at v2.6.19 54 kB view raw
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/rcupdate.h> 67#include <linux/netdevice.h> 68#include <linux/proc_fs.h> 69#include <linux/seq_file.h> 70#include <linux/mutex.h> 71#include <linux/wanrouter.h> 72#include <linux/if_bridge.h> 73#include <linux/if_frad.h> 74#include <linux/if_vlan.h> 75#include <linux/init.h> 76#include <linux/poll.h> 77#include <linux/cache.h> 78#include <linux/module.h> 79#include <linux/highmem.h> 80#include <linux/divert.h> 81#include <linux/mount.h> 82#include <linux/security.h> 83#include <linux/syscalls.h> 84#include <linux/compat.h> 85#include <linux/kmod.h> 86#include <linux/audit.h> 87#include <linux/wireless.h> 88 89#include <asm/uaccess.h> 90#include <asm/unistd.h> 91 92#include <net/compat.h> 93 94#include <net/sock.h> 95#include <linux/netfilter.h> 96 97static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 98static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 99 unsigned long nr_segs, loff_t pos); 100static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 101 unsigned long nr_segs, loff_t pos); 102static int sock_mmap(struct file *file, struct vm_area_struct *vma); 103 104static int sock_close(struct inode *inode, struct file *file); 105static unsigned int sock_poll(struct file *file, 106 struct poll_table_struct *wait); 107static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 108#ifdef CONFIG_COMPAT 109static long compat_sock_ioctl(struct file *file, 110 unsigned int cmd, unsigned long arg); 111#endif 112static int sock_fasync(int fd, struct file *filp, int on); 113static ssize_t sock_sendpage(struct file *file, struct page *page, 114 int offset, size_t size, loff_t *ppos, int more); 115 116/* 117 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 118 * in the operation structures but are done directly via the socketcall() multiplexor. 119 */ 120 121static struct file_operations socket_file_ops = { 122 .owner = THIS_MODULE, 123 .llseek = no_llseek, 124 .aio_read = sock_aio_read, 125 .aio_write = sock_aio_write, 126 .poll = sock_poll, 127 .unlocked_ioctl = sock_ioctl, 128#ifdef CONFIG_COMPAT 129 .compat_ioctl = compat_sock_ioctl, 130#endif 131 .mmap = sock_mmap, 132 .open = sock_no_open, /* special open code to disallow open via /proc */ 133 .release = sock_close, 134 .fasync = sock_fasync, 135 .sendpage = sock_sendpage, 136 .splice_write = generic_splice_sendpage, 137}; 138 139/* 140 * The protocol list. Each protocol is registered in here. 141 */ 142 143static DEFINE_SPINLOCK(net_family_lock); 144static const struct net_proto_family *net_families[NPROTO] __read_mostly; 145 146/* 147 * Statistics counters of the socket lists 148 */ 149 150static DEFINE_PER_CPU(int, sockets_in_use) = 0; 151 152/* 153 * Support routines. 154 * Move socket addresses back and forth across the kernel/user 155 * divide and look after the messy bits. 156 */ 157 158#define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 159 16 for IP, 16 for IPX, 160 24 for IPv6, 161 about 80 for AX.25 162 must be at least one bigger than 163 the AF_UNIX size (see net/unix/af_unix.c 164 :unix_mkname()). 165 */ 166 167/** 168 * move_addr_to_kernel - copy a socket address into kernel space 169 * @uaddr: Address in user space 170 * @kaddr: Address in kernel space 171 * @ulen: Length in user space 172 * 173 * The address is copied into kernel space. If the provided address is 174 * too long an error code of -EINVAL is returned. If the copy gives 175 * invalid addresses -EFAULT is returned. On a success 0 is returned. 176 */ 177 178int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 179{ 180 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 181 return -EINVAL; 182 if (ulen == 0) 183 return 0; 184 if (copy_from_user(kaddr, uaddr, ulen)) 185 return -EFAULT; 186 return audit_sockaddr(ulen, kaddr); 187} 188 189/** 190 * move_addr_to_user - copy an address to user space 191 * @kaddr: kernel space address 192 * @klen: length of address in kernel 193 * @uaddr: user space address 194 * @ulen: pointer to user length field 195 * 196 * The value pointed to by ulen on entry is the buffer length available. 197 * This is overwritten with the buffer space used. -EINVAL is returned 198 * if an overlong buffer is specified or a negative buffer size. -EFAULT 199 * is returned if either the buffer or the length field are not 200 * accessible. 201 * After copying the data up to the limit the user specifies, the true 202 * length of the data is written over the length limit the user 203 * specified. Zero is returned for a success. 204 */ 205 206int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 207 int __user *ulen) 208{ 209 int err; 210 int len; 211 212 err = get_user(len, ulen); 213 if (err) 214 return err; 215 if (len > klen) 216 len = klen; 217 if (len < 0 || len > MAX_SOCK_ADDR) 218 return -EINVAL; 219 if (len) { 220 if (audit_sockaddr(klen, kaddr)) 221 return -ENOMEM; 222 if (copy_to_user(uaddr, kaddr, len)) 223 return -EFAULT; 224 } 225 /* 226 * "fromlen shall refer to the value before truncation.." 227 * 1003.1g 228 */ 229 return __put_user(klen, ulen); 230} 231 232#define SOCKFS_MAGIC 0x534F434B 233 234static kmem_cache_t *sock_inode_cachep __read_mostly; 235 236static struct inode *sock_alloc_inode(struct super_block *sb) 237{ 238 struct socket_alloc *ei; 239 240 ei = kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 241 if (!ei) 242 return NULL; 243 init_waitqueue_head(&ei->socket.wait); 244 245 ei->socket.fasync_list = NULL; 246 ei->socket.state = SS_UNCONNECTED; 247 ei->socket.flags = 0; 248 ei->socket.ops = NULL; 249 ei->socket.sk = NULL; 250 ei->socket.file = NULL; 251 252 return &ei->vfs_inode; 253} 254 255static void sock_destroy_inode(struct inode *inode) 256{ 257 kmem_cache_free(sock_inode_cachep, 258 container_of(inode, struct socket_alloc, vfs_inode)); 259} 260 261static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags) 262{ 263 struct socket_alloc *ei = (struct socket_alloc *)foo; 264 265 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) 266 == SLAB_CTOR_CONSTRUCTOR) 267 inode_init_once(&ei->vfs_inode); 268} 269 270static int init_inodecache(void) 271{ 272 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 273 sizeof(struct socket_alloc), 274 0, 275 (SLAB_HWCACHE_ALIGN | 276 SLAB_RECLAIM_ACCOUNT | 277 SLAB_MEM_SPREAD), 278 init_once, 279 NULL); 280 if (sock_inode_cachep == NULL) 281 return -ENOMEM; 282 return 0; 283} 284 285static struct super_operations sockfs_ops = { 286 .alloc_inode = sock_alloc_inode, 287 .destroy_inode =sock_destroy_inode, 288 .statfs = simple_statfs, 289}; 290 291static int sockfs_get_sb(struct file_system_type *fs_type, 292 int flags, const char *dev_name, void *data, 293 struct vfsmount *mnt) 294{ 295 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 296 mnt); 297} 298 299static struct vfsmount *sock_mnt __read_mostly; 300 301static struct file_system_type sock_fs_type = { 302 .name = "sockfs", 303 .get_sb = sockfs_get_sb, 304 .kill_sb = kill_anon_super, 305}; 306 307static int sockfs_delete_dentry(struct dentry *dentry) 308{ 309 return 1; 310} 311static struct dentry_operations sockfs_dentry_operations = { 312 .d_delete = sockfs_delete_dentry, 313}; 314 315/* 316 * Obtains the first available file descriptor and sets it up for use. 317 * 318 * These functions create file structures and maps them to fd space 319 * of the current process. On success it returns file descriptor 320 * and file struct implicitly stored in sock->file. 321 * Note that another thread may close file descriptor before we return 322 * from this function. We use the fact that now we do not refer 323 * to socket after mapping. If one day we will need it, this 324 * function will increment ref. count on file by 1. 