lock); 282 283 do { 284 wait_event_lock_irq(conf->wait_for_stripe, 285 conf->quiesce == 0, 286 conf->device_lock, /* nothing */); 287 sh = __find_stripe(conf, sector, disks); 288 if (!sh) { 289 if (!conf->inactive_blocked) 290 sh = get_free_stripe(conf); 291 if (noblock && sh == NULL) 292 break; 293 if (!sh) { 294 conf->inactive_blocked = 1; 295 wait_event_lock_irq(conf->wait_for_stripe, 296 !list_empty(&conf->inactive_list) && 297 (atomic_read(&conf->active_stripes) 298 < (conf->max_nr_stripes *3/4) 299 || !conf->inactive_blocked), 300 conf->device_lock, 301 raid5_unplug_device(conf->mddev->queue) 302 ); 303 conf->inactive_blocked = 0; 304 } else 305 init_stripe(sh, sector, pd_idx, disks); 306 } else { 307 if (atomic_read(&sh->count)) { 308 BUG_ON(!list_empty(&sh->lru)); 309 } else { 310 if (!test_bit(STRIPE_HANDLE, &sh->state)) 311 atomic_inc(&conf->active_stripes); 312 if (list_empty(&sh->lru) && 313 !test_bit(STRIPE_EXPANDING, &sh->state)) 314 BUG(); 315 list_del_init(&sh->lru); 316 } 317 } 318 } while (sh == NULL); 319 320 if (sh) 321 atomic_inc(&sh->count); 322 323 spin_unlock_irq(&conf->device_lock); 324 return sh; 325} 326 327static int grow_one_stripe(raid5_conf_t *conf) 328{ 329 struct stripe_head *sh; 330 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 331 if (!sh) 332 return 0; 333 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 334 sh->raid_conf = conf; 335 spin_lock_init(&sh->lock); 336 337 if (grow_buffers(sh, conf->raid_disks)) { 338 shrink_buffers(sh, conf->raid_disks); 339 kmem_cache_free(conf->slab_cache, sh); 340 return 0; 341 } 342 sh->disks = conf->raid_disks; 343 /* we just created an active stripe so... */ 344 atomic_set(&sh->count, 1); 345 atomic_inc(&conf->active_stripes); 346 INIT_LIST_HEAD(&sh->lru); 347 release_stripe(sh); 348 return 1; 349} 350 351static int grow_stripes(raid5_conf_t *conf, int num) 352{ 353 struct kmem_cache *sc; 354 int devs = conf->raid_disks; 355 356 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev)); 357 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev)); 358 conf->active_name = 0; 359 sc = kmem_cache_create(conf->cache_name[conf->active_name], 360 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 361 0, 0, NULL, NULL); 362 if (!sc) 363 return 1; 364 conf->slab_cache = sc; 365 conf->pool_size = devs; 366 while (num--) 367 if (!grow_one_stripe(conf)) 368 return 1; 369 return 0; 370} 371 372#ifdef CONFIG_MD_RAID5_RESHAPE 373static int resize_stripes(raid5_conf_t *conf, int newsize) 374{ 375 /* Make all the stripes able to hold 'newsize' devices. 376 * New slots in each stripe get 'page' set to a new page. 377 * 378 * This happens in stages: 379 * 1/ create a new kmem_cache and allocate the required number of 380 * stripe_heads. 381 * 2/ gather all the old stripe_heads and tranfer the pages across 382 * to the new stripe_heads. This will have the side effect of 383 * freezing the array as once all stripe_heads have been collected, 384 * no IO will be possible. Old stripe heads are freed once their 385 * pages have been transferred over, and the old kmem_cache is 386 * freed when all stripes are done. 387 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 388 * we simple return a failre status - no need to clean anything up. 389 * 4/ allocate new pages for the new slots in the new stripe_heads. 390 * If this fails, we don't bother trying the shrink the 391 * stripe_heads down again, we just leave them as they are. 392 * As each stripe_head is processed the new one is released into 393 * active service. 394 * 395 * Once step2 is started, we cannot afford to wait for a write, 396 * so we use GFP_NOIO allocations. 397 */ 398 struct stripe_head *osh, *nsh; 399 LIST_HEAD(newstripes); 400 struct disk_info *ndisks; 401 int err = 0; 402 struct kmem_cache *sc; 403 int i; 404 405 if (newsize <= conf->pool_size) 406 return 0; /* never bother to shrink */ 407 408 /* Step 1 */ 409 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 410 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 411 0, 0, NULL, NULL); 412 if (!sc) 413 return -ENOMEM; 414 415 for (i = conf->max_nr_stripes; i; i--) { 416 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 417 if (!nsh) 418 break; 419 420 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 421 422 nsh->raid_conf = conf; 423 spin_lock_init(&nsh->lock); 424 425 list_add(&nsh->lru, &newstripes); 426 } 427 if (i) { 428 /* didn't get enough, give up */ 429 while (!list_empty(&newstripes)) { 430 nsh = list_entry(newstripes.next, struct stripe_head, lru); 431 list_del(&nsh->lru); 432 kmem_cache_free(sc, nsh); 433 } 434 kmem_cache_destroy(sc); 435 return -ENOMEM; 436 } 437 /* Step 2 - Must use GFP_NOIO now. 438 * OK, we have enough stripes, start collecting inactive 439 * stripes and copying them over 440 */ 441 list_for_each_entry(nsh, &newstripes, lru) { 442 spin_lock_irq(&conf->device_lock); 443 wait_event_lock_irq(conf->wait_for_stripe, 444 !list_empty(&conf->inactive_list), 445 conf->device_lock, 446 unplug_slaves(conf->mddev) 447 ); 448 osh = get_free_stripe(conf); 449 spin_unlock_irq(&conf->device_lock); 450 atomic_set(&nsh->count, 1); 451 for(i=0; i<conf->pool_size; i++) 452 nsh->dev[i].page = osh->dev[i].page; 453 for( ; i<newsize; i++) 454 nsh->dev[i].page = NULL; 455 kmem_cache_free(conf->slab_cache, osh); 456 } 457 kmem_cache_destroy(conf->slab_cache); 458 459 /* Step 3. 460 * At this point, we are holding all the stripes so the array 461 * is completely stalled, so now is a good time to resize 462 * conf->disks. 463 */ 464 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 465 if (ndisks) { 466 for (i=0; i<conf->raid_disks; i++) 467 ndisks[i] = conf->disks[i]; 468 kfree(conf->disks); 469 conf->disks = ndisks; 470 } else 471 err = -ENOMEM; 472 473 /* Step 4, return new stripes to service */ 474 while(!list_empty(&newstripes)) { 475 nsh = list_entry(newstripes.next, struct stripe_head, lru); 476 list_del_init(&nsh->lru); 477 for (i=conf->raid_disks; i < newsize; i++) 478 if (nsh->dev[i].page == NULL) { 479 struct page *p = alloc_page(GFP_NOIO); 480 nsh->dev[i].page = p; 481 if (!p) 482 err = -ENOMEM; 483 } 484 release_stripe(nsh); 485 } 486 /* critical section pass, GFP_NOIO no longer needed */ 487 488 conf->slab_cache = sc; 489 conf->active_name = 1-conf->active_name; 490 conf->pool_size = newsize; 491 return err; 492} 493#endif 494 495static int drop_one_stripe(raid5_conf_t *conf) 496{ 497 struct stripe_head *sh; 498 499 spin_lock_irq(&conf->device_lock); 500 sh = get_free_stripe(conf); 501 spin_unlock_irq(&conf->device_lock); 502 if (!sh) 503 return 0; 504 BUG_ON(atomic_read(&sh->count)); 505 shrink_buffers(sh, conf->pool_size); 506 kmem_cache_free(conf->slab_cache, sh); 507 atomic_dec(&conf->active_stripes); 508 return 1; 509} 510 511static void shrink_stripes(raid5_conf_t *conf) 512{ 513 while (drop_one_stripe(conf)) 514 ; 515 516 if (conf->slab_cache) 517 kmem_cache_destroy(conf->slab_cache); 518 conf->slab_cache = NULL; 519} 520 521static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done, 522 int error) 523{ 524 struct stripe_head *sh = bi->bi_private; 525 raid5_conf_t *conf = sh->raid_conf; 526 int disks = sh->disks, i; 527 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 528 char b[BDEVNAME_SIZE]; 529 mdk_rdev_t *rdev; 530 531 if (bi->bi_size) 532 return 1; 533 534 for (i=0 ; i<disks; i++) 535 if (bi == &sh->dev[i].req) 536 break; 537 538 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 539 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 540 uptodate); 541 if (i == disks) { 542 BUG(); 543 return 0; 544 } 545 546 if (uptodate) { 547 set_bit(R5_UPTODATE, &sh->dev[i].flags); 548 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 549 rdev = conf->disks[i].rdev; 550 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n", 551 mdname(conf->mddev), STRIPE_SECTORS, 552 (unsigned long long)sh->sector + rdev->data_offset, 553 bdevname(rdev->bdev, b)); 554 clear_bit(R5_ReadError, &sh->dev[i].flags); 555 clear_bit(R5_ReWrite, &sh->dev[i].flags); 556 } 557 if (atomic_read(&conf->disks[i].rdev->read_errors)) 558 atomic_set(&conf->disks[i].rdev->read_errors, 0); 559 } else { 560 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 561 int retry = 0; 562 rdev = conf->disks[i].rdev; 563 564 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 565 atomic_inc(&rdev->read_errors); 566 if (conf->mddev->degraded) 567 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n", 568 mdname(conf->mddev), 569 (unsigned long long)sh->sector + rdev->data_offset, 570 bdn); 571 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 572 /* Oh, no!!! */ 573 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n", 574 mdname(conf->mddev), 575 (unsigned long long)sh->sector + rdev->data_offset, 576 bdn); 577 else if (atomic_read(&rdev->read_errors) 578 > conf->max_nr_stripes) 579 printk(KERN_WARNING 580 "raid5:%s: Too many read errors, failing device %s.\n", 581 mdname(conf->mddev), bdn); 582 else 583 retry = 1; 584 if (retry) 585 set_bit(R5_ReadError, &sh->dev[i].flags); 586 else { 587 clear_bit(R5_ReadError, &sh->dev[i].flags); 588 clear_bit(R5_ReWrite, &sh->dev[i].flags); 589 md_error(conf->mddev, rdev); 590 } 591 } 592 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 593 clear_bit(R5_LOCKED, &sh->dev[i].flags); 594 set_bit(STRIPE_HANDLE, &sh->state); 595 release_stripe(sh); 596 return 0; 597} 598 599static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done, 600 int error) 601{ 602 struct stripe_head *sh = bi->bi_private; 603 raid5_conf_t *conf = sh->raid_conf; 604 int disks = sh->disks, i; 605 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 606 607 if (bi->bi_size) 608 return 1; 609 610 for (i=0 ; i<disks; i++) 611 if (bi == &sh->dev[i].req) 612 break; 613 614 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 615 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 616 uptodate); 617 if (i == disks) { 618 BUG(); 619 return 0; 620 } 621 622 if (!uptodate) 623 md_error(conf->mddev, conf->disks[i].rdev); 624 625 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 626 627 clear_bit(R5_LOCKED, &sh->dev[i].flags); 628 set_bit(STRIPE_HANDLE, &sh->state); 629 release_stripe(sh); 630 return 0; 631} 632 633 634static sector_t compute_blocknr(struct stripe_head *sh, int i); 635 636static void raid5_build_block (struct stripe_head *sh, int i) 637{ 638 struct r5dev *dev = &sh->dev[i]; 639 640 bio_init(&dev->req); 641 dev->req.bi_io_vec = &dev->vec; 642 dev->req.bi_vcnt++; 643 dev->req.bi_max_vecs++; 644 dev->vec.bv_page = dev->page; 645 dev->vec.bv_len = STRIPE_SIZE; 646 dev->vec.bv_offset = 0; 647 648 dev->req.bi_sector = sh->sector; 649 dev->req.bi_private = sh; 650 651 dev->flags = 0; 652 dev->sector = compute_blocknr(sh, i); 653} 654 655static void error(mddev_t *mddev, mdk_rdev_t *rdev) 656{ 657 char b[BDEVNAME_SIZE]; 658 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 659 PRINTK("raid5: error called\n"); 660 661 if (!test_bit(Faulty, &rdev->flags)) { 662 set_bit(MD_CHANGE_DEVS, &mddev->flags); 663 if (test_and_clear_bit(In_sync, &rdev->flags)) { 664 unsigned long flags; 665 spin_lock_irqsave(&conf->device_lock, flags); 666 mddev->degraded++; 667 spin_unlock_irqrestore(&conf->device_lock, flags); 668 /* 669 * if recovery was running, make sure it aborts. 670 */ 671 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 672 } 673 set_bit(Faulty, &rdev->flags); 674 printk (KERN_ALERT 675 "raid5: Disk failure on %s, disabling device." 676 " Operation continuing on %d devices\n", 677 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 678 } 679} 680 681/* 682 * Input: a 'big' sector number, 683 * Output: index of the data and parity disk, and the sector # in them. 684 */ 685static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 686 unsigned int data_disks, unsigned int * dd_idx, 687 unsigned int * pd_idx, raid5_conf_t *conf) 688{ 689 long stripe; 690 unsigned long chunk_number; 691 unsigned int chunk_offset; 692 sector_t new_sector; 693 int sectors_per_chunk = conf->chunk_size >> 9; 694 695 /* First compute the information on this sector */ 696 697 /* 698 * Compute the chunk number and the sector offset inside the chunk 699 */ 700 chunk_offset = sector_div(r_sector, sectors_per_chunk); 701 chunk_number = r_sector; 702 BUG_ON(r_sector != chunk_number); 703 704 /* 705 * Compute the stripe number 706 */ 707 stripe = chunk_number / data_disks; 708 709 /* 710 * Compute the data disk and parity disk indexes inside the stripe 711 */ 712 *dd_idx = chunk_number % data_disks; 713 714 /* 715 * Select the parity disk based on the user selected algorithm. 716 */ 717 switch(conf->level) { 718 case 4: 719 *pd_idx = data_disks; 720 break; 721 case 5: 722 switch (conf->algorithm) { 723 case ALGORITHM_LEFT_ASYMMETRIC: 724 *pd_idx = data_disks - stripe % raid_disks; 725 if (*dd_idx >= *pd_idx) 726 (*dd_idx)++; 727 break; 728 case ALGORITHM_RIGHT_ASYMMETRIC: 729 *pd_idx = stripe % raid_disks; 730 if (*dd_idx >= *pd_idx) 731 (*dd_idx)++; 732 break; 733 case ALGORITHM_LEFT_SYMMETRIC: 734 *pd_idx = data_disks - stripe % raid_disks; 735 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 736 break; 737 case ALGORITHM_RIGHT_SYMMETRIC: 738 *pd_idx = stripe % raid_disks; 739 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 740 break; 741 default: 742 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 743 conf->algorithm); 744 } 745 break; 746 case 6: 747 748 /**** FIX THIS ****/ 749 switch (conf->algorithm) { 750 case ALGORITHM_LEFT_ASYMMETRIC: 751 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 752 if (*pd_idx == raid_disks-1) 753 (*dd_idx)++; /* Q D D D P */ 754 else if (*dd_idx >= *pd_idx) 755 (*dd_idx) += 2; /* D D P Q D */ 756 break; 757 case ALGORITHM_RIGHT_ASYMMETRIC: 758 *pd_idx = stripe % raid_disks; 759 if (*pd_idx == raid_disks-1) 760 (*dd_idx)++; /* Q D D D P */ 761 else if (*dd_idx >= *pd_idx) 762 (*dd_idx) += 2; /* D D P Q D */ 763 break; 764 case ALGORITHM_LEFT_SYMMETRIC: 765 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 766 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 767 break; 768 case ALGORITHM_RIGHT_SYMMETRIC: 769 *pd_idx = stripe % raid_disks; 770 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 771 break; 772 default: 773 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 774 conf->algorithm); 775 } 776 break; 777 } 778 779 /* 780 * Finally, compute the new sector number 781 */ 782 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 783 return new_sector; 784} 785 786 787static sector_t compute_blocknr(struct stripe_head *sh, int i) 788{ 789 raid5_conf_t *conf = sh->raid_conf; 790 int raid_disks = sh->disks; 791 int data_disks = raid_disks - conf->max_degraded; 792 sector_t new_sector = sh->sector, check; 793 int sectors_per_chunk = conf->chunk_size >> 9; 794 sector_t stripe; 795 int chunk_offset; 796 int chunk_number, dummy1, dummy2, dd_idx = i; 797 sector_t r_sector; 798 799 800 chunk_offset = sector_div(new_sector, sectors_per_chunk); 801 stripe = new_sector; 802 BUG_ON(new_sector != stripe); 803 804 if (i == sh->pd_idx) 805 return 0; 806 switch(conf->level) { 807 case 4: break; 808 case 5: 809 switch (conf->algorithm) { 810 case ALGORITHM_LEFT_ASYMMETRIC: 811 case ALGORITHM_RIGHT_ASYMMETRIC: 812 if (i > sh->pd_idx) 813 i--; 814 break; 815 case ALGORITHM_LEFT_SYMMETRIC: 816 case ALGORITHM_RIGHT_SYMMETRIC: 817 if (i < sh->pd_idx) 818 i += raid_disks; 819 i -= (sh->pd_idx + 1); 820 break; 821 default: 822 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 823 conf->algorithm); 824 } 825 break; 826 case 6: 827 if (i == raid6_next_disk(sh->pd_idx, raid_disks)) 828 return 0; /* It is the Q disk */ 829 switch (conf->algorithm) { 830 case ALGORITHM_LEFT_ASYMMETRIC: 831 case ALGORITHM_RIGHT_ASYMMETRIC: 832 if (sh->pd_idx == raid_disks-1) 833 i--; /* Q D D D P */ 834 else if (i > sh->pd_idx) 835 i -= 2; /* D D P Q D */ 836 break; 837 case ALGORITHM_LEFT_SYMMETRIC: 838 case ALGORITHM_RIGHT_SYMMETRIC: 839 if (sh->pd_idx == raid_disks-1) 840 i--; /* Q D D D P */ 841 else { 842 /* D D P Q D */ 843 if (i < sh->pd_idx) 844 i += raid_disks; 845 i -= (sh->pd_idx + 2); 846 } 847 break; 848 default: 849 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 850 conf->algorithm); 851 } 852 break; 853 } 854 855 chunk_number = stripe * data_disks + i; 856 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 857 858 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 859 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 860 printk(KERN_ERR "compute_blocknr: map not correct\n"); 861 return 0; 862 } 863 return r_sector; 864} 865 866 867 868/* 869 * Copy data between a page in the stripe cache, and one or more bion 870 * The page could align with the middle of the bio, or there could be 871 * several bion, each with several bio_vecs, which cover part of the page 872 * Multiple bion are linked together on bi_next. There may be extras 873 * at the end of this list. We ignore them. 874 */ 875static void copy_data(int frombio, struct bio *bio, 876 struct page *page, 877 sector_t sector) 878{ 879 char *pa = page_address(page); 880 struct bio_vec *bvl; 881 int i; 882 int page_offset; 883 884 if (bio->bi_sector >= sector) 885 page_offset = (signed)(bio->bi_sector - sector) * 512; 886 else 887 page_offset = (signed)(sector - bio->bi_sector) * -512; 888 bio_for_each_segment(bvl, bio, i) { 889 int len = bio_iovec_idx(bio,i)->bv_len; 890 int clen; 891 int b_offset = 0; 892 893 if (page_offset < 0) { 894 b_offset = -page_offset; 895 page_offset += b_offset; 896 len -= b_offset; 897 } 898 899 if (len > 0 && page_offset + len > STRIPE_SIZE) 900 clen = STRIPE_SIZE - page_offset; 901 else clen = len; 902 903 if (clen > 0) { 904 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 905 if (frombio) 906 memcpy(pa+page_offset, ba+b_offset, clen); 907 else 908 memcpy(ba+b_offset, pa+page_offset, clen); 909 __bio_kunmap_atomic(ba, KM_USER0); 910 } 911 if (clen < len) /* hit end of page */ 912 break; 913 page_offset += len; 914 } 915} 916 917#define check_xor() do { \ 918 if (count == MAX_XOR_BLOCKS) { \ 919 xor_block(count, STRIPE_SIZE, ptr); \ 920 count = 1; \ 921 } \ 922 } while(0) 923 924 925static void compute_block(struct stripe_head *sh, int dd_idx) 926{ 927 int i, count, disks = sh->disks; 928 void *ptr[MAX_XOR_BLOCKS], *p; 929 930 PRINTK("compute_block, stripe %llu, idx %d\n", 931 (unsigned long long)sh->sector, dd_idx); 932 933 ptr[0] = page_address(sh->dev[dd_idx].page); 934 memset(ptr[0], 0, STRIPE_SIZE); 935 count = 1; 936 for (i = disks ; i--; ) { 937 if (i == dd_idx) 938 continue; 939 p = page_address(sh->dev[i].page); 940 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 941 ptr[count++] = p; 942 else 943 printk(KERN_ERR "compute_block() %d, stripe %llu, %d" 944 " not present\n", dd_idx, 945 (unsigned long long)sh->sector, i); 946 947 check_xor(); 948 } 949 if (count != 1) 950 xor_block(count, STRIPE_SIZE, ptr); 951 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 952} 953 954static void compute_parity5(struct stripe_head *sh, int method) 955{ 956 raid5_conf_t *conf = sh->raid_conf; 957 int i, pd_idx = sh->pd_idx, disks = sh->disks, count; 958 void *ptr[MAX_XOR_BLOCKS]; 959 struct bio *chosen; 960 961 PRINTK("compute_parity5, stripe %llu, method %d\n", 962 (unsigned long long)sh->sector, method); 963 964 count = 1; 965 ptr[0] = page_address(sh->dev[pd_idx].page); 966 switch(method) { 967 case READ_MODIFY_WRITE: 968 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags)); 969 for (i=disks ; i-- ;) { 970 if (i==pd_idx) 971 continue; 972 if (sh->dev[i].towrite && 973 test_bit(R5_UPTODATE, &sh->dev[i].flags)) { 974 ptr[count++] = page_address(sh->dev[i].page); 975 chosen = sh->dev[i].towrite; 976 sh->dev[i].towrite = NULL; 977 978 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 979 wake_up(&conf->wait_for_overlap); 980 981 BUG_ON(sh->dev[i].written); 982 sh->dev[i].written = chosen; 983 check_xor(); 984 } 985 } 986 break; 987 case RECONSTRUCT_WRITE: 988 memset(ptr[0], 0, STRIPE_SIZE); 989 for (i= disks; i-- ;) 990 if (i!=pd_idx && sh->dev[i].towrite) { 991 chosen = sh->dev[i].towrite; 992 sh->dev[i].towrite = NULL; 993 994 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 995 wake_up(&conf->wait_for_overlap); 996 997 BUG_ON(sh->dev[i].written); 998 sh->dev[i].written = chosen; 999 } 1000 break; 1001 case CHECK_PARITY: 1002 break; 1003 } 1004 if (count>1) { 1005 xor_block(count, STRIPE_SIZE, ptr); 1006 count = 1; 1007 } 1008 1009 for (i = disks; i--;) 1010 if (sh->dev[i].written) { 1011 sector_t sector = sh->dev[i].sector; 1012 struct bio *wbi = sh->dev[i].written; 1013 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1014 copy_data(1, wbi, sh->dev[i].page, sector); 1015 wbi = r5_next_bio(wbi, sector); 1016 } 1017 1018 set_bit(R5_LOCKED, &sh->dev[i].flags); 1019 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1020 } 1021 1022 switch(method) { 1023 case RECONSTRUCT_WRITE: 1024 case CHECK_PARITY: 1025 for (i=disks; i--;) 1026 if (i != pd_idx) { 1027 ptr[count++] = page_address(sh->dev[i].page); 1028 check_xor(); 1029 } 1030 break; 1031 case READ_MODIFY_WRITE: 1032 for (i = disks; i--;) 1033 if (sh->dev[i].written) { 1034 ptr[count++] = page_address(sh->dev[i].page); 1035 check_xor(); 1036 } 1037 } 1038 if (count != 1) 1039 xor_block(count, STRIPE_SIZE, ptr); 1040 1041 if (method != CHECK_PARITY) { 1042 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1043 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1044 } else 1045 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1046} 1047 1048static void compute_parity6(struct stripe_head *sh, int method) 1049{ 1050 raid6_conf_t *conf = sh->raid_conf; 1051 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; 1052 struct bio *chosen; 1053 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1054 void *ptrs[disks]; 1055 1056 qd_idx = raid6_next_disk(pd_idx, disks); 1057 d0_idx = raid6_next_disk(qd_idx, disks); 1058 1059 PRINTK("compute_parity, stripe %llu, method %d\n", 1060 (unsigned long long)sh->sector, method); 1061 1062 switch(method) { 1063 case READ_MODIFY_WRITE: 1064 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ 1065 case RECONSTRUCT_WRITE: 1066 for (i= disks; i-- ;) 1067 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { 1068 chosen = sh->dev[i].towrite; 1069 sh->dev[i].towrite = NULL; 1070 1071 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1072 wake_up(&conf->wait_for_overlap); 1073 1074 BUG_ON(sh->dev[i].written); 1075 sh->dev[i].written = chosen; 1076 } 1077 break; 1078 case CHECK_PARITY: 1079 BUG(); /* Not implemented yet */ 1080 } 1081 1082 for (i = disks; i--;) 1083 if (sh->dev[i].written) { 1084 sector_t sector = sh->dev[i].sector; 1085 struct bio *wbi = sh->dev[i].written; 1086 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1087 copy_data(1, wbi, sh->dev[i].page, sector); 1088 wbi = r5_next_bio(wbi, sector); 1089 } 1090 1091 set_bit(R5_LOCKED, &sh->dev[i].flags); 1092 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1093 } 1094 1095// switch(method) { 1096// case RECONSTRUCT_WRITE: 1097// case CHECK_PARITY: 1098// case UPDATE_PARITY: 1099 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ 1100 /* FIX: Is this ordering of drives even remotely optimal? */ 1101 count = 0; 1102 i = d0_idx; 1103 do { 1104 ptrs[count++] = page_address(sh->dev[i].page); 1105 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1106 printk("block %d/%d not uptodate on parity calc\n", i,count); 1107 i = raid6_next_disk(i, disks); 1108 } while ( i != d0_idx ); 1109// break; 1110// } 1111 1112 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); 1113 1114 switch(method) { 1115 case RECONSTRUCT_WRITE: 1116 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1117 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1118 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1119 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); 1120 break; 1121 case UPDATE_PARITY: 1122 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1123 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1124 break; 1125 } 1126} 1127 1128 1129/* Compute one missing block */ 1130static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) 1131{ 1132 raid6_conf_t *conf = sh->raid_conf; 1133 int i, count, disks = conf->raid_disks; 1134 void *ptr[MAX_XOR_BLOCKS], *p; 1135 int pd_idx = sh->pd_idx; 1136 int qd_idx = raid6_next_disk(pd_idx, disks); 1137 1138 PRINTK("compute_block_1, stripe %llu, idx %d\n", 1139 (unsigned long long)sh->sector, dd_idx); 1140 1141 if ( dd_idx == qd_idx ) { 1142 /* We're actually computing the Q drive */ 1143 compute_parity6(sh, UPDATE_PARITY); 1144 } else { 1145 ptr[0] = page_address(sh->dev[dd_idx].page); 1146 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE); 1147 count = 1; 1148 for (i = disks ; i--; ) { 1149 if (i == dd_idx || i == qd_idx) 1150 continue; 1151 p = page_address(sh->dev[i].page); 1152 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1153 ptr[count++] = p; 1154 else 1155 printk("compute_block() %d, stripe %llu, %d" 1156 " not present\n", dd_idx, 1157 (unsigned long long)sh->sector, i); 1158 1159 check_xor(); 1160 } 1161 if (count != 1) 1162 xor_block(count, STRIPE_SIZE, ptr); 1163 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1164 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1165 } 1166} 1167 1168/* Compute two missing blocks */ 1169static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) 1170{ 1171 raid6_conf_t *conf = sh->raid_conf; 1172 int i, count, disks = conf->raid_disks; 1173 int pd_idx = sh->pd_idx; 1174 int qd_idx = raid6_next_disk(pd_idx, disks); 1175 int d0_idx = raid6_next_disk(qd_idx, disks); 1176 int faila, failb; 1177 1178 /* faila and failb are disk numbers relative to d0_idx */ 1179 /* pd_idx become disks-2 and qd_idx become disks-1 */ 1180 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; 1181 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; 1182 1183 BUG_ON(faila == failb); 1184 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } 1185 1186 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", 1187 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); 1188 1189 if ( failb == disks-1 ) { 1190 /* Q disk is one of the missing disks */ 1191 if ( faila == disks-2 ) { 1192 /* Missing P+Q, just recompute */ 1193 compute_parity6(sh, UPDATE_PARITY); 1194 return; 1195 } else { 1196 /* We're missing D+Q; recompute D from P */ 1197 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); 1198 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ 1199 return; 1200 } 1201 } 1202 1203 /* We're missing D+P or D+D; build pointer table */ 1204 { 1205 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1206 void *ptrs[disks]; 1207 1208 count = 0; 1209 i = d0_idx; 1210 do { 1211 ptrs[count++] = page_address(sh->dev[i].page); 1212 i = raid6_next_disk(i, disks); 1213 if (i != dd_idx1 && i != dd_idx2 && 1214 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1215 printk("compute_2 with missing block %d/%d\n", count, i); 1216 } while ( i != d0_idx ); 1217 1218 if ( failb == disks-2 ) { 1219 /* We're missing D+P. */ 1220 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); 1221 } else { 1222 /* We're missing D+D. */ 1223 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); 1224 } 1225 1226 /* Both the above update both missing blocks */ 1227 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); 1228 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); 1229 } 1230} 1231 1232 1233 1234/* 1235 * Each stripe/dev can have one or more bion attached. 1236 * toread/towrite point to the first in a chain. 1237 * The bi_next chain must be in order. 