325 * 326 * In any case returned fd MAY BE not valid! 327 * This race condition is unavoidable 328 * with shared fd spaces, we cannot solve it inside kernel, 329 * but we take care of internal coherence yet. 330 */ 331 332static int sock_alloc_fd(struct file **filep) 333{ 334 int fd; 335 336 fd = get_unused_fd(); 337 if (likely(fd >= 0)) { 338 struct file *file = get_empty_filp(); 339 340 *filep = file; 341 if (unlikely(!file)) { 342 put_unused_fd(fd); 343 return -ENFILE; 344 } 345 } else 346 *filep = NULL; 347 return fd; 348} 349 350static int sock_attach_fd(struct socket *sock, struct file *file) 351{ 352 struct qstr this; 353 char name[32]; 354 355 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 356 this.name = name; 357 this.hash = SOCK_INODE(sock)->i_ino; 358 359 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 360 if (unlikely(!file->f_dentry)) 361 return -ENOMEM; 362 363 file->f_dentry->d_op = &sockfs_dentry_operations; 364 d_add(file->f_dentry, SOCK_INODE(sock)); 365 file->f_vfsmnt = mntget(sock_mnt); 366 file->f_mapping = file->f_dentry->d_inode->i_mapping; 367 368 sock->file = file; 369 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 370 file->f_mode = FMODE_READ | FMODE_WRITE; 371 file->f_flags = O_RDWR; 372 file->f_pos = 0; 373 file->private_data = sock; 374 375 return 0; 376} 377 378int sock_map_fd(struct socket *sock) 379{ 380 struct file *newfile; 381 int fd = sock_alloc_fd(&newfile); 382 383 if (likely(fd >= 0)) { 384 int err = sock_attach_fd(sock, newfile); 385 386 if (unlikely(err < 0)) { 387 put_filp(newfile); 388 put_unused_fd(fd); 389 return err; 390 } 391 fd_install(fd, newfile); 392 } 393 return fd; 394} 395 396static struct socket *sock_from_file(struct file *file, int *err) 397{ 398 struct inode *inode; 399 struct socket *sock; 400 401 if (file->f_op == &socket_file_ops) 402 return file->private_data; /* set in sock_map_fd */ 403 404 inode = file->f_dentry->d_inode; 405 if (!S_ISSOCK(inode->i_mode)) { 406 *err = -ENOTSOCK; 407 return NULL; 408 } 409 410 sock = SOCKET_I(inode); 411 if (sock->file != file) { 412 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 413 sock->file = file; 414 } 415 return sock; 416} 417 418/** 419 * sockfd_lookup - Go from a file number to its socket slot 420 * @fd: file handle 421 * @err: pointer to an error code return 422 * 423 * The file handle passed in is locked and the socket it is bound 424 * too is returned. If an error occurs the err pointer is overwritten 425 * with a negative errno code and NULL is returned. The function checks 426 * for both invalid handles and passing a handle which is not a socket. 427 * 428 * On a success the socket object pointer is returned. 429 */ 430 431struct socket *sockfd_lookup(int fd, int *err) 432{ 433 struct file *file; 434 struct socket *sock; 435 436 file = fget(fd); 437 if (!file) { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 sock = sock_from_file(file, err); 443 if (!sock) 444 fput(file); 445 return sock; 446} 447 448static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 449{ 450 struct file *file; 451 struct socket *sock; 452 453 *err = -EBADF; 454 file = fget_light(fd, fput_needed); 455 if (file) { 456 sock = sock_from_file(file, err); 457 if (sock) 458 return sock; 459 fput_light(file, *fput_needed); 460 } 461 return NULL; 462} 463 464/** 465 * sock_alloc - allocate a socket 466 * 467 * Allocate a new inode and socket object. The two are bound together 468 * and initialised. The socket is then returned. If we are out of inodes 469 * NULL is returned. 470 */ 471 472static struct socket *sock_alloc(void) 473{ 474 struct inode *inode; 475 struct socket *sock; 476 477 inode = new_inode(sock_mnt->mnt_sb); 478 if (!inode) 479 return NULL; 480 481 sock = SOCKET_I(inode); 482 483 inode->i_mode = S_IFSOCK | S_IRWXUGO; 484 inode->i_uid = current->fsuid; 485 inode->i_gid = current->fsgid; 486 487 get_cpu_var(sockets_in_use)++; 488 put_cpu_var(sockets_in_use); 489 return sock; 490} 491 492/* 493 * In theory you can't get an open on this inode, but /proc provides 494 * a back door. Remember to keep it shut otherwise you'll let the 495 * creepy crawlies in. 496 */ 497 498static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 499{ 500 return -ENXIO; 501} 502 503const struct file_operations bad_sock_fops = { 504 .owner = THIS_MODULE, 505 .open = sock_no_open, 506}; 507 508/** 509 * sock_release - close a socket 510 * @sock: socket to close 511 * 512 * The socket is released from the protocol stack if it has a release 513 * callback, and the inode is then released if the socket is bound to 514 * an inode not a file. 515 */ 516 517void sock_release(struct socket *sock) 518{ 519 if (sock->ops) { 520 struct module *owner = sock->ops->owner; 521 522 sock->ops->release(sock); 523 sock->ops = NULL; 524 module_put(owner); 525 } 526 527 if (sock->fasync_list) 528 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 529 530 get_cpu_var(sockets_in_use)--; 531 put_cpu_var(sockets_in_use); 532 if (!sock->file) { 533 iput(SOCK_INODE(sock)); 534 return; 535 } 536 sock->file = NULL; 537} 538 539static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 540 struct msghdr *msg, size_t size) 541{ 542 struct sock_iocb *si = kiocb_to_siocb(iocb); 543 int err; 544 545 si->sock = sock; 546 si->scm = NULL; 547 si->msg = msg; 548 si->size = size; 549 550 err = security_socket_sendmsg(sock, msg, size); 551 if (err) 552 return err; 553 554 return sock->ops->sendmsg(iocb, sock, msg, size); 555} 556 557int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 558{ 559 struct kiocb iocb; 560 struct sock_iocb siocb; 561 int ret; 562 563 init_sync_kiocb(&iocb, NULL); 564 iocb.private = &siocb; 565 ret = __sock_sendmsg(&iocb, sock, msg, size); 566 if (-EIOCBQUEUED == ret) 567 ret = wait_on_sync_kiocb(&iocb); 568 return ret; 