1238 */ 1239static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 1240{ 1241 struct bio **bip; 1242 raid5_conf_t *conf = sh->raid_conf; 1243 int firstwrite=0; 1244 1245 PRINTK("adding bh b#%llu to stripe s#%llu\n", 1246 (unsigned long long)bi->bi_sector, 1247 (unsigned long long)sh->sector); 1248 1249 1250 spin_lock(&sh->lock); 1251 spin_lock_irq(&conf->device_lock); 1252 if (forwrite) { 1253 bip = &sh->dev[dd_idx].towrite; 1254 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 1255 firstwrite = 1; 1256 } else 1257 bip = &sh->dev[dd_idx].toread; 1258 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 1259 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 1260 goto overlap; 1261 bip = & (*bip)->bi_next; 1262 } 1263 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 1264 goto overlap; 1265 1266 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 1267 if (*bip) 1268 bi->bi_next = *bip; 1269 *bip = bi; 1270 bi->bi_phys_segments ++; 1271 spin_unlock_irq(&conf->device_lock); 1272 spin_unlock(&sh->lock); 1273 1274 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", 1275 (unsigned long long)bi->bi_sector, 1276 (unsigned long long)sh->sector, dd_idx); 1277 1278 if (conf->mddev->bitmap && firstwrite) { 1279 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1280 STRIPE_SECTORS, 0); 1281 sh->bm_seq = conf->seq_flush+1; 1282 set_bit(STRIPE_BIT_DELAY, &sh->state); 1283 } 1284 1285 if (forwrite) { 1286 /* check if page is covered */ 1287 sector_t sector = sh->dev[dd_idx].sector; 1288 for (bi=sh->dev[dd_idx].towrite; 1289 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1290 bi && bi->bi_sector <= sector; 1291 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1292 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1293 sector = bi->bi_sector + (bi->bi_size>>9); 1294 } 1295 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1296 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1297 } 1298 return 1; 1299 1300 overlap: 1301 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1302 spin_unlock_irq(&conf->device_lock); 1303 spin_unlock(&sh->lock); 1304 return 0; 1305} 1306 1307static void end_reshape(raid5_conf_t *conf); 1308 1309static int page_is_zero(struct page *p) 1310{ 1311 char *a = page_address(p); 1312 return ((*(u32*)a) == 0 && 1313 memcmp(a, a+4, STRIPE_SIZE-4)==0); 1314} 1315 1316static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1317{ 1318 int sectors_per_chunk = conf->chunk_size >> 9; 1319 int pd_idx, dd_idx; 1320 int chunk_offset = sector_div(stripe, sectors_per_chunk); 1321 1322 raid5_compute_sector(stripe * (disks - conf->max_degraded) 1323 *sectors_per_chunk + chunk_offset, 1324 disks, disks - conf->max_degraded, 1325 &dd_idx, &pd_idx, conf); 1326 return pd_idx; 1327} 1328 1329 1330/* 1331 * handle_stripe - do things to a stripe. 1332 * 1333 * We lock the stripe and then examine the state of various bits 1334 * to see what needs to be done. 1335 * Possible results: 1336 * return some read request which now have data 1337 * return some write requests which are safely on disc 1338 * schedule a read on some buffers 1339 * schedule a write of some buffers 1340 * return confirmation of parity correctness 1341 * 1342 * Parity calculations are done inside the stripe lock 1343 * buffers are taken off read_list or write_list, and bh_cache buffers 1344 * get BH_Lock set before the stripe lock is released. 1345 * 1346 */ 1347 1348static void handle_stripe5(struct stripe_head *sh) 1349{ 1350 raid5_conf_t *conf = sh->raid_conf; 1351 int disks = sh->disks; 1352 struct bio *return_bi= NULL; 1353 struct bio *bi; 1354 int i; 1355 int syncing, expanding, expanded; 1356 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 1357 int non_overwrite = 0; 1358 int failed_num=0; 1359 struct r5dev *dev; 1360 1361 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n", 1362 (unsigned long long)sh->sector, atomic_read(&sh->count), 1363 sh->pd_idx); 1364 1365 spin_lock(&sh->lock); 1366 clear_bit(STRIPE_HANDLE, &sh->state); 1367 clear_bit(STRIPE_DELAYED, &sh->state); 1368 1369 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1370 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1371 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 1372 /* Now to look around and see what can be done */ 1373 1374 rcu_read_lock(); 1375 for (i=disks; i--; ) { 1376 mdk_rdev_t *rdev; 1377 dev = &sh->dev[i]; 1378 clear_bit(R5_Insync, &dev->flags); 1379 1380 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1381 i, dev->flags, dev->toread, dev->towrite, dev->written); 1382 /* maybe we can reply to a read */ 1383 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 1384 struct bio *rbi, *rbi2; 1385 PRINTK("Return read for disc %d\n", i); 1386 spin_lock_irq(&conf->device_lock); 1387 rbi = dev->toread; 1388 dev->toread = NULL; 1389 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1390 wake_up(&conf->wait_for_overlap); 1391 spin_unlock_irq(&conf->device_lock); 1392 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1393 copy_data(0, rbi, dev->page, dev->sector); 1394 rbi2 = r5_next_bio(rbi, dev->sector); 1395 spin_lock_irq(&conf->device_lock); 1396 if (--rbi->bi_phys_segments == 0) { 1397 rbi->bi_next = return_bi; 1398 return_bi = rbi; 1399 } 1400 spin_unlock_irq(&conf->device_lock); 1401 rbi = rbi2; 1402 } 1403 } 1404 1405 /* now count some things */ 1406 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 1407 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 1408 1409 1410 if (dev->toread) to_read++; 1411 if (dev->towrite) { 1412 to_write++; 1413 if (!test_bit(R5_OVERWRITE, &dev->flags)) 1414 non_overwrite++; 1415 } 1416 if (dev->written) written++; 1417 rdev = rcu_dereference(conf->disks[i].rdev); 1418 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1419 /* The ReadError flag will just be confusing now */ 1420 clear_bit(R5_ReadError, &dev->flags); 1421 clear_bit(R5_ReWrite, &dev->flags); 1422 } 1423 if (!rdev || !test_bit(In_sync, &rdev->flags) 1424 || test_bit(R5_ReadError, &dev->flags)) { 1425 failed++; 1426 failed_num = i; 1427 } else 1428 set_bit(R5_Insync, &dev->flags); 1429 } 1430 rcu_read_unlock(); 1431 PRINTK("locked=%d uptodate=%d to_read=%d" 1432 " to_write=%d failed=%d failed_num=%d\n", 1433 locked, uptodate, to_read, to_write, failed, failed_num); 1434 /* check if the array has lost two devices and, if so, some requests might 1435 * need to be failed 1436 */ 1437 if (failed > 1 && to_read+to_write+written) { 1438 for (i=disks; i--; ) { 1439 int bitmap_end = 0; 1440 1441 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1442 mdk_rdev_t *rdev; 1443 rcu_read_lock(); 1444 rdev = rcu_dereference(conf->disks[i].rdev); 1445 if (rdev && test_bit(In_sync, &rdev->flags)) 1446 /* multiple read failures in one stripe */ 1447 md_error(conf->mddev, rdev); 1448 rcu_read_unlock(); 1449 } 1450 1451 spin_lock_irq(&conf->device_lock); 1452 /* fail all writes first */ 1453 bi = sh->dev[i].towrite; 1454 sh->dev[i].towrite = NULL; 1455 if (bi) { to_write--; bitmap_end = 1; } 1456 1457 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1458 wake_up(&conf->wait_for_overlap); 1459 1460 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1461 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1462 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1463 if (--bi->bi_phys_segments == 0) { 1464 md_write_end(conf->mddev); 1465 bi->bi_next = return_bi; 1466 return_bi = bi; 1467 } 1468 bi = nextbi; 1469 } 1470 /* and fail all 'written' */ 1471 bi = sh->dev[i].written; 1472 sh->dev[i].written = NULL; 1473 if (bi) bitmap_end = 1; 1474 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 1475 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1476 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1477 if (--bi->bi_phys_segments == 0) { 1478 md_write_end(conf->mddev); 1479 bi->bi_next = return_bi; 1480 return_bi = bi; 1481 } 1482 bi = bi2; 1483 } 1484 1485 /* fail any reads if this device is non-operational */ 1486 if (!test_bit(R5_Insync, &sh->dev[i].flags) || 1487 test_bit(R5_ReadError, &sh->dev[i].flags)) { 1488 bi = sh->dev[i].toread; 1489 sh->dev[i].toread = NULL; 1490 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1491 wake_up(&conf->wait_for_overlap); 1492 if (bi) to_read--; 1493 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1494 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1495 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1496 if (--bi->bi_phys_segments == 0) { 1497 bi->bi_next = return_bi; 1498 return_bi = bi; 1499 } 1500 bi = nextbi; 1501 } 1502 } 1503 spin_unlock_irq(&conf->device_lock); 1504 if (bitmap_end) 1505 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1506 STRIPE_SECTORS, 0, 0); 1507 } 1508 } 1509 if (failed > 1 && syncing) { 1510 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 1511 clear_bit(STRIPE_SYNCING, &sh->state); 1512 syncing = 0; 1513 } 1514 1515 /* might be able to return some write requests if the parity block 1516 * is safe, or on a failed drive 1517 */ 1518 dev = &sh->dev[sh->pd_idx]; 1519 if ( written && 1520 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) && 1521 test_bit(R5_UPTODATE, &dev->flags)) 1522 || (failed == 1 && failed_num == sh->pd_idx)) 1523 ) { 1524 /* any written block on an uptodate or failed drive can be returned. 1525 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 1526 * never LOCKED, so we don't need to test 'failed' directly. 1527 */ 1528 for (i=disks; i--; ) 1529 if (sh->dev[i].written) { 1530 dev = &sh->dev[i]; 1531 if (!test_bit(R5_LOCKED, &dev->flags) && 1532 test_bit(R5_UPTODATE, &dev->flags) ) { 1533 /* We can return any write requests */ 1534 struct bio *wbi, *wbi2; 1535 int bitmap_end = 0; 1536 PRINTK("Return write for disc %d\n", i); 1537 spin_lock_irq(&conf->device_lock); 1538 wbi = dev->written; 1539 dev->written = NULL; 1540 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1541 wbi2 = r5_next_bio(wbi, dev->sector); 1542 if (--wbi->bi_phys_segments == 0) { 1543 md_write_end(conf->mddev); 1544 wbi->bi_next = return_bi; 1545 return_bi = wbi; 1546 } 1547 wbi = wbi2; 1548 } 1549 if (dev->towrite == NULL) 1550 bitmap_end = 1; 1551 spin_unlock_irq(&conf->device_lock); 1552 if (bitmap_end) 1553 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1554 STRIPE_SECTORS, 1555 !test_bit(STRIPE_DEGRADED, &sh->state), 0); 1556 } 1557 } 1558 } 1559 1560 /* Now we might consider reading some blocks, either to check/generate 1561 * parity, or to satisfy requests 1562 * or to load a block that is being partially written. 1563 */ 1564 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) { 1565 for (i=disks; i--;) { 1566 dev = &sh->dev[i]; 1567 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1568 (dev->toread || 1569 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1570 syncing || 1571 expanding || 1572 (failed && (sh->dev[failed_num].toread || 1573 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags)))) 1574 ) 1575 ) { 1576 /* we would like to get this block, possibly 1577 * by computing it, but we might not be able to 1578 */ 1579 if (uptodate == disks-1) { 1580 PRINTK("Computing block %d\n", i); 1581 compute_block(sh, i); 1582 uptodate++; 1583 } else if (test_bit(R5_Insync, &dev->flags)) { 1584 set_bit(R5_LOCKED, &dev->flags); 1585 set_bit(R5_Wantread, &dev->flags); 1586 locked++; 1587 PRINTK("Reading block %d (sync=%d)\n", 1588 i, syncing); 1589 } 1590 } 1591 } 1592 set_bit(STRIPE_HANDLE, &sh->state); 1593 } 1594 1595 /* now to consider writing and what else, if anything should be read */ 1596 if (to_write) { 1597 int rmw=0, rcw=0; 1598 for (i=disks ; i--;) { 1599 /* would I have to read this buffer for read_modify_write */ 1600 dev = &sh->dev[i]; 1601 if ((dev->towrite || i == sh->pd_idx) && 1602 (!test_bit(R5_LOCKED, &dev->flags) 1603 ) && 1604 !test_bit(R5_UPTODATE, &dev->flags)) { 1605 if (test_bit(R5_Insync, &dev->flags) 1606/* && !(!mddev->insync && i == sh->pd_idx) */ 1607 ) 1608 rmw++; 1609 else rmw += 2*disks; /* cannot read it */ 1610 } 1611 /* Would I have to read this buffer for reconstruct_write */ 1612 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1613 (!test_bit(R5_LOCKED, &dev->flags) 1614 ) && 1615 !test_bit(R5_UPTODATE, &dev->flags)) { 1616 if (test_bit(R5_Insync, &dev->flags)) rcw++; 1617 else rcw += 2*disks; 1618 } 1619 } 1620 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 1621 (unsigned long long)sh->sector, rmw, rcw); 1622 set_bit(STRIPE_HANDLE, &sh->state); 1623 if (rmw < rcw && rmw > 0) 1624 /* prefer read-modify-write, but need to get some data */ 1625 for (i=disks; i--;) { 1626 dev = &sh->dev[i]; 1627 if ((dev->towrite || i == sh->pd_idx) && 1628 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1629 test_bit(R5_Insync, &dev->flags)) { 1630 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1631 { 1632 PRINTK("Read_old block %d for r-m-w\n", i); 1633 set_bit(R5_LOCKED, &dev->flags); 1634 set_bit(R5_Wantread, &dev->flags); 1635 locked++; 1636 } else { 1637 set_bit(STRIPE_DELAYED, &sh->state); 1638 set_bit(STRIPE_HANDLE, &sh->state); 1639 } 1640 } 1641 } 1642 if (rcw <= rmw && rcw > 0) 1643 /* want reconstruct write, but need to get some data */ 1644 for (i=disks; i--;) { 1645 dev = &sh->dev[i]; 1646 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1647 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1648 test_bit(R5_Insync, &dev->flags)) { 1649 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1650 { 1651 PRINTK("Read_old block %d for Reconstruct\n", i); 1652 set_bit(R5_LOCKED, &dev->flags); 1653 set_bit(R5_Wantread, &dev->flags); 1654 locked++; 1655 } else { 1656 set_bit(STRIPE_DELAYED, &sh->state); 1657 set_bit(STRIPE_HANDLE, &sh->state); 1658 } 1659 } 1660 } 1661 /* now if nothing is locked, and if we have enough data, we can start a write request */ 1662 if (locked == 0 && (rcw == 0 ||rmw == 0) && 1663 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 1664 PRINTK("Computing parity...\n"); 1665 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); 1666 /* now every locked buffer is ready to be written */ 1667 for (i=disks; i--;) 1668 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 1669 PRINTK("Writing block %d\n", i); 1670 locked++; 1671 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1672 if (!test_bit(R5_Insync, &sh->dev[i].flags) 1673 || (i==sh->pd_idx && failed == 0)) 1674 set_bit(STRIPE_INSYNC, &sh->state); 1675 } 1676 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 1677 atomic_dec(&conf->preread_active_stripes); 1678 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 1679 md_wakeup_thread(conf->mddev->thread); 1680 } 1681 } 1682 } 1683 1684 /* maybe we need to check and possibly fix the parity for this stripe 1685 * Any reads will already have been scheduled, so we just see if enough data 1686 * is available 1687 */ 1688 if (syncing && locked == 0 && 1689 !test_bit(STRIPE_INSYNC, &sh->state)) { 1690 set_bit(STRIPE_HANDLE, &sh->state); 1691 if (failed == 0) { 1692 BUG_ON(uptodate != disks); 1693 compute_parity5(sh, CHECK_PARITY); 1694 uptodate--; 1695 if (page_is_zero(sh->dev[sh->pd_idx].page)) { 1696 /* parity is correct (on disc, not in buffer any more) */ 1697 set_bit(STRIPE_INSYNC, &sh->state); 1698 } else { 1699 conf->mddev->resync_mismatches += STRIPE_SECTORS; 1700 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 1701 /* don't try to repair!! */ 1702 set_bit(STRIPE_INSYNC, &sh->state); 1703 else { 1704 compute_block(sh, sh->pd_idx); 1705 uptodate++; 1706 } 1707 } 1708 } 1709 if (!test_bit(STRIPE_INSYNC, &sh->state)) { 1710 /* either failed parity check, or recovery is happening */ 1711 if (failed==0) 1712 failed_num = sh->pd_idx; 1713 dev = &sh->dev[failed_num]; 1714 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 1715 BUG_ON(uptodate != disks); 1716 1717 set_bit(R5_LOCKED, &dev->flags); 1718 set_bit(R5_Wantwrite, &dev->flags); 1719 clear_bit(STRIPE_DEGRADED, &sh->state); 1720 locked++; 1721 set_bit(STRIPE_INSYNC, &sh->state); 1722 } 1723 } 1724 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 1725 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 1726 clear_bit(STRIPE_SYNCING, &sh->state); 1727 } 1728 1729 /* If the failed drive is just a ReadError, then we might need to progress 1730 * the repair/check process 1731 */ 1732 if (failed == 1 && ! conf->mddev->ro && 1733 test_bit(R5_ReadError, &sh->dev[failed_num].flags) 1734 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags) 1735 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags) 1736 ) { 1737 dev = &sh->dev[failed_num]; 1738 if (!test_bit(R5_ReWrite, &dev->flags)) { 1739 set_bit(R5_Wantwrite, &dev->flags); 1740 set_bit(R5_ReWrite, &dev->flags); 1741 set_bit(R5_LOCKED, &dev->flags); 1742 locked++; 1743 } else { 1744 /* let's read it back */ 1745 set_bit(R5_Wantread, &dev->flags); 1746 set_bit(R5_LOCKED, &dev->flags); 1747 locked++; 1748 } 1749 } 1750 1751 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 1752 /* Need to write out all blocks after computing parity */ 1753 sh->disks = conf->raid_disks; 1754 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks); 1755 compute_parity5(sh, RECONSTRUCT_WRITE); 1756 for (i= conf->raid_disks; i--;) { 1757 set_bit(R5_LOCKED, &sh->dev[i].flags); 1758 locked++; 1759 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1760 } 1761 clear_bit(STRIPE_EXPANDING, &sh->state); 1762 } else if (expanded) { 1763 clear_bit(STRIPE_EXPAND_READY, &sh->state); 1764 atomic_dec(&conf->reshape_stripes); 1765 wake_up(&conf->wait_for_overlap); 1766 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 1767 } 1768 1769 if (expanding && locked == 0) { 1770 /* We have read all the blocks in this stripe and now we need to 1771 * copy some of them into a target stripe for expand. 1772 */ 1773 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 1774 for (i=0; i< sh->disks; i++) 1775 if (i != sh->pd_idx) { 1776 int dd_idx, pd_idx, j; 1777 struct stripe_head *sh2; 1778 1779 sector_t bn = compute_blocknr(sh, i); 1780 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 1781 conf->raid_disks-1, 1782 &dd_idx, &pd_idx, conf); 1783 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1); 1784 if (sh2 == NULL) 1785 /* so far only the early blocks of this stripe 1786 * have been requested. When later blocks 1787 * get requested, we will try again 1788 */ 1789 continue; 1790 if(!test_bit(STRIPE_EXPANDING, &sh2->state) || 1791 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 1792 /* must have already done this block */ 1793 release_stripe(sh2); 1794 continue; 1795 } 1796 memcpy(page_address(sh2->dev[dd_idx].page), 1797 page_address(sh->dev[i].page), 1798 STRIPE_SIZE); 1799 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 1800 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 1801 for (j=0; j<conf->raid_disks; j++) 1802 if (j != sh2->pd_idx && 1803 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 1804 break; 1805 if (j == conf->raid_disks) { 1806 set_bit(STRIPE_EXPAND_READY, &sh2->state); 1807 set_bit(STRIPE_HANDLE, &sh2->state); 1808 } 1809 release_stripe(sh2); 1810 } 1811 } 1812 1813 spin_unlock(&sh->lock); 1814 1815 while ((bi=return_bi)) { 1816 int bytes = bi->bi_size; 1817 1818 return_bi = bi->bi_next; 1819 bi->bi_next = NULL; 1820 bi->bi_size = 0; 1821 bi->bi_end_io(bi, bytes, 1822 test_bit(BIO_UPTODATE, &bi->bi_flags) 1823 ? 0 : -EIO); 1824 } 1825 for (i=disks; i-- ;) { 1826 int rw; 1827 struct bio *bi; 1828 mdk_rdev_t *rdev; 1829 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 1830 rw = WRITE; 1831 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1832 rw = READ; 1833 else 1834 continue; 1835 1836 bi = &sh->dev[i].req; 1837 1838 bi->bi_rw = rw; 1839 if (rw == WRITE) 1840 bi->bi_end_io = raid5_end_write_request; 1841 else 1842 bi->bi_end_io = raid5_end_read_request; 1843 1844 rcu_read_lock(); 1845 rdev = rcu_dereference(conf->disks[i].rdev); 1846 if (rdev && test_bit(Faulty, &rdev->flags)) 1847 rdev = NULL; 1848 if (rdev) 1849 atomic_inc(&rdev->nr_pending); 1850 rcu_read_unlock(); 1851 1852 if (rdev) { 1853 if (syncing || expanding || expanded) 1854 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1855 1856 bi->bi_bdev = rdev->bdev; 1857 PRINTK("for %llu schedule op %ld on disc %d\n", 1858 (unsigned long long)sh->sector, bi->bi_rw, i); 1859 atomic_inc(&sh->count); 1860 bi->bi_sector = sh->sector + rdev->data_offset; 1861 bi->bi_flags = 1 << BIO_UPTODATE; 1862 bi->bi_vcnt = 1; 1863 bi->bi_max_vecs = 1; 1864 bi->bi_idx = 0; 1865 bi->bi_io_vec = &sh->dev[i].vec; 1866 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1867 bi->bi_io_vec[0].bv_offset = 0; 1868 bi->bi_size = STRIPE_SIZE; 1869 bi->bi_next = NULL; 1870 if (rw == WRITE && 1871 test_bit(R5_ReWrite, &sh->dev[i].flags)) 1872 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1873 generic_make_request(bi); 1874 } else { 1875 if (rw == WRITE) 1876 set_bit(STRIPE_DEGRADED, &sh->state); 1877 PRINTK("skip op %ld on disc %d for sector %llu\n", 1878 bi->bi_rw, i, (unsigned long long)sh->sector); 1879 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1880 set_bit(STRIPE_HANDLE, &sh->state); 1881 } 1882 } 1883} 1884 1885static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page) 1886{ 1887 raid6_conf_t *conf = sh->raid_conf; 1888 int disks = conf->raid_disks; 1889 struct bio *return_bi= NULL; 1890 struct bio *bi; 1891 int i; 1892 int syncing; 1893 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 1894 int non_overwrite = 0; 1895 int failed_num[2] = {0, 0}; 1896 struct r5dev *dev, *pdev, *qdev; 1897 int pd_idx = sh->pd_idx; 1898 int qd_idx = raid6_next_disk(pd_idx, disks); 1899 int p_failed, q_failed; 1900 1901 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", 1902 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), 1903 pd_idx, qd_idx); 1904 1905 spin_lock(&sh->lock); 1906 clear_bit(STRIPE_HANDLE, &sh->state); 1907 clear_bit(STRIPE_DELAYED, &sh->state); 1908 1909 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1910 /* Now to look around and see what can be done */ 1911 1912 rcu_read_lock(); 1913 for (i=disks; i--; ) { 1914 mdk_rdev_t *rdev; 1915 dev = &sh->dev[i]; 1916 clear_bit(R5_Insync, &dev->flags); 1917 1918 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1919 i, dev->flags, dev->toread, dev->towrite, dev->written); 1920 /* maybe we can reply to a read */ 1921 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 1922 struct bio *rbi, *rbi2; 1923 PRINTK("Return read for disc %d\n", i); 1924 spin_lock_irq(&conf->device_lock); 1925 rbi = dev->toread; 1926 dev->toread = NULL; 1927 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1928 wake_up(&conf->wait_for_overlap); 1929 spin_unlock_irq(&conf->device_lock); 1930 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1931 copy_data(0, rbi, dev->page, dev->sector); 1932 rbi2 = r5_next_bio(rbi, dev->sector); 1933 spin_lock_irq(&conf->device_lock); 1934 if (--rbi->bi_phys_segments == 0) { 1935 rbi->bi_next = return_bi; 1936 return_bi = rbi; 1937 } 1938 spin_unlock_irq(&conf->device_lock); 1939 rbi = rbi2; 1940 } 1941 } 1942 1943 /* now count some things */ 1944 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 1945 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 1946 1947 1948 if (dev->toread) to_read++; 1949 if (dev->towrite) { 1950 to_write++; 1951 if (!test_bit(R5_OVERWRITE, &dev->flags)) 1952 non_overwrite++; 1953 } 1954 if (dev->written) written++; 1955 rdev = rcu_dereference(conf->disks[i].rdev); 1956 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1957 /* The ReadError flag will just be confusing now */ 1958 clear_bit(R5_ReadError, &dev->flags); 1959 clear_bit(R5_ReWrite, &dev->flags); 1960 } 1961 if (!rdev || !test_bit(In_sync, &rdev->flags) 1962 || test_bit(R5_ReadError, &dev->flags)) { 1963 if ( failed < 2 ) 1964 failed_num[failed] = i; 1965 failed++; 1966 } else 1967 set_bit(R5_Insync, &dev->flags); 1968 } 1969 rcu_read_unlock(); 1970 PRINTK("locked=%d uptodate=%d to_read=%d" 1971 " to_write=%d failed=%d failed_num=%d,%d\n", 1972 locked, uptodate, to_read, to_write, failed, 1973 failed_num[0], failed_num[1]); 1974 /* check if the array has lost >2 devices and, if so, some requests might 1975 * need to be failed 1976 */ 1977 if (failed > 2 && to_read+to_write+written) { 1978 for (i=disks; i--; ) { 1979 int bitmap_end = 0; 1980 1981 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1982 mdk_rdev_t *rdev; 1983 rcu_read_lock(); 1984 rdev = rcu_dereference(conf->disks[i].rdev); 1985 if (rdev && test_bit(In_sync, &rdev->flags)) 1986 /* multiple read failures in one stripe */ 1987 md_error(conf->mddev, rdev); 1988 rcu_read_unlock(); 1989 } 1990 1991 spin_lock_irq(&conf->device_lock); 1992 /* fail all writes first */ 1993 bi = sh->dev[i].towrite; 1994 sh->dev[i].towrite = NULL; 1995 if (bi) { to_write--; bitmap_end = 1; } 1996 1997 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1998 wake_up(&conf->wait_for_overlap); 1999 2000 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 2001 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2002 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2003 if (--bi->bi_phys_segments == 0) { 2004 md_write_end(conf->mddev); 2005 bi->bi_next = return_bi; 2006 return_bi = bi; 2007 } 2008 bi = nextbi; 2009 } 2010 /* and fail all 'written' */ 2011 bi = sh->dev[i].written; 2012 sh->dev[i].written = NULL; 2013 if (bi) bitmap_end = 1; 2014 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 2015 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2016 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2017 if (--bi->bi_phys_segments == 0) { 2018 md_write_end(conf->mddev); 2019 bi->bi_next = return_bi; 2020 return_bi = bi; 2021 } 2022 bi = bi2; 2023 } 2024 2025 /* fail any reads if this device is non-operational */ 2026 if (!test_bit(R5_Insync, &sh->dev[i].flags) || 2027 test_bit(R5_ReadError, &sh->dev[i].flags)) { 2028 bi = sh->dev[i].toread; 2029 sh->dev[i].toread = NULL; 2030 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2031 wake_up(&conf->wait_for_overlap); 2032 if (bi) to_read--; 2033 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 2034 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2035 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2036 if (--bi->bi_phys_segments == 0) { 2037 bi->bi_next = return_bi; 2038 return_bi = bi; 2039 } 2040 bi = nextbi; 2041 } 2042 } 2043 spin_unlock_irq(&conf->device_lock); 2044 if (bitmap_end) 2045 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2046 STRIPE_SECTORS, 0, 0); 2047 } 2048 } 2049 if (failed > 2 && syncing) { 2050 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2051 clear_bit(STRIPE_SYNCING, &sh->state); 2052 syncing = 0; 2053 } 2054 2055 /* 2056 * might be able to return some write requests if the parity blocks 2057 * are safe, or on a failed drive 2058 */ 2059 pdev = &sh->dev[pd_idx]; 2060 p_failed = (failed >= 1 && failed_num[0] == pd_idx) 2061 || (failed >= 2 && failed_num[1] == pd_idx); 2062 qdev = &sh->dev[qd_idx]; 2063 q_failed = (failed >= 1 && failed_num[0] == qd_idx) 2064 || (failed >= 2 && failed_num[1] == qd_idx); 2065 2066 if ( written && 2067 ( p_failed || ((test_bit(R5_Insync, &pdev->flags) 2068 && !test_bit(R5_LOCKED, &pdev->flags) 2069 && test_bit(R5_UPTODATE, &pdev->flags))) ) && 2070 ( q_failed || ((test_bit(R5_Insync, &qdev->flags) 2071 && !test_bit(R5_LOCKED, &qdev->flags) 2072 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) { 2073 /* any written block on an uptodate or failed drive can be 2074 * returned. Note that if we 'wrote' to a failed drive, 2075 * it will be UPTODATE, but never LOCKED, so we don't need 2076 * to test 'failed' directly. 2077 */ 2078 for (i=disks; i--; ) 2079 if (sh->dev[i].written) { 2080 dev = &sh->dev[i]; 2081 if (!test_bit(R5_LOCKED, &dev->flags) && 2082 test_bit(R5_UPTODATE, &dev->flags) ) { 2083 /* We can return any write requests */ 2084 int bitmap_end = 0; 2085 struct bio *wbi, *wbi2; 2086 PRINTK("Return write for stripe %llu disc %d\n", 2087 (unsigned long long)sh->sector, i); 2088 spin_lock_irq(&conf->device_lock); 2089 wbi = dev->written; 2090 dev->written = NULL; 2091 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 2092 wbi2 = r5_next_bio(wbi, dev->sector); 2093 if (--wbi->bi_phys_segments == 0) { 2094 md_write_end(conf->mddev); 2095 wbi->bi_next = return_bi; 2096 return_bi = wbi; 2097 } 2098 wbi = wbi2; 2099 } 2100 if (dev->towrite == NULL) 2101 bitmap_end = 1; 2102 spin_unlock_irq(&conf->device_lock); 2103 if (bitmap_end) 2104 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2105 STRIPE_SECTORS, 2106 !test_bit(STRIPE_DEGRADED, &sh->state), 0); 2107 } 2108 } 2109 } 2110 2111 /* Now we might consider reading some blocks, either to check/generate 2112 * parity, or to satisfy requests 2113 * or to load a block that is being partially written. 