569} 570 571int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 572 struct kvec *vec, size_t num, size_t size) 573{ 574 mm_segment_t oldfs = get_fs(); 575 int result; 576 577 set_fs(KERNEL_DS); 578 /* 579 * the following is safe, since for compiler definitions of kvec and 580 * iovec are identical, yielding the same in-core layout and alignment 581 */ 582 msg->msg_iov = (struct iovec *)vec; 583 msg->msg_iovlen = num; 584 result = sock_sendmsg(sock, msg, size); 585 set_fs(oldfs); 586 return result; 587} 588 589static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 590 struct msghdr *msg, size_t size, int flags) 591{ 592 int err; 593 struct sock_iocb *si = kiocb_to_siocb(iocb); 594 595 si->sock = sock; 596 si->scm = NULL; 597 si->msg = msg; 598 si->size = size; 599 si->flags = flags; 600 601 err = security_socket_recvmsg(sock, msg, size, flags); 602 if (err) 603 return err; 604 605 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 606} 607 608int sock_recvmsg(struct socket *sock, struct msghdr *msg, 609 size_t size, int flags) 610{ 611 struct kiocb iocb; 612 struct sock_iocb siocb; 613 int ret; 614 615 init_sync_kiocb(&iocb, NULL); 616 iocb.private = &siocb; 617 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 618 if (-EIOCBQUEUED == ret) 619 ret = wait_on_sync_kiocb(&iocb); 620 return ret; 621} 622 623int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 624 struct kvec *vec, size_t num, size_t size, int flags) 625{ 626 mm_segment_t oldfs = get_fs(); 627 int result; 628 629 set_fs(KERNEL_DS); 630 /* 631 * the following is safe, since for compiler definitions of kvec and 632 * iovec are identical, yielding the same in-core layout and alignment 633 */ 634 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 635 result = sock_recvmsg(sock, msg, size, flags); 636 set_fs(oldfs); 637 return result; 638} 639 640static void sock_aio_dtor(struct kiocb *iocb) 641{ 642 kfree(iocb->private); 643} 644 645static ssize_t sock_sendpage(struct file *file, struct page *page, 646 int offset, size_t size, loff_t *ppos, int more) 647{ 648 struct socket *sock; 649 int flags; 650 651 sock = file->private_data; 652 653 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 654 if (more) 655 flags |= MSG_MORE; 656 657 return sock->ops->sendpage(sock, page, offset, size, flags); 658} 659 660static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 661 struct sock_iocb *siocb) 662{ 663 if (!is_sync_kiocb(iocb)) { 664 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 665 if (!siocb) 666 return NULL; 667 iocb->ki_dtor = sock_aio_dtor; 668 } 669 670 siocb->kiocb = iocb; 671 iocb->private = siocb; 672 return siocb; 673} 674 675static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 676 struct file *file, const struct iovec *iov, 677 unsigned long nr_segs) 678{ 679 struct socket *sock = file->private_data; 680 size_t size = 0; 681 int i; 682 683 for (i = 0; i < nr_segs; i++) 684 size += iov[i].iov_len; 685 686 msg->msg_name = NULL; 687 msg->msg_namelen = 0; 688 msg->msg_control = NULL; 689 msg->msg_controllen = 0; 690 msg->msg_iov = (struct iovec *)iov; 691 msg->msg_iovlen = nr_segs; 692 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 693 694 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 695} 696 697static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 698 unsigned long nr_segs, loff_t pos) 699{ 700 struct sock_iocb siocb, *x; 701 702 if (pos != 0) 703 return -ESPIPE; 704 705 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 706 return 0; 707 708 709 x = alloc_sock_iocb(iocb, &siocb); 710 if (!x) 711 return -ENOMEM; 712 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 713} 714 715static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 716 struct file *file, const struct iovec *iov, 717 unsigned long nr_segs) 718{ 719 struct socket *sock = file->private_data; 720 size_t size = 0; 721 int i; 722 723 for (i = 0; i < nr_segs; i++) 724 size += iov[i].iov_len; 725 726 msg->msg_name = NULL; 727 msg->msg_namelen = 0; 728 msg->msg_control = NULL; 729 msg->msg_controllen = 0; 730 msg->msg_iov = (struct iovec *)iov; 731 msg->msg_iovlen = nr_segs; 732 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 733 if (sock->type == SOCK_SEQPACKET) 734 msg->msg_flags |= MSG_EOR; 735 736 return __sock_sendmsg(iocb, sock, msg, size); 737} 738 739static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 740 unsigned long nr_segs, loff_t pos) 741{ 742 struct sock_iocb siocb, *x; 743 744 if (pos != 0) 745 return -ESPIPE; 746 747 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 748 return 0; 749 750 x = alloc_sock_iocb(iocb, &siocb); 751 if (!x) 752 return -ENOMEM; 753 754 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 755} 756 757/* 758 * Atomic setting of ioctl hooks to avoid race 759 * with module unload. 760 */ 761 762static DEFINE_MUTEX(br_ioctl_mutex); 763static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 764 765void brioctl_set(int (*hook) (unsigned int, void __user *)) 766{ 767 mutex_lock(&br_ioctl_mutex); 768 br_ioctl_hook = hook; 769 mutex_unlock(&br_ioctl_mutex); 770} 771 772EXPORT_SYMBOL(brioctl_set); 773 774static DEFINE_MUTEX(vlan_ioctl_mutex); 775static int (*vlan_ioctl_hook) (void __user *arg); 776 777void vlan_ioctl_set(int (*hook) (void __user *)) 778{ 779 mutex_lock(&vlan_ioctl_mutex); 780 vlan_ioctl_hook = hook; 781 mutex_unlock(&vlan_ioctl_mutex); 782} 783 784EXPORT_SYMBOL(vlan_ioctl_set); 785 786static DEFINE_MUTEX(dlci_ioctl_mutex); 787static int (*dlci_ioctl_hook) (unsigned int, void __user *); 788 789void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 790{ 791 mutex_lock(&dlci_ioctl_mutex); 792 dlci_ioctl_hook = hook; 793 mutex_unlock(&dlci_ioctl_mutex); 794} 795 796EXPORT_SYMBOL(dlci_ioctl_set); 797 798/* 799 * With an ioctl, arg may well be a user mode pointer, but we don't know 800 * what to do with it - that's up to the protocol still. 801 */ 802 803static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 804{ 805 struct socket *sock; 806 void __user *argp = (void __user *)arg; 807 int pid, err; 808 809 sock = file->private_data; 810 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 811 err = dev_ioctl(cmd, argp); 812 } else 813#ifdef CONFIG_WIRELESS_EXT 814 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 815 err = dev_ioctl(cmd, argp); 816 } else 817#endif /* CONFIG_WIRELESS_EXT */ 818 switch (cmd) { 819 case FIOSETOWN: 820 case SIOCSPGRP: 821 err = -EFAULT; 822 if (get_user(pid, (int __user *)argp)) 823 break; 824 err = f_setown(sock->file, pid, 1); 825 break; 826 case FIOGETOWN: 827 case SIOCGPGRP: 828 err = put_user(f_getown(sock->file), 829 (int __user *)argp); 830 break; 831 case SIOCGIFBR: 832 case SIOCSIFBR: 833 case SIOCBRADDBR: 834 case SIOCBRDELBR: 835 err = -ENOPKG; 836 if (!br_ioctl_hook) 837 request_module("bridge"); 838 839 mutex_lock(&br_ioctl_mutex); 840 if (br_ioctl_hook) 841 err = br_ioctl_hook(cmd, argp); 842 mutex_unlock(&br_ioctl_mutex); 843 break; 844 case SIOCGIFVLAN: 845 case SIOCSIFVLAN: 846 err = -ENOPKG; 847 if (!vlan_ioctl_hook) 848 request_module("8021q"); 849 850 mutex_lock(&vlan_ioctl_mutex); 851 if (vlan_ioctl_hook) 852 err = vlan_ioctl_hook(argp); 853 mutex_unlock(&vlan_ioctl_mutex); 854 break; 855 case SIOCGIFDIVERT: 856 case SIOCSIFDIVERT: 857 /* Convert this to call through a hook */ 858 err = divert_ioctl(cmd, argp); 859 break; 860 case SIOCADDDLCI: 861 case SIOCDELDLCI: 862 err = -ENOPKG; 863 if (!dlci_ioctl_hook) 864 request_module("dlci"); 865 866 if (dlci_ioctl_hook) { 867 mutex_lock(&dlci_ioctl_mutex); 868 err = dlci_ioctl_hook(cmd, argp); 869 mutex_unlock(&dlci_ioctl_mutex); 870 } 871 break; 872 default: 873 err = sock->ops->ioctl(sock, cmd, arg); 874 875 /* 876 * If this ioctl is unknown try to hand it down 877 * to the NIC driver. 878 */ 879 if (err == -ENOIOCTLCMD) 880 err = dev_ioctl(cmd, argp); 881 break; 882 } 883 return err; 884} 885 886int sock_create_lite(int family, int type, int protocol, struct socket **res) 887{ 888 int err; 889 struct socket *sock = NULL; 890 891 err = security_socket_create(family, type, protocol, 1); 892 if (err) 893 goto out; 894 895 sock = sock_alloc(); 896 if (!sock) { 897 err = -ENOMEM; 898 goto out; 899 } 900 901 sock->type = type; 902 err = security_socket_post_create(sock, family, type, protocol, 1); 903 if (err) 904 goto out_release; 905 906out: 907 *res = sock; 908 return err; 909out_release: 910 sock_release(sock); 911 sock = NULL; 912 goto out; 913} 914 915/* No kernel lock held - perfect */ 916static unsigned int sock_poll(struct file *file, poll_table *wait) 917{ 918 struct socket *sock; 919 920 /* 921 * We can't return errors to poll, so it's either yes or no. 922 */ 923 sock = file->private_data; 924 return sock->ops->poll(file, sock, wait); 925} 926 927static int sock_mmap(struct file *file, struct vm_area_struct *vma) 928{ 929 struct socket *sock = file->private_data; 930 931 return sock->ops->mmap(file, sock, vma); 932} 933 934static int sock_close(struct inode *inode, struct file *filp) 935{ 936 /* 937 * It was possible the inode is NULL we were 938 * closing an unfinished socket. 939 */ 940 941 if (!inode) { 942 printk(KERN_DEBUG "sock_close: NULL inode\n"); 943 return 0; 944 } 945 sock_fasync(-1, filp, 0); 946 sock_release(SOCKET_I(inode)); 947 return 0; 948} 949 950/* 951 * Update the socket async list 952 * 953 * Fasync_list locking strategy. 954 * 955 * 1. fasync_list is modified only under process context socket lock 956 * i.e. under semaphore. 957 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 958 * or under socket lock. 959 * 3. fasync_list can be used from softirq context, so that 960 * modification under socket lock have to be enhanced with 961 * write_lock_bh(&sk->sk_callback_lock). 962 * --ANK (990710) 963 */ 964 965static int sock_fasync(int fd, struct file *filp, int on) 966{ 967 struct fasync_struct *fa, *fna = NULL, **prev; 968 struct socket *sock; 969 struct sock *sk; 970 971 if (on) { 972 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 973 if (fna == NULL) 974 return -ENOMEM; 975 } 976 977 sock = filp->private_data; 978 979 sk = sock->sk; 980 if (sk == NULL) { 981 kfree(fna); 982 return -EINVAL; 983 } 984 985 lock_sock(sk); 986 987 prev = &(sock->fasync_list); 988 989 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 990 if (fa->fa_file == filp) 991 break; 992 993 if (on) { 994 if (fa != NULL) { 995 write_lock_bh(&sk->sk_callback_lock); 996 fa->fa_fd = fd; 997 write_unlock_bh(&sk->sk_callback_lock); 998 999 kfree(fna); 1000 goto out; 1001 } 1002 fna->fa_file = filp; 1003 fna->fa_fd = fd; 1004 fna->magic = FASYNC_MAGIC; 1005 fna->fa_next = sock->fasync_list; 1006 write_lock_bh(&sk->sk_callback_lock); 1007 sock->fasync_list = fna; 1008 write_unlock_bh(&sk->sk_callback_lock); 1009 } else { 1010 if (fa != NULL) { 1011 write_lock_bh(&sk->sk_callback_lock); 1012 *prev = fa->fa_next; 1013 write_unlock_bh(&sk->sk_callback_lock); 1014 kfree(fa); 1015 } 1016 } 1017 1018out: 1019 release_sock(sock->sk); 1020 return 0; 1021} 1022 1023/* This function may be called only under socket lock or callback_lock */ 1024 1025int sock_wake_async(struct socket *sock, int how, int band) 1026{ 1027 if (!sock || !sock->fasync_list) 1028 return -1; 1029 switch (how) { 1030 case 1: 1031 1032 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1033 break; 1034 goto call_kill; 1035 case 2: 1036 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1037 break; 1038 /* fall through */ 1039 case 0: 1040call_kill: 1041 __kill_fasync(sock->fasync_list, SIGIO, band); 1042 break; 1043 case 3: 1044 __kill_fasync(sock->fasync_list, SIGURG, band); 1045 } 1046 return 0; 1047} 1048 1049static int __sock_create(int family, int type, int protocol, 1050 struct socket **res, int kern) 1051{ 1052 int err; 1053 struct socket *sock; 1054 const struct net_proto_family *pf; 1055 1056 /* 1057 * Check protocol is in range 1058 */ 1059 if (family < 0 || family >= NPROTO) 1060 return -EAFNOSUPPORT; 1061 if (type < 0 || type >= SOCK_MAX) 1062 return -EINVAL; 1063 1064 /* Compatibility. 1065 1066 This uglymoron is moved from INET layer to here to avoid 1067 deadlock in module load. 1068 */ 1069 if (family == PF_INET && type == SOCK_PACKET) { 1070 static int warned; 1071 if (!warned) { 1072 warned = 1; 1073 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1074 current->comm); 1075 } 1076 family = PF_PACKET; 1077 } 1078 1079 err = security_socket_create(family, type, protocol, kern); 1080 if (err) 1081 return err; 1082 1083 /* 1084 * Allocate the socket and allow the family to set things up. if 1085 * the protocol is 0, the family is instructed to select an appropriate 1086 * default. 1087 */ 1088 sock = sock_alloc(); 1089 if (!sock) { 1090 if (net_ratelimit()) 1091 printk(KERN_WARNING "socket: no more sockets\n"); 1092 return -ENFILE; /* Not exactly a match, but its the 1093 closest posix thing */ 1094 } 1095 1096 sock->type = type; 1097 1098#if defined(CONFIG_KMOD) 1099 /* Attempt to load a protocol module if the find failed. 1100 * 1101 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1102 * requested real, full-featured networking support upon configuration. 1103 * Otherwise module support will break! 1104 */ 1105 if (net_families[family] == NULL) 1106 request_module("net-pf-%d", family); 1107#endif 1108 1109 rcu_read_lock(); 1110 pf = rcu_dereference(net_families[family]); 1111 err = -EAFNOSUPPORT; 1112 if (!pf) 1113 goto out_release; 1114 1115 /* 1116 * We will call the ->create function, that possibly is in a loadable 1117 * module, so we have to bump that loadable module refcnt first. 