2114 */ 2115 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) { 2116 for (i=disks; i--;) { 2117 dev = &sh->dev[i]; 2118 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 2119 (dev->toread || 2120 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2121 syncing || 2122 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) || 2123 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write)) 2124 ) 2125 ) { 2126 /* we would like to get this block, possibly 2127 * by computing it, but we might not be able to 2128 */ 2129 if (uptodate == disks-1) { 2130 PRINTK("Computing stripe %llu block %d\n", 2131 (unsigned long long)sh->sector, i); 2132 compute_block_1(sh, i, 0); 2133 uptodate++; 2134 } else if ( uptodate == disks-2 && failed >= 2 ) { 2135 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ 2136 int other; 2137 for (other=disks; other--;) { 2138 if ( other == i ) 2139 continue; 2140 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) ) 2141 break; 2142 } 2143 BUG_ON(other < 0); 2144 PRINTK("Computing stripe %llu blocks %d,%d\n", 2145 (unsigned long long)sh->sector, i, other); 2146 compute_block_2(sh, i, other); 2147 uptodate += 2; 2148 } else if (test_bit(R5_Insync, &dev->flags)) { 2149 set_bit(R5_LOCKED, &dev->flags); 2150 set_bit(R5_Wantread, &dev->flags); 2151 locked++; 2152 PRINTK("Reading block %d (sync=%d)\n", 2153 i, syncing); 2154 } 2155 } 2156 } 2157 set_bit(STRIPE_HANDLE, &sh->state); 2158 } 2159 2160 /* now to consider writing and what else, if anything should be read */ 2161 if (to_write) { 2162 int rcw=0, must_compute=0; 2163 for (i=disks ; i--;) { 2164 dev = &sh->dev[i]; 2165 /* Would I have to read this buffer for reconstruct_write */ 2166 if (!test_bit(R5_OVERWRITE, &dev->flags) 2167 && i != pd_idx && i != qd_idx 2168 && (!test_bit(R5_LOCKED, &dev->flags) 2169 ) && 2170 !test_bit(R5_UPTODATE, &dev->flags)) { 2171 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2172 else { 2173 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags); 2174 must_compute++; 2175 } 2176 } 2177 } 2178 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n", 2179 (unsigned long long)sh->sector, rcw, must_compute); 2180 set_bit(STRIPE_HANDLE, &sh->state); 2181 2182 if (rcw > 0) 2183 /* want reconstruct write, but need to get some data */ 2184 for (i=disks; i--;) { 2185 dev = &sh->dev[i]; 2186 if (!test_bit(R5_OVERWRITE, &dev->flags) 2187 && !(failed == 0 && (i == pd_idx || i == qd_idx)) 2188 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 2189 test_bit(R5_Insync, &dev->flags)) { 2190 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 2191 { 2192 PRINTK("Read_old stripe %llu block %d for Reconstruct\n", 2193 (unsigned long long)sh->sector, i); 2194 set_bit(R5_LOCKED, &dev->flags); 2195 set_bit(R5_Wantread, &dev->flags); 2196 locked++; 2197 } else { 2198 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n", 2199 (unsigned long long)sh->sector, i); 2200 set_bit(STRIPE_DELAYED, &sh->state); 2201 set_bit(STRIPE_HANDLE, &sh->state); 2202 } 2203 } 2204 } 2205 /* now if nothing is locked, and if we have enough data, we can start a write request */ 2206 if (locked == 0 && rcw == 0 && 2207 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2208 if ( must_compute > 0 ) { 2209 /* We have failed blocks and need to compute them */ 2210 switch ( failed ) { 2211 case 0: BUG(); 2212 case 1: compute_block_1(sh, failed_num[0], 0); break; 2213 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; 2214 default: BUG(); /* This request should have been failed? */ 2215 } 2216 } 2217 2218 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector); 2219 compute_parity6(sh, RECONSTRUCT_WRITE); 2220 /* now every locked buffer is ready to be written */ 2221 for (i=disks; i--;) 2222 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 2223 PRINTK("Writing stripe %llu block %d\n", 2224 (unsigned long long)sh->sector, i); 2225 locked++; 2226 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2227 } 2228 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ 2229 set_bit(STRIPE_INSYNC, &sh->state); 2230 2231 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2232 atomic_dec(&conf->preread_active_stripes); 2233 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 2234 md_wakeup_thread(conf->mddev->thread); 2235 } 2236 } 2237 } 2238 2239 /* maybe we need to check and possibly fix the parity for this stripe 2240 * Any reads will already have been scheduled, so we just see if enough data 2241 * is available 2242 */ 2243 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) { 2244 int update_p = 0, update_q = 0; 2245 struct r5dev *dev; 2246 2247 set_bit(STRIPE_HANDLE, &sh->state); 2248 2249 BUG_ON(failed>2); 2250 BUG_ON(uptodate < disks); 2251 /* Want to check and possibly repair P and Q. 2252 * However there could be one 'failed' device, in which 2253 * case we can only check one of them, possibly using the 2254 * other to generate missing data 2255 */ 2256 2257 /* If !tmp_page, we cannot do the calculations, 2258 * but as we have set STRIPE_HANDLE, we will soon be called 2259 * by stripe_handle with a tmp_page - just wait until then. 2260 */ 2261 if (tmp_page) { 2262 if (failed == q_failed) { 2263 /* The only possible failed device holds 'Q', so it makes 2264 * sense to check P (If anything else were failed, we would 2265 * have used P to recreate it). 2266 */ 2267 compute_block_1(sh, pd_idx, 1); 2268 if (!page_is_zero(sh->dev[pd_idx].page)) { 2269 compute_block_1(sh,pd_idx,0); 2270 update_p = 1; 2271 } 2272 } 2273 if (!q_failed && failed < 2) { 2274 /* q is not failed, and we didn't use it to generate 2275 * anything, so it makes sense to check it 2276 */ 2277 memcpy(page_address(tmp_page), 2278 page_address(sh->dev[qd_idx].page), 2279 STRIPE_SIZE); 2280 compute_parity6(sh, UPDATE_PARITY); 2281 if (memcmp(page_address(tmp_page), 2282 page_address(sh->dev[qd_idx].page), 2283 STRIPE_SIZE)!= 0) { 2284 clear_bit(STRIPE_INSYNC, &sh->state); 2285 update_q = 1; 2286 } 2287 } 2288 if (update_p || update_q) { 2289 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2290 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2291 /* don't try to repair!! */ 2292 update_p = update_q = 0; 2293 } 2294 2295 /* now write out any block on a failed drive, 2296 * or P or Q if they need it 2297 */ 2298 2299 if (failed == 2) { 2300 dev = &sh->dev[failed_num[1]]; 2301 locked++; 2302 set_bit(R5_LOCKED, &dev->flags); 2303 set_bit(R5_Wantwrite, &dev->flags); 2304 } 2305 if (failed >= 1) { 2306 dev = &sh->dev[failed_num[0]]; 2307 locked++; 2308 set_bit(R5_LOCKED, &dev->flags); 2309 set_bit(R5_Wantwrite, &dev->flags); 2310 } 2311 2312 if (update_p) { 2313 dev = &sh->dev[pd_idx]; 2314 locked ++; 2315 set_bit(R5_LOCKED, &dev->flags); 2316 set_bit(R5_Wantwrite, &dev->flags); 2317 } 2318 if (update_q) { 2319 dev = &sh->dev[qd_idx]; 2320 locked++; 2321 set_bit(R5_LOCKED, &dev->flags); 2322 set_bit(R5_Wantwrite, &dev->flags); 2323 } 2324 clear_bit(STRIPE_DEGRADED, &sh->state); 2325 2326 set_bit(STRIPE_INSYNC, &sh->state); 2327 } 2328 } 2329 2330 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2331 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2332 clear_bit(STRIPE_SYNCING, &sh->state); 2333 } 2334 2335 /* If the failed drives are just a ReadError, then we might need 2336 * to progress the repair/check process 2337 */ 2338 if (failed <= 2 && ! conf->mddev->ro) 2339 for (i=0; i<failed;i++) { 2340 dev = &sh->dev[failed_num[i]]; 2341 if (test_bit(R5_ReadError, &dev->flags) 2342 && !test_bit(R5_LOCKED, &dev->flags) 2343 && test_bit(R5_UPTODATE, &dev->flags) 2344 ) { 2345 if (!test_bit(R5_ReWrite, &dev->flags)) { 2346 set_bit(R5_Wantwrite, &dev->flags); 2347 set_bit(R5_ReWrite, &dev->flags); 2348 set_bit(R5_LOCKED, &dev->flags); 2349 } else { 2350 /* let's read it back */ 2351 set_bit(R5_Wantread, &dev->flags); 2352 set_bit(R5_LOCKED, &dev->flags); 2353 } 2354 } 2355 } 2356 spin_unlock(&sh->lock); 2357 2358 while ((bi=return_bi)) { 2359 int bytes = bi->bi_size; 2360 2361 return_bi = bi->bi_next; 2362 bi->bi_next = NULL; 2363 bi->bi_size = 0; 2364 bi->bi_end_io(bi, bytes, 2365 test_bit(BIO_UPTODATE, &bi->bi_flags) 2366 ? 0 : -EIO); 2367 } 2368 for (i=disks; i-- ;) { 2369 int rw; 2370 struct bio *bi; 2371 mdk_rdev_t *rdev; 2372 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 2373 rw = WRITE; 2374 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 2375 rw = READ; 2376 else 2377 continue; 2378 2379 bi = &sh->dev[i].req; 2380 2381 bi->bi_rw = rw; 2382 if (rw == WRITE) 2383 bi->bi_end_io = raid5_end_write_request; 2384 else 2385 bi->bi_end_io = raid5_end_read_request; 2386 2387 rcu_read_lock(); 2388 rdev = rcu_dereference(conf->disks[i].rdev); 2389 if (rdev && test_bit(Faulty, &rdev->flags)) 2390 rdev = NULL; 2391 if (rdev) 2392 atomic_inc(&rdev->nr_pending); 2393 rcu_read_unlock(); 2394 2395 if (rdev) { 2396 if (syncing) 2397 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 2398 2399 bi->bi_bdev = rdev->bdev; 2400 PRINTK("for %llu schedule op %ld on disc %d\n", 2401 (unsigned long long)sh->sector, bi->bi_rw, i); 2402 atomic_inc(&sh->count); 2403 bi->bi_sector = sh->sector + rdev->data_offset; 2404 bi->bi_flags = 1 << BIO_UPTODATE; 2405 bi->bi_vcnt = 1; 2406 bi->bi_max_vecs = 1; 2407 bi->bi_idx = 0; 2408 bi->bi_io_vec = &sh->dev[i].vec; 2409 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 2410 bi->bi_io_vec[0].bv_offset = 0; 2411 bi->bi_size = STRIPE_SIZE; 2412 bi->bi_next = NULL; 2413 if (rw == WRITE && 2414 test_bit(R5_ReWrite, &sh->dev[i].flags)) 2415 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2416 generic_make_request(bi); 2417 } else { 2418 if (rw == WRITE) 2419 set_bit(STRIPE_DEGRADED, &sh->state); 2420 PRINTK("skip op %ld on disc %d for sector %llu\n", 2421 bi->bi_rw, i, (unsigned long long)sh->sector); 2422 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2423 set_bit(STRIPE_HANDLE, &sh->state); 2424 } 2425 } 2426} 2427 2428static void handle_stripe(struct stripe_head *sh, struct page *tmp_page) 2429{ 2430 if (sh->raid_conf->level == 6) 2431 handle_stripe6(sh, tmp_page); 2432 else 2433 handle_stripe5(sh); 2434} 2435 2436 2437 2438static void raid5_activate_delayed(raid5_conf_t *conf) 2439{ 2440 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 2441 while (!list_empty(&conf->delayed_list)) { 2442 struct list_head *l = conf->delayed_list.next; 2443 struct stripe_head *sh; 2444 sh = list_entry(l, struct stripe_head, lru); 2445 list_del_init(l); 2446 clear_bit(STRIPE_DELAYED, &sh->state); 2447 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 2448 atomic_inc(&conf->preread_active_stripes); 2449 list_add_tail(&sh->lru, &conf->handle_list); 2450 } 2451 } 2452} 2453 2454static void activate_bit_delay(raid5_conf_t *conf) 2455{ 2456 /* device_lock is held */ 2457 struct list_head head; 2458 list_add(&head, &conf->bitmap_list); 2459 list_del_init(&conf->bitmap_list); 2460 while (!list_empty(&head)) { 2461 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 2462 list_del_init(&sh->lru); 2463 atomic_inc(&sh->count); 2464 __release_stripe(conf, sh); 2465 } 2466} 2467 2468static void unplug_slaves(mddev_t *mddev) 2469{ 2470 raid5_conf_t *conf = mddev_to_conf(mddev); 2471 int i; 2472 2473 rcu_read_lock(); 2474 for (i=0; i<mddev->raid_disks; i++) { 2475 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 2476 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 2477 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 2478 2479 atomic_inc(&rdev->nr_pending); 2480 rcu_read_unlock(); 2481 2482 if (r_queue->unplug_fn) 2483 r_queue->unplug_fn(r_queue); 2484 2485 rdev_dec_pending(rdev, mddev); 2486 rcu_read_lock(); 2487 } 2488 } 2489 rcu_read_unlock(); 2490} 2491 2492static void raid5_unplug_device(request_queue_t *q) 2493{ 2494 mddev_t *mddev = q->queuedata; 2495 raid5_conf_t *conf = mddev_to_conf(mddev); 2496 unsigned long flags; 2497 2498 spin_lock_irqsave(&conf->device_lock, flags); 2499 2500 if (blk_remove_plug(q)) { 2501 conf->seq_flush++; 2502 raid5_activate_delayed(conf); 2503 } 2504 md_wakeup_thread(mddev->thread); 2505 2506 spin_unlock_irqrestore(&conf->device_lock, flags); 2507 2508 unplug_slaves(mddev); 2509} 2510 2511static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk, 2512 sector_t *error_sector) 2513{ 2514 mddev_t *mddev = q->queuedata; 2515 raid5_conf_t *conf = mddev_to_conf(mddev); 2516 int i, ret = 0; 2517 2518 rcu_read_lock(); 2519 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 2520 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 2521 if (rdev && !test_bit(Faulty, &rdev->flags)) { 2522 struct block_device *bdev = rdev->bdev; 2523 request_queue_t *r_queue = bdev_get_queue(bdev); 2524 2525 if (!r_queue->issue_flush_fn) 2526 ret = -EOPNOTSUPP; 2527 else { 2528 atomic_inc(&rdev->nr_pending); 2529 rcu_read_unlock(); 2530 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 2531 error_sector); 2532 rdev_dec_pending(rdev, mddev); 2533 rcu_read_lock(); 2534 } 2535 } 2536 } 2537 rcu_read_unlock(); 2538 return ret; 2539} 2540 2541static int raid5_congested(void *data, int bits) 2542{ 2543 mddev_t *mddev = data; 2544 raid5_conf_t *conf = mddev_to_conf(mddev); 2545 2546 /* No difference between reads and writes. Just check 2547 * how busy the stripe_cache is 2548 */ 2549 if (conf->inactive_blocked) 2550 return 1; 2551 if (conf->quiesce) 2552 return 1; 2553 if (list_empty_careful(&conf->inactive_list)) 2554 return 1; 2555 2556 return 0; 2557} 2558 2559/* We want read requests to align with chunks where possible, 2560 * but write requests don't need to. 2561 */ 2562static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec) 2563{ 2564 mddev_t *mddev = q->queuedata; 2565 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 2566 int max; 2567 unsigned int chunk_sectors = mddev->chunk_size >> 9; 2568 unsigned int bio_sectors = bio->bi_size >> 9; 2569 2570 if (bio_data_dir(bio) == WRITE) 2571 return biovec->bv_len; /* always allow writes to be mergeable */ 2572 2573 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 2574 if (max < 0) max = 0; 2575 if (max <= biovec->bv_len && bio_sectors == 0) 2576 return biovec->bv_len; 2577 else 2578 return max; 2579} 2580 2581 2582static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 2583{ 2584 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 2585 unsigned int chunk_sectors = mddev->chunk_size >> 9; 2586 unsigned int bio_sectors = bio->bi_size >> 9; 2587 2588 return chunk_sectors >= 2589 ((sector & (chunk_sectors - 1)) + bio_sectors); 2590} 2591 2592/* 2593 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 2594 * later sampled by raid5d. 2595 */ 2596static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 2597{ 2598 unsigned long flags; 2599 2600 spin_lock_irqsave(&conf->device_lock, flags); 2601 2602 bi->bi_next = conf->retry_read_aligned_list; 2603 conf->retry_read_aligned_list = bi; 2604 2605 spin_unlock_irqrestore(&conf->device_lock, flags); 2606 md_wakeup_thread(conf->mddev->thread); 2607} 2608 2609 2610static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 2611{ 2612 struct bio *bi; 2613 2614 bi = conf->retry_read_aligned; 2615 if (bi) { 2616 conf->retry_read_aligned = NULL; 2617 return bi; 2618 } 2619 bi = conf->retry_read_aligned_list; 2620 if(bi) { 2621 conf->retry_read_aligned = bi->bi_next; 2622 bi->bi_next = NULL; 2623 bi->bi_phys_segments = 1; /* biased count of active stripes */ 2624 bi->bi_hw_segments = 0; /* count of processed stripes */ 2625 } 2626 2627 return bi; 2628} 2629 2630 2631/* 2632 * The "raid5_align_endio" should check if the read succeeded and if it 2633 * did, call bio_endio on the original bio (having bio_put the new bio 2634 * first). 