1118 */ 1119 if (!try_module_get(pf->owner)) 1120 goto out_release; 1121 1122 /* Now protected by module ref count */ 1123 rcu_read_unlock(); 1124 1125 err = pf->create(sock, protocol); 1126 if (err < 0) 1127 goto out_module_put; 1128 1129 /* 1130 * Now to bump the refcnt of the [loadable] module that owns this 1131 * socket at sock_release time we decrement its refcnt. 1132 */ 1133 if (!try_module_get(sock->ops->owner)) 1134 goto out_module_busy; 1135 1136 /* 1137 * Now that we're done with the ->create function, the [loadable] 1138 * module can have its refcnt decremented 1139 */ 1140 module_put(pf->owner); 1141 err = security_socket_post_create(sock, family, type, protocol, kern); 1142 if (err) 1143 goto out_release; 1144 *res = sock; 1145 1146 return 0; 1147 1148out_module_busy: 1149 err = -EAFNOSUPPORT; 1150out_module_put: 1151 sock->ops = NULL; 1152 module_put(pf->owner); 1153out_sock_release: 1154 sock_release(sock); 1155 return err; 1156 1157out_release: 1158 rcu_read_unlock(); 1159 goto out_sock_release; 1160} 1161 1162int sock_create(int family, int type, int protocol, struct socket **res) 1163{ 1164 return __sock_create(family, type, protocol, res, 0); 1165} 1166 1167int sock_create_kern(int family, int type, int protocol, struct socket **res) 1168{ 1169 return __sock_create(family, type, protocol, res, 1); 1170} 1171 1172asmlinkage long sys_socket(int family, int type, int protocol) 1173{ 1174 int retval; 1175 struct socket *sock; 1176 1177 retval = sock_create(family, type, protocol, &sock); 1178 if (retval < 0) 1179 goto out; 1180 1181 retval = sock_map_fd(sock); 1182 if (retval < 0) 1183 goto out_release; 1184 1185out: 1186 /* It may be already another descriptor 8) Not kernel problem. */ 1187 return retval; 1188 1189out_release: 1190 sock_release(sock); 1191 return retval; 1192} 1193 1194/* 1195 * Create a pair of connected sockets. 1196 */ 1197 1198asmlinkage long sys_socketpair(int family, int type, int protocol, 1199 int __user *usockvec) 1200{ 1201 struct socket *sock1, *sock2; 1202 int fd1, fd2, err; 1203 1204 /* 1205 * Obtain the first socket and check if the underlying protocol 1206 * supports the socketpair call. 1207 */ 1208 1209 err = sock_create(family, type, protocol, &sock1); 1210 if (err < 0) 1211 goto out; 1212 1213 err = sock_create(family, type, protocol, &sock2); 1214 if (err < 0) 1215 goto out_release_1; 1216 1217 err = sock1->ops->socketpair(sock1, sock2); 1218 if (err < 0) 1219 goto out_release_both; 1220 1221 fd1 = fd2 = -1; 1222 1223 err = sock_map_fd(sock1); 1224 if (err < 0) 1225 goto out_release_both; 1226 fd1 = err; 1227 1228 err = sock_map_fd(sock2); 1229 if (err < 0) 1230 goto out_close_1; 1231 fd2 = err; 1232 1233 /* fd1 and fd2 may be already another descriptors. 1234 * Not kernel problem. 1235 */ 1236 1237 err = put_user(fd1, &usockvec[0]); 1238 if (!err) 1239 err = put_user(fd2, &usockvec[1]); 1240 if (!err) 1241 return 0; 1242 1243 sys_close(fd2); 1244 sys_close(fd1); 1245 return err; 1246 1247out_close_1: 1248 sock_release(sock2); 1249 sys_close(fd1); 1250 return err; 1251 1252out_release_both: 1253 sock_release(sock2); 1254out_release_1: 1255 sock_release(sock1); 1256out: 1257 return err; 1258} 1259 1260/* 1261 * Bind a name to a socket. Nothing much to do here since it's 1262 * the protocol's responsibility to handle the local address. 1263 * 1264 * We move the socket address to kernel space before we call 1265 * the protocol layer (having also checked the address is ok). 1266 */ 1267 1268asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1269{ 1270 struct socket *sock; 1271 char address[MAX_SOCK_ADDR]; 1272 int err, fput_needed; 1273 1274 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1275 if(sock) { 1276 err = move_addr_to_kernel(umyaddr, addrlen, address); 1277 if (err >= 0) { 1278 err = security_socket_bind(sock, 1279 (struct sockaddr *)address, 1280 addrlen); 1281 if (!err) 1282 err = sock->ops->bind(sock, 1283 (struct sockaddr *) 1284 address, addrlen); 1285 } 1286 fput_light(sock->file, fput_needed); 1287 } 1288 return err; 1289} 1290 1291/* 1292 * Perform a listen. Basically, we allow the protocol to do anything 1293 * necessary for a listen, and if that works, we mark the socket as 1294 * ready for listening. 1295 */ 1296 1297int sysctl_somaxconn __read_mostly = SOMAXCONN; 1298 1299asmlinkage long sys_listen(int fd, int backlog) 1300{ 1301 struct socket *sock; 1302 int err, fput_needed; 1303 1304 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1305 if (sock) { 1306 if ((unsigned)backlog > sysctl_somaxconn) 1307 backlog = sysctl_somaxconn; 1308 1309 err = security_socket_listen(sock, backlog); 1310 if (!err) 1311 err = sock->ops->listen(sock, backlog); 1312 1313 fput_light(sock->file, fput_needed); 1314 } 1315 return err; 1316} 1317 1318/* 1319 * For accept, we attempt to create a new socket, set up the link 1320 * with the client, wake up the client, then return the new 1321 * connected fd. We collect the address of the connector in kernel 1322 * space and move it to user at the very end. This is unclean because 1323 * we open the socket then return an error. 1324 * 1325 * 1003.1g adds the ability to recvmsg() to query connection pending 1326 * status to recvmsg. We need to add that support in a way thats 1327 * clean when we restucture accept also. 1328 */ 1329 1330asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1331 int __user *upeer_addrlen) 1332{ 1333 struct socket *sock, *newsock; 1334 struct file *newfile; 1335 int err, len, newfd, fput_needed; 1336 char address[MAX_SOCK_ADDR]; 1337 1338 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1339 if (!sock) 1340 goto out; 1341 1342 err = -ENFILE; 1343 if (!(newsock = sock_alloc())) 1344 goto out_put; 1345 1346 newsock->type = sock->type; 1347 newsock->ops = sock->ops; 1348 1349 /* 1350 * We don't need try_module_get here, as the listening socket (sock) 1351 * has the protocol module (sock->ops->owner) held. 1352 */ 1353 __module_get(newsock->ops->owner); 1354 1355 newfd = sock_alloc_fd(&newfile); 1356 if (unlikely(newfd < 0)) { 1357 err = newfd; 1358 sock_release(newsock); 1359 goto out_put; 1360 } 1361 1362 err = sock_attach_fd(newsock, newfile); 1363 if (err < 0) 1364 goto out_fd; 1365 1366 err = security_socket_accept(sock, newsock); 1367 if (err) 1368 goto out_fd; 1369 1370 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1371 if (err < 0) 1372 goto out_fd; 1373 1374 if (upeer_sockaddr) { 1375 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1376 &len, 2) < 0) { 1377 err = -ECONNABORTED; 1378 goto out_fd; 1379 } 1380 err = move_addr_to_user(address, len, upeer_sockaddr, 1381 upeer_addrlen); 1382 if (err < 0) 1383 goto out_fd; 1384 } 1385 1386 /* File flags are not inherited via accept() unlike another OSes. */ 1387 1388 fd_install(newfd, newfile); 1389 err = newfd; 1390 1391 security_socket_post_accept(sock, newsock); 1392 1393out_put: 1394 fput_light(sock->file, fput_needed); 1395out: 1396 return err; 1397out_fd: 1398 fput(newfile); 1399 put_unused_fd(newfd); 1400 goto out_put; 1401} 1402 1403/* 1404 * Attempt to connect to a socket with the server address. The address 1405 * is in user space so we verify it is OK and move it to kernel space. 1406 * 1407 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1408 * break bindings 1409 * 1410 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1411 * other SEQPACKET protocols that take time to connect() as it doesn't 1412 * include the -EINPROGRESS status for such sockets. 1413 */ 1414 1415asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1416 int addrlen) 1417{ 1418 struct socket *sock; 1419 char address[MAX_SOCK_ADDR]; 1420 int err, fput_needed; 1421 1422 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1423 if (!sock) 1424 goto out; 1425 err = move_addr_to_kernel(uservaddr, addrlen, address); 1426 if (err < 0) 1427 goto out_put; 1428 1429 err = 1430 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1431 if (err) 1432 goto out_put; 1433 1434 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1435 sock->file->f_flags); 1436out_put: 1437 fput_light(sock->file, fput_needed); 1438out: 1439 return err; 1440} 1441 1442/* 1443 * Get the local address ('name') of a socket object. Move the obtained 1444 * name to user space. 1445 */ 1446 1447asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1448 int __user *usockaddr_len) 1449{ 1450 struct socket *sock; 1451 char address[MAX_SOCK_ADDR]; 1452 int len, err, fput_needed; 1453 1454 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1455 if (!sock) 1456 goto out; 1457 1458 err = security_socket_getsockname(sock); 1459 if (err) 1460 goto out_put; 1461 1462 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1463 if (err) 1464 goto out_put; 1465 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1466 1467out_put: 1468 fput_light(sock->file, fput_needed); 1469out: 1470 return err; 1471} 1472 1473/* 1474 * Get the remote address ('name') of a socket object. Move the obtained 1475 * name to user space. 1476 */ 1477 1478asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1479 int __user *usockaddr_len) 1480{ 1481 struct socket *sock; 1482 char address[MAX_SOCK_ADDR]; 1483 int len, err, fput_needed; 1484 1485 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1486 if (sock != NULL) { 1487 err = security_socket_getpeername(sock); 1488 if (err) { 1489 fput_light(sock->file, fput_needed); 1490 return err; 1491 } 1492 1493 err = 1494 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1495 1); 1496 if (!err) 1497 err = move_addr_to_user(address, len, usockaddr, 1498 usockaddr_len); 1499 fput_light(sock->file, fput_needed); 1500 } 1501 return err; 1502} 1503 1504/* 1505 * Send a datagram to a given address. We move the address into kernel 1506 * space and check the user space data area is readable before invoking 1507 * the protocol. 1508 */ 1509 1510asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1511 unsigned flags, struct sockaddr __user *addr, 1512 int addr_len) 1513{ 1514 struct socket *sock; 1515 char address[MAX_SOCK_ADDR]; 1516 int err; 1517 struct msghdr msg; 1518 struct iovec iov; 1519 int fput_needed; 1520 struct file *sock_file; 1521 1522 sock_file = fget_light(fd, &fput_needed); 1523 if (!sock_file) 1524 return -EBADF; 1525 1526 sock = sock_from_file(sock_file, &err); 1527 if (!sock) 1528 goto out_put; 1529 iov.iov_base = buff; 1530 iov.iov_len = len; 1531 msg.msg_name = NULL; 1532 msg.msg_iov = &iov; 1533 msg.msg_iovlen = 1; 1534 msg.msg_control = NULL; 1535 msg.msg_controllen = 0; 1536 msg.msg_namelen = 0; 1537 if (addr) { 1538 err = move_addr_to_kernel(addr, addr_len, address); 1539 if (err < 0) 1540 goto out_put; 1541 msg.msg_name = address; 1542 msg.msg_namelen = addr_len; 1543 } 1544 if (sock->file->f_flags & O_NONBLOCK) 1545 flags |= MSG_DONTWAIT; 1546 msg.msg_flags = flags; 1547 err = sock_sendmsg(sock, &msg, len); 1548 1549out_put: 1550 fput_light(sock_file, fput_needed); 1551 return err; 1552} 1553 1554/* 1555 * Send a datagram down a socket. 1556 */ 1557 1558asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1559{ 1560 return sys_sendto(fd, buff, len, flags, NULL, 0); 1561} 1562 1563/* 1564 * Receive a frame from the socket and optionally record the address of the 1565 * sender. We verify the buffers are writable and if needed move the 1566 * sender address from kernel to user space. 1567 */ 1568 1569asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1570 unsigned flags, struct sockaddr __user *addr, 1571 int __user *addr_len) 1572{ 1573 struct socket *sock; 1574 struct iovec iov; 1575 struct msghdr msg; 1576 char address[MAX_SOCK_ADDR]; 1577 int err, err2; 1578 struct file *sock_file; 1579 int fput_needed; 1580 1581 sock_file = fget_light(fd, &fput_needed); 1582 if (!sock_file) 1583 return -EBADF; 1584 1585 sock = sock_from_file(sock_file, &err); 1586 if (!sock) 1587 goto out; 1588 1589 msg.msg_control = NULL; 1590 msg.msg_controllen = 0; 1591 msg.msg_iovlen = 1; 1592 msg.msg_iov = &iov; 1593 iov.iov_len = size; 1594 iov.iov_base = ubuf; 1595 msg.msg_name = address; 1596 msg.msg_namelen = MAX_SOCK_ADDR; 1597 if (sock->file->f_flags & O_NONBLOCK) 1598 flags |= MSG_DONTWAIT; 1599 err = sock_recvmsg(sock, &msg, size, flags); 1600 1601 if (err >= 0 && addr != NULL) { 1602 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1603 if (err2 < 0) 1604 err = err2; 1605 } 1606out: 1607 fput_light(sock_file, fput_needed); 1608 return err; 1609} 1610 1611/* 1612 * Receive a datagram from a socket. 1613 */ 1614 1615asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1616 unsigned flags) 1617{ 1618 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1619} 1620 1621/* 1622 * Set a socket option. Because we don't know the option lengths we have 1623 * to pass the user mode parameter for the protocols to sort out. 1624 */ 1625 1626asmlinkage long sys_setsockopt(int fd, int level, int optname, 1627 char __user *optval, int optlen) 1628{ 1629 int err, fput_needed; 1630 struct socket *sock; 1631 1632 if (optlen < 0) 1633 return -EINVAL; 1634 1635 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1636 if (sock != NULL) { 1637 err = security_socket_setsockopt(sock, level, optname); 1638 if (err) 1639 goto out_put; 1640 1641 if (level == SOL_SOCKET) 1642 err = 1643 sock_setsockopt(sock, level, optname, optval, 1644 optlen); 1645 else 1646 err = 1647 sock->ops->setsockopt(sock, level, optname, optval, 1648 optlen); 1649out_put: 1650 fput_light(sock->file, fput_needed); 1651 } 1652 return err; 1653} 1654 1655/* 1656 * Get a socket option. Because we don't know the option lengths we have 1657 * to pass a user mode parameter for the protocols to sort out. 1658 */ 1659 1660asmlinkage long sys_getsockopt(int fd, int level, int optname, 1661 char __user *optval, int __user *optlen) 1662{ 1663 int err, fput_needed; 1664 struct socket *sock; 1665 1666 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1667 if (sock != NULL) { 1668 err = security_socket_getsockopt(sock, level, optname); 1669 if (err) 1670 goto out_put; 1671 1672 if (level == SOL_SOCKET) 1673 err = 1674 sock_getsockopt(sock, level, optname, optval, 1675 optlen); 1676 else 1677 err = 1678 sock->ops->getsockopt(sock, level, optname, optval, 1679 optlen); 1680out_put: 1681 fput_light(sock->file, fput_needed); 1682 } 1683 return err; 1684} 1685 1686/* 1687 * Shutdown a socket. 