2635 * If the read failed.. 2636 */ 2637static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error) 2638{ 2639 struct bio* raid_bi = bi->bi_private; 2640 mddev_t *mddev; 2641 raid5_conf_t *conf; 2642 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2643 mdk_rdev_t *rdev; 2644 2645 if (bi->bi_size) 2646 return 1; 2647 bio_put(bi); 2648 2649 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 2650 conf = mddev_to_conf(mddev); 2651 rdev = (void*)raid_bi->bi_next; 2652 raid_bi->bi_next = NULL; 2653 2654 rdev_dec_pending(rdev, conf->mddev); 2655 2656 if (!error && uptodate) { 2657 bio_endio(raid_bi, bytes, 0); 2658 if (atomic_dec_and_test(&conf->active_aligned_reads)) 2659 wake_up(&conf->wait_for_stripe); 2660 return 0; 2661 } 2662 2663 2664 PRINTK("raid5_align_endio : io error...handing IO for a retry\n"); 2665 2666 add_bio_to_retry(raid_bi, conf); 2667 return 0; 2668} 2669 2670static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio) 2671{ 2672 mddev_t *mddev = q->queuedata; 2673 raid5_conf_t *conf = mddev_to_conf(mddev); 2674 const unsigned int raid_disks = conf->raid_disks; 2675 const unsigned int data_disks = raid_disks - conf->max_degraded; 2676 unsigned int dd_idx, pd_idx; 2677 struct bio* align_bi; 2678 mdk_rdev_t *rdev; 2679 2680 if (!in_chunk_boundary(mddev, raid_bio)) { 2681 printk("chunk_aligned_read : non aligned\n"); 2682 return 0; 2683 } 2684 /* 2685 * use bio_clone to make a copy of the bio 2686 */ 2687 align_bi = bio_clone(raid_bio, GFP_NOIO); 2688 if (!align_bi) 2689 return 0; 2690 /* 2691 * set bi_end_io to a new function, and set bi_private to the 2692 * original bio. 2693 */ 2694 align_bi->bi_end_io = raid5_align_endio; 2695 align_bi->bi_private = raid_bio; 2696 /* 2697 * compute position 2698 */ 2699 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector, 2700 raid_disks, 2701 data_disks, 2702 &dd_idx, 2703 &pd_idx, 2704 conf); 2705 2706 rcu_read_lock(); 2707 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 2708 if (rdev && test_bit(In_sync, &rdev->flags)) { 2709 atomic_inc(&rdev->nr_pending); 2710 rcu_read_unlock(); 2711 raid_bio->bi_next = (void*)rdev; 2712 align_bi->bi_bdev = rdev->bdev; 2713 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 2714 align_bi->bi_sector += rdev->data_offset; 2715 2716 spin_lock_irq(&conf->device_lock); 2717 wait_event_lock_irq(conf->wait_for_stripe, 2718 conf->quiesce == 0, 2719 conf->device_lock, /* nothing */); 2720 atomic_inc(&conf->active_aligned_reads); 2721 spin_unlock_irq(&conf->device_lock); 2722 2723 generic_make_request(align_bi); 2724 return 1; 2725 } else { 2726 rcu_read_unlock(); 2727 bio_put(align_bi); 2728 return 0; 2729 } 2730} 2731 2732 2733static int make_request(request_queue_t *q, struct bio * bi) 2734{ 2735 mddev_t *mddev = q->queuedata; 2736 raid5_conf_t *conf = mddev_to_conf(mddev); 2737 unsigned int dd_idx, pd_idx; 2738 sector_t new_sector; 2739 sector_t logical_sector, last_sector; 2740 struct stripe_head *sh; 2741 const int rw = bio_data_dir(bi); 2742 int remaining; 2743 2744 if (unlikely(bio_barrier(bi))) { 2745 bio_endio(bi, bi->bi_size, -EOPNOTSUPP); 2746 return 0; 2747 } 2748 2749 md_write_start(mddev, bi); 2750 2751 disk_stat_inc(mddev->gendisk, ios[rw]); 2752 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); 2753 2754 if (rw == READ && 2755 mddev->reshape_position == MaxSector && 2756 chunk_aligned_read(q,bi)) 2757 return 0; 2758 2759 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 2760 last_sector = bi->bi_sector + (bi->bi_size>>9); 2761 bi->bi_next = NULL; 2762 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 2763 2764 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 2765 DEFINE_WAIT(w); 2766 int disks, data_disks; 2767 2768 retry: 2769 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 2770 if (likely(conf->expand_progress == MaxSector)) 2771 disks = conf->raid_disks; 2772 else { 2773 /* spinlock is needed as expand_progress may be 2774 * 64bit on a 32bit platform, and so it might be 2775 * possible to see a half-updated value 2776 * Ofcourse expand_progress could change after 2777 * the lock is dropped, so once we get a reference 2778 * to the stripe that we think it is, we will have 2779 * to check again. 2780 */ 2781 spin_lock_irq(&conf->device_lock); 2782 disks = conf->raid_disks; 2783 if (logical_sector >= conf->expand_progress) 2784 disks = conf->previous_raid_disks; 2785 else { 2786 if (logical_sector >= conf->expand_lo) { 2787 spin_unlock_irq(&conf->device_lock); 2788 schedule(); 2789 goto retry; 2790 } 2791 } 2792 spin_unlock_irq(&conf->device_lock); 2793 } 2794 data_disks = disks - conf->max_degraded; 2795 2796 new_sector = raid5_compute_sector(logical_sector, disks, data_disks, 2797 &dd_idx, &pd_idx, conf); 2798 PRINTK("raid5: make_request, sector %llu logical %llu\n", 2799 (unsigned long long)new_sector, 2800 (unsigned long long)logical_sector); 2801 2802 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 2803 if (sh) { 2804 if (unlikely(conf->expand_progress != MaxSector)) { 2805 /* expansion might have moved on while waiting for a 2806 * stripe, so we must do the range check again. 2807 * Expansion could still move past after this 2808 * test, but as we are holding a reference to 2809 * 'sh', we know that if that happens, 2810 * STRIPE_EXPANDING will get set and the expansion 2811 * won't proceed until we finish with the stripe. 2812 */ 2813 int must_retry = 0; 2814 spin_lock_irq(&conf->device_lock); 2815 if (logical_sector < conf->expand_progress && 2816 disks == conf->previous_raid_disks) 2817 /* mismatch, need to try again */ 2818 must_retry = 1; 2819 spin_unlock_irq(&conf->device_lock); 2820 if (must_retry) { 2821 release_stripe(sh); 2822 goto retry; 2823 } 2824 } 2825 /* FIXME what if we get a false positive because these 2826 * are being updated. 2827 */ 2828 if (logical_sector >= mddev->suspend_lo && 2829 logical_sector < mddev->suspend_hi) { 2830 release_stripe(sh); 2831 schedule(); 2832 goto retry; 2833 } 2834 2835 if (test_bit(STRIPE_EXPANDING, &sh->state) || 2836 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 2837 /* Stripe is busy expanding or 2838 * add failed due to overlap. Flush everything 2839 * and wait a while 2840 */ 2841 raid5_unplug_device(mddev->queue); 2842 release_stripe(sh); 2843 schedule(); 2844 goto retry; 2845 } 2846 finish_wait(&conf->wait_for_overlap, &w); 2847 handle_stripe(sh, NULL); 2848 release_stripe(sh); 2849 } else { 2850 /* cannot get stripe for read-ahead, just give-up */ 2851 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2852 finish_wait(&conf->wait_for_overlap, &w); 2853 break; 2854 } 2855 2856 } 2857 spin_lock_irq(&conf->device_lock); 2858 remaining = --bi->bi_phys_segments; 2859 spin_unlock_irq(&conf->device_lock); 2860 if (remaining == 0) { 2861 int bytes = bi->bi_size; 2862 2863 if ( rw == WRITE ) 2864 md_write_end(mddev); 2865 bi->bi_size = 0; 2866 bi->bi_end_io(bi, bytes, 2867 test_bit(BIO_UPTODATE, &bi->bi_flags) 2868 ? 0 : -EIO); 2869 } 2870 return 0; 2871} 2872 2873static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 2874{ 2875 /* reshaping is quite different to recovery/resync so it is 2876 * handled quite separately ... here. 2877 * 2878 * On each call to sync_request, we gather one chunk worth of 2879 * destination stripes and flag them as expanding. 2880 * Then we find all the source stripes and request reads. 2881 * As the reads complete, handle_stripe will copy the data 2882 * into the destination stripe and release that stripe. 2883 */ 2884 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 2885 struct stripe_head *sh; 2886 int pd_idx; 2887 sector_t first_sector, last_sector; 2888 int raid_disks; 2889 int data_disks; 2890 int i; 2891 int dd_idx; 2892 sector_t writepos, safepos, gap; 2893 2894 if (sector_nr == 0 && 2895 conf->expand_progress != 0) { 2896 /* restarting in the middle, skip the initial sectors */ 2897 sector_nr = conf->expand_progress; 2898 sector_div(sector_nr, conf->raid_disks-1); 2899 *skipped = 1; 2900 return sector_nr; 2901 } 2902 2903 /* we update the metadata when there is more than 3Meg 2904 * in the block range (that is rather arbitrary, should 2905 * probably be time based) or when the data about to be 2906 * copied would over-write the source of the data at 2907 * the front of the range. 2908 * i.e. one new_stripe forward from expand_progress new_maps 2909 * to after where expand_lo old_maps to 2910 */ 2911 writepos = conf->expand_progress + 2912 conf->chunk_size/512*(conf->raid_disks-1); 2913 sector_div(writepos, conf->raid_disks-1); 2914 safepos = conf->expand_lo; 2915 sector_div(safepos, conf->previous_raid_disks-1); 2916 gap = conf->expand_progress - conf->expand_lo; 2917 2918 if (writepos >= safepos || 2919 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) { 2920 /* Cannot proceed until we've updated the superblock... */ 2921 wait_event(conf->wait_for_overlap, 2922 atomic_read(&conf->reshape_stripes)==0); 2923 mddev->reshape_position = conf->expand_progress; 2924 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2925 md_wakeup_thread(mddev->thread); 2926 wait_event(mddev->sb_wait, mddev->flags == 0 || 2927 kthread_should_stop()); 2928 spin_lock_irq(&conf->device_lock); 2929 conf->expand_lo = mddev->reshape_position; 2930 spin_unlock_irq(&conf->device_lock); 2931 wake_up(&conf->wait_for_overlap); 2932 } 2933 2934 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 2935 int j; 2936 int skipped = 0; 2937 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 2938 sh = get_active_stripe(conf, sector_nr+i, 2939 conf->raid_disks, pd_idx, 0); 2940 set_bit(STRIPE_EXPANDING, &sh->state); 2941 atomic_inc(&conf->reshape_stripes); 2942 /* If any of this stripe is beyond the end of the old 2943 * array, then we need to zero those blocks 2944 */ 2945 for (j=sh->disks; j--;) { 2946 sector_t s; 2947 if (j == sh->pd_idx) 2948 continue; 2949 s = compute_blocknr(sh, j); 2950 if (s < (mddev->array_size<<1)) { 2951 skipped = 1; 2952 continue; 2953 } 2954 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 2955 set_bit(R5_Expanded, &sh->dev[j].flags); 2956 set_bit(R5_UPTODATE, &sh->dev[j].flags); 2957 } 2958 if (!skipped) { 2959 set_bit(STRIPE_EXPAND_READY, &sh->state); 2960 set_bit(STRIPE_HANDLE, &sh->state); 2961 } 2962 release_stripe(sh); 2963 } 2964 spin_lock_irq(&conf->device_lock); 2965 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1); 2966 spin_unlock_irq(&conf->device_lock); 2967 /* Ok, those stripe are ready. We can start scheduling 2968 * reads on the source stripes. 2969 * The source stripes are determined by mapping the first and last 2970 * block on the destination stripes. 2971 */ 2972 raid_disks = conf->previous_raid_disks; 2973 data_disks = raid_disks - 1; 2974 first_sector = 2975 raid5_compute_sector(sector_nr*(conf->raid_disks-1), 2976 raid_disks, data_disks, 2977 &dd_idx, &pd_idx, conf); 2978 last_sector = 2979 raid5_compute_sector((sector_nr+conf->chunk_size/512) 2980 *(conf->raid_disks-1) -1, 2981 raid_disks, data_disks, 2982 &dd_idx, &pd_idx, conf); 2983 if (last_sector >= (mddev->size<<1)) 2984 last_sector = (mddev->size<<1)-1; 2985 while (first_sector <= last_sector) { 2986 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks); 2987 sh = get_active_stripe(conf, first_sector, 2988 conf->previous_raid_disks, pd_idx, 0); 2989 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2990 set_bit(STRIPE_HANDLE, &sh->state); 2991 release_stripe(sh); 2992 first_sector += STRIPE_SECTORS; 2993 } 2994 return conf->chunk_size>>9; 2995} 2996 2997/* FIXME go_faster isn't used */ 2998static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 2999{ 3000 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3001 struct stripe_head *sh; 3002 int pd_idx; 3003 int raid_disks = conf->raid_disks; 3004 sector_t max_sector = mddev->size << 1; 3005 int sync_blocks; 3006 int still_degraded = 0; 3007 int i; 3008 3009 if (sector_nr >= max_sector) { 3010 /* just being told to finish up .. nothing much to do */ 3011 unplug_slaves(mddev); 3012 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3013 end_reshape(conf); 3014 return 0; 3015 } 3016 3017 if (mddev->curr_resync < max_sector) /* aborted */ 3018 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3019 &sync_blocks, 1); 3020 else /* completed sync */ 3021 conf->fullsync = 0; 3022 bitmap_close_sync(mddev->bitmap); 3023 3024 return 0; 3025 } 3026 3027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3028 return reshape_request(mddev, sector_nr, skipped); 3029 3030 /* if there is too many failed drives and we are trying 3031 * to resync, then assert that we are finished, because there is 3032 * nothing we can do. 3033 */ 3034 if (mddev->degraded >= conf->max_degraded && 3035 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3036 sector_t rv = (mddev->size << 1) - sector_nr; 3037 *skipped = 1; 3038 return rv; 3039 } 3040 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 3041 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3042 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 3043 /* we can skip this block, and probably more */ 3044 sync_blocks /= STRIPE_SECTORS; 3045 *skipped = 1; 3046 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 3047 } 3048 3049 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 3050 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 3051 if (sh == NULL) { 3052 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 3053 /* make sure we don't swamp the stripe cache if someone else 3054 * is trying to get access 3055 */ 3056 schedule_timeout_uninterruptible(1); 3057 } 3058 /* Need to check if array will still be degraded after recovery/resync 3059 * We don't need to check the 'failed' flag as when that gets set, 3060 * recovery aborts. 