1688 */ 1689 1690asmlinkage long sys_shutdown(int fd, int how) 1691{ 1692 int err, fput_needed; 1693 struct socket *sock; 1694 1695 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1696 if (sock != NULL) { 1697 err = security_socket_shutdown(sock, how); 1698 if (!err) 1699 err = sock->ops->shutdown(sock, how); 1700 fput_light(sock->file, fput_needed); 1701 } 1702 return err; 1703} 1704 1705/* A couple of helpful macros for getting the address of the 32/64 bit 1706 * fields which are the same type (int / unsigned) on our platforms. 1707 */ 1708#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1709#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1710#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1711 1712/* 1713 * BSD sendmsg interface 1714 */ 1715 1716asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1717{ 1718 struct compat_msghdr __user *msg_compat = 1719 (struct compat_msghdr __user *)msg; 1720 struct socket *sock; 1721 char address[MAX_SOCK_ADDR]; 1722 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1723 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1724 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1725 /* 20 is size of ipv6_pktinfo */ 1726 unsigned char *ctl_buf = ctl; 1727 struct msghdr msg_sys; 1728 int err, ctl_len, iov_size, total_len; 1729 int fput_needed; 1730 1731 err = -EFAULT; 1732 if (MSG_CMSG_COMPAT & flags) { 1733 if (get_compat_msghdr(&msg_sys, msg_compat)) 1734 return -EFAULT; 1735 } 1736 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1737 return -EFAULT; 1738 1739 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1740 if (!sock) 1741 goto out; 1742 1743 /* do not move before msg_sys is valid */ 1744 err = -EMSGSIZE; 1745 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1746 goto out_put; 1747 1748 /* Check whether to allocate the iovec area */ 1749 err = -ENOMEM; 1750 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1751 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1752 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1753 if (!iov) 1754 goto out_put; 1755 } 1756 1757 /* This will also move the address data into kernel space */ 1758 if (MSG_CMSG_COMPAT & flags) { 1759 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1760 } else 1761 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1762 if (err < 0) 1763 goto out_freeiov; 1764 total_len = err; 1765 1766 err = -ENOBUFS; 1767 1768 if (msg_sys.msg_controllen > INT_MAX) 1769 goto out_freeiov; 1770 ctl_len = msg_sys.msg_controllen; 1771 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1772 err = 1773 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1774 sizeof(ctl)); 1775 if (err) 1776 goto out_freeiov; 1777 ctl_buf = msg_sys.msg_control; 1778 ctl_len = msg_sys.msg_controllen; 1779 } else if (ctl_len) { 1780 if (ctl_len > sizeof(ctl)) { 1781 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1782 if (ctl_buf == NULL) 1783 goto out_freeiov; 1784 } 1785 err = -EFAULT; 1786 /* 1787 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1788 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1789 * checking falls down on this. 1790 */ 1791 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1792 ctl_len)) 1793 goto out_freectl; 1794 msg_sys.msg_control = ctl_buf; 1795 } 1796 msg_sys.msg_flags = flags; 1797 1798 if (sock->file->f_flags & O_NONBLOCK) 1799 msg_sys.msg_flags |= MSG_DONTWAIT; 1800 err = sock_sendmsg(sock, &msg_sys, total_len); 1801 1802out_freectl: 1803 if (ctl_buf != ctl) 1804 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1805out_freeiov: 1806 if (iov != iovstack) 1807 sock_kfree_s(sock->sk, iov, iov_size); 1808out_put: 1809 fput_light(sock->file, fput_needed); 1810out: 1811 return err; 1812} 1813 1814/* 1815 * BSD recvmsg interface 1816 */ 1817 1818asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1819 unsigned int flags) 1820{ 1821 struct compat_msghdr __user *msg_compat = 1822 (struct compat_msghdr __user *)msg; 1823 struct socket *sock; 1824 struct iovec iovstack[UIO_FASTIOV]; 1825 struct iovec *iov = iovstack; 1826 struct msghdr msg_sys; 1827 unsigned long cmsg_ptr; 1828 int err, iov_size, total_len, len; 1829 int fput_needed; 1830 1831 /* kernel mode address */ 1832 char addr[MAX_SOCK_ADDR]; 1833 1834 /* user mode address pointers */ 1835 struct sockaddr __user *uaddr; 1836 int __user *uaddr_len; 1837 1838 if (MSG_CMSG_COMPAT & flags) { 1839 if (get_compat_msghdr(&msg_sys, msg_compat)) 1840 return -EFAULT; 1841 } 1842 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1843 return -EFAULT; 1844 1845 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1846 if (!sock) 1847 goto out; 1848 1849 err = -EMSGSIZE; 1850 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1851 goto out_put; 1852 1853 /* Check whether to allocate the iovec area */ 1854 err = -ENOMEM; 1855 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1856 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1857 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1858 if (!iov) 1859 goto out_put; 1860 } 1861 1862 /* 1863 * Save the user-mode address (verify_iovec will change the 1864 * kernel msghdr to use the kernel address space) 1865 */ 1866 1867 uaddr = (void __user *)msg_sys.msg_name; 1868 uaddr_len = COMPAT_NAMELEN(msg); 1869 if (MSG_CMSG_COMPAT & flags) { 1870 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1871 } else 1872 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1873 if (err < 0) 1874 goto out_freeiov; 1875 total_len = err; 1876 1877 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1878 msg_sys.msg_flags = 0; 1879 if (MSG_CMSG_COMPAT & flags) 1880 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1881 1882 if (sock->file->f_flags & O_NONBLOCK) 1883 flags |= MSG_DONTWAIT; 1884 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1885 if (err < 0) 1886 goto out_freeiov; 1887 len = err; 1888 1889 if (uaddr != NULL) { 1890 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1891 