3061 */ 3062 for (i=0; i<mddev->raid_disks; i++) 3063 if (conf->disks[i].rdev == NULL) 3064 still_degraded = 1; 3065 3066 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 3067 3068 spin_lock(&sh->lock); 3069 set_bit(STRIPE_SYNCING, &sh->state); 3070 clear_bit(STRIPE_INSYNC, &sh->state); 3071 spin_unlock(&sh->lock); 3072 3073 handle_stripe(sh, NULL); 3074 release_stripe(sh); 3075 3076 return STRIPE_SECTORS; 3077} 3078 3079static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 3080{ 3081 /* We may not be able to submit a whole bio at once as there 3082 * may not be enough stripe_heads available. 3083 * We cannot pre-allocate enough stripe_heads as we may need 3084 * more than exist in the cache (if we allow ever large chunks). 3085 * So we do one stripe head at a time and record in 3086 * ->bi_hw_segments how many have been done. 3087 * 3088 * We *know* that this entire raid_bio is in one chunk, so 3089 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 3090 */ 3091 struct stripe_head *sh; 3092 int dd_idx, pd_idx; 3093 sector_t sector, logical_sector, last_sector; 3094 int scnt = 0; 3095 int remaining; 3096 int handled = 0; 3097 3098 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3099 sector = raid5_compute_sector( logical_sector, 3100 conf->raid_disks, 3101 conf->raid_disks - conf->max_degraded, 3102 &dd_idx, 3103 &pd_idx, 3104 conf); 3105 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 3106 3107 for (; logical_sector < last_sector; 3108 logical_sector += STRIPE_SECTORS, scnt++) { 3109 3110 if (scnt < raid_bio->bi_hw_segments) 3111 /* already done this stripe */ 3112 continue; 3113 3114 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); 3115 3116 if (!sh) { 3117 /* failed to get a stripe - must wait */ 3118 raid_bio->bi_hw_segments = scnt; 3119 conf->retry_read_aligned = raid_bio; 3120 return handled; 3121 } 3122 3123 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 3124 add_stripe_bio(sh, raid_bio, dd_idx, 0); 3125 handle_stripe(sh, NULL); 3126 release_stripe(sh); 3127 handled++; 3128 } 3129 spin_lock_irq(&conf->device_lock); 3130 remaining = --raid_bio->bi_phys_segments; 3131 spin_unlock_irq(&conf->device_lock); 3132 if (remaining == 0) { 3133 int bytes = raid_bio->bi_size; 3134 3135 raid_bio->bi_size = 0; 3136 raid_bio->bi_end_io(raid_bio, bytes, 3137 test_bit(BIO_UPTODATE, &raid_bio->bi_flags) 3138 ? 0 : -EIO); 3139 } 3140 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3141 wake_up(&conf->wait_for_stripe); 3142 return handled; 3143} 3144 3145 3146 3147/* 3148 * This is our raid5 kernel thread. 3149 * 3150 * We scan the hash table for stripes which can be handled now. 3151 * During the scan, completed stripes are saved for us by the interrupt 3152 * handler, so that they will not have to wait for our next wakeup. 3153 */ 3154static void raid5d (mddev_t *mddev) 3155{ 3156 struct stripe_head *sh; 3157 raid5_conf_t *conf = mddev_to_conf(mddev); 3158 int handled; 3159 3160 PRINTK("+++ raid5d active\n"); 3161 3162 md_check_recovery(mddev); 3163 3164 handled = 0; 3165 spin_lock_irq(&conf->device_lock); 3166 while (1) { 3167 struct list_head *first; 3168 struct bio *bio; 3169 3170 if (conf->seq_flush != conf->seq_write) { 3171 int seq = conf->seq_flush; 3172 spin_unlock_irq(&conf->device_lock); 3173 bitmap_unplug(mddev->bitmap); 3174 spin_lock_irq(&conf->device_lock); 3175 conf->seq_write = seq; 3176 activate_bit_delay(conf); 3177 } 3178 3179 if (list_empty(&conf->handle_list) && 3180 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && 3181 !blk_queue_plugged(mddev->queue) && 3182 !list_empty(&conf->delayed_list)) 3183 raid5_activate_delayed(conf); 3184 3185 while ((bio = remove_bio_from_retry(conf))) { 3186 int ok; 3187 spin_unlock_irq(&conf->device_lock); 3188 ok = retry_aligned_read(conf, bio); 3189 spin_lock_irq(&conf->device_lock); 3190 if (!ok) 3191 break; 3192 handled++; 3193 } 3194 3195 if (list_empty(&conf->handle_list)) 3196 break; 3197 3198 first = conf->handle_list.next; 3199 sh = list_entry(first, struct stripe_head, lru); 3200 3201 list_del_init(first); 3202 atomic_inc(&sh->count); 3203 BUG_ON(atomic_read(&sh->count)!= 1); 3204 spin_unlock_irq(&conf->device_lock); 3205 3206 handled++; 3207 handle_stripe(sh, conf->spare_page); 3208 release_stripe(sh); 3209 3210 spin_lock_irq(&conf->device_lock); 3211 } 3212 PRINTK("%d stripes handled\n", handled); 3213 3214 spin_unlock_irq(&conf->device_lock); 3215 3216 unplug_slaves(mddev); 3217 3218 PRINTK("--- raid5d inactive\n"); 3219} 3220 3221static ssize_t 3222raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 3223{ 3224 raid5_conf_t *conf = mddev_to_conf(mddev); 3225 if (conf) 3226 return sprintf(page, "%d\n", conf->max_nr_stripes); 3227 else 3228 return 0; 3229} 3230 3231static ssize_t 3232raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 3233{ 3234 raid5_conf_t *conf = mddev_to_conf(mddev); 3235 char *end; 3236 int new; 3237 if (len >= PAGE_SIZE) 3238 return -EINVAL; 3239 if (!conf) 3240 return -ENODEV; 3241 3242 new = simple_strtoul(page, &end, 10); 3243 if (!*page || (*end && *end != '\n') ) 3244 return -EINVAL; 3245 if (new <= 16 || new > 32768) 3246 return -EINVAL; 3247 while (new < conf->max_nr_stripes) { 3248 if (drop_one_stripe(conf)) 3249 conf->max_nr_stripes--; 3250 else 3251 break; 3252 } 3253 while (new > conf->max_nr_stripes) { 3254 if (grow_one_stripe(conf)) 3255 conf->max_nr_stripes++; 3256 else break; 3257 } 3258 return len; 3259} 3260 3261static struct md_sysfs_entry 3262raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 3263 raid5_show_stripe_cache_size, 3264 raid5_store_stripe_cache_size); 3265 3266static ssize_t 3267stripe_cache_active_show(mddev_t *mddev, char *page) 3268{ 3269 raid5_conf_t *conf = mddev_to_conf(mddev); 3270 if (conf) 3271 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 3272 else 3273 return 0; 3274} 3275 3276static struct md_sysfs_entry 3277raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 3278 3279static struct attribute *raid5_attrs[] = { 3280 &raid5_stripecache_size.attr, 3281 &raid5_stripecache_active.attr, 3282 NULL, 3283}; 3284static struct attribute_group raid5_attrs_group = { 3285 .name = NULL, 3286 .attrs = raid5_attrs, 3287}; 3288 3289static int run(mddev_t *mddev) 3290{ 3291 raid5_conf_t *conf; 3292 int raid_disk, memory; 3293 mdk_rdev_t *rdev; 3294 struct disk_info *disk; 3295 struct list_head *tmp; 3296 int working_disks = 0; 3297 3298 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { 3299 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 3300 mdname(mddev), mddev->level); 3301 return -EIO; 3302 } 3303 3304 if (mddev->reshape_position != MaxSector) { 3305 /* Check that we can continue the reshape. 3306 * Currently only disks can change, it must 3307 * increase, and we must be past the point where 3308 * a stripe over-writes itself 3309 */ 3310 sector_t here_new, here_old; 3311 int old_disks; 3312 3313 if (mddev->new_level != mddev->level || 3314 mddev->new_layout != mddev->layout || 3315 mddev->new_chunk != mddev->chunk_size) { 3316 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n", 3317 mdname(mddev)); 3318 return -EINVAL; 3319 } 3320 if (mddev->delta_disks <= 0) { 3321 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n", 3322 mdname(mddev)); 3323 return -EINVAL; 3324 } 3325 old_disks = mddev->raid_disks - mddev->delta_disks; 3326 /* reshape_position must be on a new-stripe boundary, and one 3327 * further up in new geometry must map after here in old geometry. 3328 */ 3329 here_new = mddev->reshape_position; 3330 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) { 3331 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n"); 3332 return -EINVAL; 3333 } 3334 /* here_new is the stripe we will write to */ 3335 here_old = mddev->reshape_position; 3336 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1)); 3337 /* here_old is the first stripe that we might need to read from */ 3338 if (here_new >= here_old) { 3339 /* Reading from the same stripe as writing to - bad */ 3340 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n"); 3341 return -EINVAL; 3342 } 3343 printk(KERN_INFO "raid5: reshape will continue\n"); 3344 /* OK, we should be able to continue; */ 3345 } 3346 3347 3348 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 3349 if ((conf = mddev->private) == NULL) 3350 goto abort; 3351 if (mddev->reshape_position == MaxSector) { 3352 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 3353 } else { 3354 conf->raid_disks = mddev->raid_disks; 3355 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 3356 } 3357 3358 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 3359 GFP_KERNEL); 3360 if (!conf->disks) 3361 goto abort; 3362 3363 conf->mddev = mddev; 3364 3365 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 3366 goto abort; 3367 3368 if (mddev->level == 6) { 3369 conf->spare_page = alloc_page(GFP_KERNEL); 3370 if (!conf->spare_page) 3371 goto abort; 3372 } 3373 spin_lock_init(&conf->device_lock); 3374 init_waitqueue_head(&conf->wait_for_stripe); 3375 init_waitqueue_head(&conf->wait_for_overlap); 3376 INIT_LIST_HEAD(&conf->handle_list); 3377 INIT_LIST_HEAD(&conf->delayed_list); 3378 INIT_LIST_HEAD(&conf->bitmap_list); 3379 INIT_LIST_HEAD(&conf->inactive_list); 3380 atomic_set(&conf->active_stripes, 0); 3381 atomic_set(&conf->preread_active_stripes, 0); 3382 atomic_set(&conf->active_aligned_reads, 0); 3383 3384 PRINTK("raid5: run(%s) called.\n", mdname(mddev)); 3385 3386 ITERATE_RDEV(mddev,rdev,tmp) { 3387 raid_disk = rdev->raid_disk; 3388 if (raid_disk >= conf->raid_disks 3389 || raid_disk < 0) 3390 continue; 3391 disk = conf->disks + raid_disk; 3392 3393 disk->rdev = rdev; 3394 3395 if (test_bit(In_sync, &rdev->flags)) { 3396 char b[BDEVNAME_SIZE]; 3397 printk(KERN_INFO "raid5: device %s operational as raid" 3398 " disk %d\n", bdevname(rdev->bdev,b), 3399 raid_disk); 3400 working_disks++; 3401 } 3402 } 3403 3404 /* 3405 * 0 for a fully functional array, 1 or 2 for a degraded array. 3406 */ 3407 mddev->degraded = conf->raid_disks - working_disks; 3408 conf->mddev = mddev; 3409 conf->chunk_size = mddev->chunk_size; 3410 conf->level = mddev->level; 3411 if (conf->level == 6) 3412 conf->max_degraded = 2; 3413 else 3414 conf->max_degraded = 1; 3415 conf->algorithm = mddev->layout; 3416 conf->max_nr_stripes = NR_STRIPES; 3417 conf->expand_progress = mddev->reshape_position; 3418 3419 /* device size must be a multiple of chunk size */ 3420 mddev->size &= ~(mddev->chunk_size/1024 -1); 3421 mddev->resync_max_sectors = mddev->size << 1; 3422 3423 if (conf->level == 6 && conf->raid_disks < 4) { 3424 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 3425 mdname(mddev), conf->raid_disks); 3426 goto abort; 3427 } 3428 if (!conf->chunk_size || conf->chunk_size % 4) { 3429 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 3430 conf->chunk_size, mdname(mddev)); 3431 goto abort; 3432 } 3433 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 3434 printk(KERN_ERR 3435 "raid5: unsupported parity algorithm %d for %s\n", 3436 conf->algorithm, mdname(mddev)); 3437 goto abort; 3438 } 3439 if (mddev->degraded > conf->max_degraded) { 3440 printk(KERN_ERR "raid5: not enough operational devices for %s" 3441 " (%d/%d failed)\n", 3442 mdname(mddev), mddev->degraded, conf->raid_disks); 3443 goto abort; 3444 } 3445 3446 if (mddev->degraded > 0 && 3447 mddev->recovery_cp != MaxSector) { 3448 if (mddev->ok_start_degraded) 3449 printk(KERN_WARNING 3450 "raid5: starting dirty degraded array: %s" 3451 "- data corruption possible.\n", 3452 mdname(mddev)); 3453 else { 3454 printk(KERN_ERR 3455 "raid5: cannot start dirty degraded array for %s\n", 3456 mdname(mddev)); 3457 goto abort; 3458 } 3459 } 3460 3461 { 3462 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 3463 if (!mddev->thread) { 3464 printk(KERN_ERR 3465 "raid5: couldn't allocate thread for %s\n", 3466 mdname(mddev)); 3467 goto abort; 3468 } 3469 } 3470 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 3471 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 3472 if (grow_stripes(conf, conf->max_nr_stripes)) { 3473 printk(KERN_ERR 3474 "raid5: couldn't allocate %dkB for buffers\n", memory); 3475 shrink_stripes(conf); 3476 md_unregister_thread(mddev->thread); 3477 goto abort; 3478 } else 3479 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 3480 memory, mdname(mddev)); 3481 3482 if (mddev->degraded == 0) 3483 printk("raid5: raid level %d set %s active with %d out of %d" 3484 " devices, algorithm %d\n", conf->level, mdname(mddev), 3485 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 3486 conf->algorithm); 3487 else 3488 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 3489 " out of %d devices, algorithm %d\n", conf->level, 3490 mdname(mddev), mddev->raid_disks - mddev->degraded, 3491 mddev->raid_disks, conf->algorithm); 3492 3493 print_raid5_conf(conf); 3494 3495 if (conf->expand_progress != MaxSector) { 3496 printk("...ok start reshape thread\n"); 3497 conf->expand_lo = conf->expand_progress; 3498 atomic_set(&conf->reshape_stripes, 0); 3499 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3500 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3501 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3502 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3503 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3504 "%s_reshape"); 3505 } 3506 3507 /* read-ahead size must cover two whole stripes, which is 3508 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 3509 */ 3510 { 3511 int data_disks = conf->previous_raid_disks - conf->max_degraded; 3512 int stripe = data_disks * 3513 (mddev->chunk_size / PAGE_SIZE); 3514 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3515 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3516 } 3517 3518 /* Ok, everything is just fine now */ 3519 sysfs_create_group(&mddev->kobj, &raid5_attrs_group); 3520 3521 mddev->queue->unplug_fn = raid5_unplug_device; 3522 mddev->queue->issue_flush_fn = raid5_issue_flush; 3523 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 3524 mddev->queue->backing_dev_info.congested_data = mddev; 3525 3526 mddev->array_size = mddev->size * (conf->previous_raid_disks - 3527 conf->max_degraded); 3528 3529 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 3530 3531 return 0; 3532abort: 3533 if (conf) { 3534 print_raid5_conf(conf); 3535 safe_put_page(conf->spare_page); 3536 kfree(conf->disks); 3537 kfree(conf->stripe_hashtbl); 3538 kfree(conf); 3539 } 3540 mddev->private = NULL; 3541 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 3542 return -EIO; 3543} 3544 3545 3546 3547static int stop(mddev_t *mddev) 3548{ 3549 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3550 3551 md_unregister_thread(mddev->thread); 3552 mddev->thread = NULL; 3553 shrink_stripes(conf); 3554 kfree(conf->stripe_hashtbl); 3555 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3556 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 3557 kfree(conf->disks); 3558 kfree(conf); 3559 mddev->private = NULL; 3560 return 0; 3561} 3562 3563#if RAID5_DEBUG 3564static void print_sh (struct seq_file *seq, struct stripe_head *sh) 3565{ 3566 int i; 3567 3568 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 3569 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 3570 seq_printf(seq, "sh %llu, count %d.\n", 3571 (unsigned long long)sh->sector, atomic_read(&sh->count)); 3572 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 3573 for (i = 0; i < sh->disks; i++) { 3574 seq_printf(seq, "(cache%d: %p %ld) ", 3575 i, sh->dev[i].page, sh->dev[i].flags); 3576 } 3577 seq_printf(seq, "\n"); 3578} 3579 3580static void printall (struct seq_file *seq, raid5_conf_t *conf) 3581{ 3582 struct stripe_head *sh; 3583 struct hlist_node *hn; 3584 int i; 3585 3586 spin_lock_irq(&conf->device_lock); 3587 for (i = 0; i < NR_HASH; i++) { 3588 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 3589 if (sh->raid_conf != conf) 3590 continue; 3591 print_sh(seq, sh); 3592 } 3593 } 3594 spin_unlock_irq(&conf->device_lock); 3595} 3596#endif 3597 3598static void status (struct seq_file *seq, mddev_t *mddev) 3599{ 3600 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3601 int i; 3602 3603 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 3604 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 3605 for (i = 0; i < conf->raid_disks; i++) 3606 seq_printf (seq, "%s", 3607 conf->disks[i].rdev && 3608 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 3609 seq_printf (seq, "]"); 3610#if RAID5_DEBUG 3611 seq_printf (seq, "\n"); 3612 printall(seq, conf); 3613#endif 3614} 3615 3616static void print_raid5_conf (raid5_conf_t *conf) 3617{ 3618 int i; 3619 struct disk_info *tmp; 3620 3621 printk("RAID5 conf printout:\n"); 3622 if (!conf) { 3623 printk("(conf==NULL)\n"); 3624 return; 3625 } 3626 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 3627 conf->raid_disks - conf->mddev->degraded); 3628 3629 for (i = 0; i < conf->raid_disks; i++) { 3630 char b[BDEVNAME_SIZE]; 3631 tmp = conf->disks + i; 3632 if (tmp->rdev) 3633 printk(" disk %d, o:%d, dev:%s\n", 3634 i, !test_bit(Faulty, &tmp->rdev->flags), 3635 bdevname(tmp->rdev->bdev,b)); 3636 } 3637} 3638 3639static int raid5_spare_active(mddev_t *mddev) 3640{ 3641 int i; 3642 raid5_conf_t *conf = mddev->private; 3643 struct disk_info *tmp; 3644 3645 for (i = 0; i < conf->raid_disks; i++) { 3646 tmp = conf->disks + i; 3647 if (tmp->rdev 3648 && !test_bit(Faulty, &tmp->rdev->flags) 3649 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 3650 unsigned long flags; 3651 spin_lock_irqsave(&conf->device_lock, flags); 3652 mddev->degraded--; 3653 spin_unlock_irqrestore(&conf->device_lock, flags); 3654 } 3655 } 3656 print_raid5_conf(conf); 3657 return 0; 3658} 3659 3660static int raid5_remove_disk(mddev_t *mddev, int number) 3661{ 3662 raid5_conf_t *conf = mddev->private; 3663 int err = 0; 3664 mdk_rdev_t *rdev; 3665 struct disk_info *p = conf->disks + number; 3666 3667 print_raid5_conf(conf); 3668 rdev = p->rdev; 3669 if (rdev) { 3670 if (test_bit(In_sync, &rdev->flags) || 3671 atomic_read(&rdev->nr_pending)) { 3672 err = -EBUSY; 3673 goto abort; 3674 } 3675 p->rdev = NULL; 3676 synchronize_rcu(); 3677 if (atomic_read(&rdev->nr_pending)) { 3678 /* lost the race, try later */ 3679 err = -EBUSY; 3680 p->rdev = rdev; 3681 } 3682 } 3683abort: 3684 3685 print_raid5_conf(conf); 3686 return err; 3687} 3688 3689static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 3690{ 3691 raid5_conf_t *conf = mddev->private; 3692 int found = 0; 3693 int disk; 3694 struct disk_info *p; 3695 3696 if (mddev->degraded > conf->max_degraded) 3697 /* no point adding a device */ 3698 return 0; 3699 3700 /* 3701 * find the disk ... but prefer rdev->saved_raid_disk 3702 * if possible. 3703 */ 3704 if (rdev->saved_raid_disk >= 0 && 3705 conf->disks[rdev->saved_raid_disk].rdev == NULL) 3706 disk = rdev->saved_raid_disk; 3707 else 3708 disk = 0; 3709 for ( ; disk < conf->raid_disks; disk++) 3710 if ((p=conf->disks + disk)->rdev == NULL) { 3711 clear_bit(In_sync, &rdev->flags); 3712 rdev->raid_disk = disk; 3713 found = 1; 3714 if (rdev->saved_raid_disk != disk) 3715 conf->fullsync = 1; 3716 rcu_assign_pointer(p->rdev, rdev); 3717 break; 3718 } 3719 print_raid5_conf(conf); 3720 return found; 3721} 3722 3723static int raid5_resize(mddev_t *mddev, sector_t sectors) 3724{ 3725 /* no resync is happening, and there is enough space 3726 * on all devices, so we can resize. 3727 * We need to make sure resync covers any new space. 3728 * If the array is shrinking we should possibly wait until 3729 * any io in the removed space completes, but it hardly seems 3730 * worth it. 3731 */ 3732 raid5_conf_t *conf = mddev_to_conf(mddev); 3733 3734 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 3735 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1; 3736 set_capacity(mddev->gendisk, mddev->array_size << 1); 3737 mddev->changed = 1; 3738 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 3739 mddev->recovery_cp = mddev->size << 1; 3740 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3741 } 3742 mddev->size = sectors /2; 3743 mddev->resync_max_sectors = sectors; 3744 return 0; 3745} 3746 3747#ifdef CONFIG_MD_RAID5_RESHAPE 3748static int raid5_check_reshape(mddev_t *mddev) 3749{ 3750 raid5_conf_t *conf = mddev_to_conf(mddev); 3751 int err; 3752 3753 if (mddev->delta_disks < 0 || 3754 mddev->new_level != mddev->level) 3755 return -EINVAL; /* Cannot shrink array or change level yet */ 3756 if (mddev->delta_disks == 0) 3757 return 0; /* nothing to do */ 3758 3759 /* Can only proceed if there are plenty of stripe_heads. 3760 * We need a minimum of one full stripe,, and for sensible progress 3761 * it is best to have about 4 times that. 3762 * If we require 4 times, then the default 256 4K stripe_heads will 3763 * allow for chunk sizes up to 256K, which is probably OK. 3764 * If the chunk size is greater, user-space should request more 3765 * stripe_heads first. 3766 */ 3767 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 3768 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 3769 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 3770 (mddev->chunk_size / STRIPE_SIZE)*4); 3771 return -ENOSPC; 3772 } 3773 3774 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 3775 if (err) 3776 return err; 3777 3778 /* looks like we might be able to manage this */ 3779 return 0; 3780} 3781 3782static int raid5_start_reshape(mddev_t *mddev) 3783{ 3784 raid5_conf_t *conf = mddev_to_conf(mddev); 3785 mdk_rdev_t *rdev; 3786 struct list_head *rtmp; 3787 int spares = 0; 3788 int added_devices = 0; 3789 unsigned long flags; 3790 3791 if (mddev->degraded || 3792 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3793 return -EBUSY; 3794 3795 ITERATE_RDEV(mddev, rdev, rtmp) 3796 if (rdev->raid_disk < 0 && 3797 !test_bit(Faulty, &rdev->flags)) 3798 spares++; 3799 3800 if (spares < mddev->delta_disks-1) 3801 /* Not enough devices even to make a degraded array 3802 * of that size 3803 */ 3804 return -EINVAL; 3805 3806 atomic_set(&conf->reshape_stripes, 0); 3807 spin_lock_irq(&conf->device_lock); 3808 conf->previous_raid_disks = conf->raid_disks; 3809 conf->raid_disks += mddev->delta_disks; 3810 conf->expand_progress = 0; 3811 conf->expand_lo = 0; 3812 spin_unlock_irq(&conf->device_lock); 3813 3814 /* Add some new drives, as many as will fit. 3815 * We know there are enough to make the newly sized array work. 3816 */ 3817 ITERATE_RDEV(mddev, rdev, rtmp) 3818 if (rdev->raid_disk < 0 && 3819 !test_bit(Faulty, &rdev->flags)) { 3820 if (raid5_add_disk(mddev, rdev)) { 3821 char nm[20]; 3822 set_bit(In_sync, &rdev->flags); 3823 added_devices++; 3824 rdev->recovery_offset = 0; 3825 sprintf(nm, "rd%d", rdev->raid_disk); 3826 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 3827 } else 3828 break; 3829 } 3830 3831 spin_lock_irqsave(&conf->device_lock, flags); 3832 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 3833 spin_unlock_irqrestore(&conf->device_lock, flags); 3834 mddev->raid_disks = conf->raid_disks; 3835 mddev->reshape_position = 0; 3836 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3837 3838 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3839 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3840 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3841 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3842 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3843 "%s_reshape"); 3844 if (!mddev->sync_thread) { 3845 mddev->recovery = 0; 3846 spin_lock_irq(&conf->device_lock); 3847 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 3848 conf->expand_progress = MaxSector; 3849 spin_unlock_irq(&conf->device_lock); 3850 return -EAGAIN; 3851 } 3852 md_wakeup_thread(mddev->sync_thread); 3853 md_new_event(mddev); 3854 return 0; 3855} 3856#endif 3857 3858static void end_reshape(raid5_conf_t *conf) 3859{ 3860 struct block_device *bdev; 3861 3862 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 3863 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1); 3864 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1); 3865 conf->mddev->changed = 1; 3866 3867 bdev = bdget_disk(conf->mddev->gendisk, 0); 3868 if (bdev) { 3869 mutex_lock(&bdev->bd_inode->i_mutex); 3870 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10); 3871 mutex_unlock(&bdev->bd_inode->i_mutex); 3872 bdput(bdev); 3873 } 3874 spin_lock_irq(&conf->device_lock); 3875 conf->expand_progress = MaxSector; 3876 spin_unlock_irq(&conf->device_lock); 3877 conf->mddev->reshape_position = MaxSector; 3878 3879 /* read-ahead size must cover two whole stripes, which is 3880 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 3881 */ 3882 { 3883 int data_disks = conf->previous_raid_disks - conf->max_degraded; 3884 int stripe = data_disks * 3885 (conf->mddev->chunk_size / PAGE_SIZE); 3886 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3887 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3888 } 3889 } 3890} 3891 3892static void raid5_quiesce(mddev_t *mddev, int state) 3893{ 3894 raid5_conf_t *conf = mddev_to_conf(mddev); 3895 3896 switch(state) { 3897 case 2: /* resume for a suspend */ 3898 wake_up(&conf->wait_for_overlap); 3899 break; 3900 3901 case 1: /* stop all writes */ 3902 spin_lock_irq(&conf->device_lock); 3903 conf->quiesce = 1; 3904 wait_event_lock_irq(conf->wait_for_stripe, 3905 atomic_read(&conf->active_stripes) == 0 && 3906 atomic_read(&conf->active_aligned_reads) == 0, 3907 conf->device_lock, /* nothing */); 3908 spin_unlock_irq(&conf->device_lock); 3909 break; 3910 3911 case 0: /* re-enable writes */ 3912 spin_lock_irq(&conf->device_lock); 3913 conf->quiesce = 0; 3914 wake_up(&conf->wait_for_stripe); 3915 wake_up(&conf->wait_for_overlap); 3916 spin_unlock_irq(&conf->device_lock); 3917 break; 3918 } 3919} 3920 3921static struct mdk_personality raid6_personality = 3922{ 3923 .name = "raid6", 3924 .level = 6, 3925 .owner = THIS_MODULE, 3926 .make_request = make_request, 3927 .run = run, 3928 .stop = stop, 3929 .status = status, 3930 .error_handler = error, 3931 .hot_add_disk = raid5_add_disk, 3932 .hot_remove_disk= raid5_remove_disk, 3933 .spare_active = raid5_spare_active, 3934 .sync_request = sync_request, 3935 .resize = raid5_resize, 3936 .quiesce = raid5_quiesce, 3937}; 3938static struct mdk_personality raid5_personality = 3939{ 3940 .name = "raid5", 3941 .level = 5, 3942 .owner = THIS_MODULE, 3943 .make_request = make_request, 3944 .run = run, 3945 .stop = stop, 3946 .status = status, 3947 .error_handler = error, 3948 .hot_add_disk = raid5_add_disk, 3949 .hot_remove_disk= raid5_remove_disk, 3950 .spare_active = raid5_spare_active, 3951 .sync_request = sync_request, 3952 .resize = raid5_resize, 3953#ifdef CONFIG_MD_RAID5_RESHAPE 3954 .check_reshape = raid5_check_reshape, 3955 .start_reshape = raid5_start_reshape, 3956#endif 3957 .quiesce = raid5_quiesce, 3958}; 3959 3960static struct mdk_personality raid4_personality = 3961{ 3962 .name = "raid4", 3963 .level = 4, 3964 .owner = THIS_MODULE, 3965 .make_request = make_request, 3966 .run = run, 3967 .stop = stop, 3968 .status = status, 3969 .error_handler = error, 3970 .hot_add_disk = raid5_add_disk, 3971 .hot_remove_disk= raid5_remove_disk, 3972 .spare_active = raid5_spare_active, 3973 .sync_request = sync_request, 3974 .resize = raid5_resize, 3975 .quiesce = raid5_quiesce, 3976}; 3977 3978static int __init raid5_init(void) 3979{ 3980 int e; 3981 3982 e = raid6_select_algo(); 3983 if ( e ) 3984 return e; 3985 register_md_personality(&raid6_personality); 3986 register_md_personality(&raid5_personality); 3987 register_md_personality(&raid4_personality); 3988 return 0; 3989} 3990 3991static void raid5_exit(void) 3992{ 3993 unregister_md_personality(&raid6_personality); 3994 unregister_md_personality(&raid5_personality); 3995 unregister_md_personality(&raid4_personality); 3996} 3997 3998module_init(raid5_init); 3999module_exit(raid5_exit); 4000MODULE_LICENSE("GPL"); 4001MODULE_ALIAS("md-personality-4"); /* RAID5 */ 4002MODULE_ALIAS("md-raid5"); 4003MODULE_ALIAS("md-raid4"); 4004MODULE_ALIAS("md-level-5"); 4005MODULE_ALIAS("md-level-4"); 4006MODULE_ALIAS("md-personality-8"); /* RAID6 */ 4007MODULE_ALIAS("md-raid6"); 4008MODULE_ALIAS("md-level-6"); 4009 4010/* This used to be two separate modules, they were: */ 4011MODULE_ALIAS("raid5"); 4012MODULE_ALIAS("raid6");