uaddr_len); 1892 if (err < 0) 1893 goto out_freeiov; 1894 } 1895 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1896 COMPAT_FLAGS(msg)); 1897 if (err) 1898 goto out_freeiov; 1899 if (MSG_CMSG_COMPAT & flags) 1900 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1901 &msg_compat->msg_controllen); 1902 else 1903 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1904 &msg->msg_controllen); 1905 if (err) 1906 goto out_freeiov; 1907 err = len; 1908 1909out_freeiov: 1910 if (iov != iovstack) 1911 sock_kfree_s(sock->sk, iov, iov_size); 1912out_put: 1913 fput_light(sock->file, fput_needed); 1914out: 1915 return err; 1916} 1917 1918#ifdef __ARCH_WANT_SYS_SOCKETCALL 1919 1920/* Argument list sizes for sys_socketcall */ 1921#define AL(x) ((x) * sizeof(unsigned long)) 1922static const unsigned char nargs[18]={ 1923 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1924 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1925 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1926}; 1927 1928#undef AL 1929 1930/* 1931 * System call vectors. 1932 * 1933 * Argument checking cleaned up. Saved 20% in size. 1934 * This function doesn't need to set the kernel lock because 1935 * it is set by the callees. 1936 */ 1937 1938asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1939{ 1940 unsigned long a[6]; 1941 unsigned long a0, a1; 1942 int err; 1943 1944 if (call < 1 || call > SYS_RECVMSG) 1945 return -EINVAL; 1946 1947 /* copy_from_user should be SMP safe. */ 1948 if (copy_from_user(a, args, nargs[call])) 1949 return -EFAULT; 1950 1951 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 1952 if (err) 1953 return err; 1954 1955 a0 = a[0]; 1956 a1 = a[1]; 1957 1958 switch (call) { 1959 case SYS_SOCKET: 1960 err = sys_socket(a0, a1, a[2]); 1961 break; 1962 case SYS_BIND: 1963 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 1964 break; 1965 case SYS_CONNECT: 1966 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1967 break; 1968 case SYS_LISTEN: 1969 err = sys_listen(a0, a1); 1970 break; 1971 case SYS_ACCEPT: 1972 err = 1973 sys_accept(a0, (struct sockaddr __user *)a1, 1974 (int __user *)a[2]); 1975 break; 1976 case SYS_GETSOCKNAME: 1977 err = 1978 sys_getsockname(a0, (struct sockaddr __user *)a1, 1979 (int __user *)a[2]); 1980 break; 1981 case SYS_GETPEERNAME: 1982 err = 1983 sys_getpeername(a0, (struct sockaddr __user *)a1, 1984 (int __user *)a[2]); 1985 break; 1986 case SYS_SOCKETPAIR: 1987 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 1988 break; 1989 case SYS_SEND: 1990 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1991 break; 1992 case SYS_SENDTO: 1993 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 1994 (struct sockaddr __user *)a[4], a[5]); 1995 break; 1996 case SYS_RECV: 1997 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1998 break; 1999 case SYS_RECVFROM: 2000 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2001 (struct sockaddr __user *)a[4], 2002 (int __user *)a[5]); 2003 break; 2004 case SYS_SHUTDOWN: 2005 err = sys_shutdown(a0, a1); 2006 break; 2007 case SYS_SETSOCKOPT: 2008 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2009 break; 2010 case SYS_GETSOCKOPT: 2011 err = 2012 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2013 (int __user *)a[4]); 2014 break; 2015 case SYS_SENDMSG: 2016 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2017 break; 2018 case SYS_RECVMSG: 2019 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2020 break; 2021 default: 2022 err = -EINVAL; 2023 break; 2024 } 2025 return err; 2026} 2027 2028#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2029 2030/** 2031 * sock_register - add a socket protocol handler 2032 * @ops: description of protocol 2033 * 2034 * This function is called by a protocol handler that wants to 2035 * advertise its address family, and have it linked into the 2036 * socket interface. The value ops->family coresponds to the 2037 * socket system call protocol family. 2038 */ 2039int sock_register(const struct net_proto_family *ops) 2040{ 2041 int err; 2042 2043 if (ops->family >= NPROTO) { 2044 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2045 NPROTO); 2046 return -ENOBUFS; 2047 } 2048 2049 spin_lock(&net_family_lock); 2050 if (net_families[ops->family]) 2051 err = -EEXIST; 2052 else { 2053 net_families[ops->family] = ops; 2054 err = 0; 2055 } 2056 spin_unlock(&net_family_lock); 2057 2058 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2059 return err; 2060} 2061 2062/** 2063 * sock_unregister - remove a protocol handler 2064 * @family: protocol family to remove 2065 * 2066 * This function is called by a protocol handler that wants to 2067 * remove its address family, and have it unlinked from the 2068 * new socket creation. 2069 * 2070 * If protocol handler is a module, then it can use module reference 2071 * counts to protect against new references. If protocol handler is not 2072 * a module then it needs to provide its own protection in 2073 * the ops->create routine. 2074 */ 2075void sock_unregister(int family) 2076{ 2077 BUG_ON(family < 0 || family >= NPROTO); 2078 2079 spin_lock(&net_family_lock); 2080 net_families[family] = NULL; 2081 spin_unlock(&net_family_lock); 2082 2083 synchronize_rcu(); 2084 2085 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2086} 2087 2088static int __init sock_init(void) 2089{ 2090 /* 2091 * Initialize sock SLAB cache. 2092 */ 2093 2094 sk_init(); 2095 2096 /* 2097 * Initialize skbuff SLAB cache 2098 */ 2099 skb_init(); 2100 2101 /* 2102 * Initialize the protocols module. 2103 */ 2104 2105 init_inodecache(); 2106 register_filesystem(&sock_fs_type); 2107 sock_mnt = kern_mount(&sock_fs_type); 2108 2109 /* The real protocol initialization is performed in later initcalls. 2110 */ 2111 2112#ifdef CONFIG_NETFILTER 2113 netfilter_init(); 2114#endif 2115 2116 return 0; 2117} 2118 2119core_initcall(sock_init); /* early initcall */ 2120 2121#ifdef CONFIG_PROC_FS 2122void socket_seq_show(struct seq_file *seq) 2123{ 2124 int cpu; 2125 int counter = 0; 2126 2127 for_each_possible_cpu(cpu) 2128 counter += per_cpu(sockets_in_use, cpu); 2129 2130 /* It can be negative, by the way. 8) */ 2131 if (counter < 0) 2132 counter = 0; 2133 2134 seq_printf(seq, "sockets: used %d\n", counter); 2135} 2136#endif /* CONFIG_PROC_FS */ 2137 2138#ifdef CONFIG_COMPAT 2139static long compat_sock_ioctl(struct file *file, unsigned cmd, 2140 unsigned long arg) 2141{ 2142 struct socket *sock = file->private_data; 2143 int ret = -ENOIOCTLCMD; 2144 2145 if (sock->ops->compat_ioctl) 2146 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2147 2148 return ret; 2149} 2150#endif 2151 2152int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2153{ 2154 return sock->ops->bind(sock, addr, addrlen); 2155} 2156 2157int kernel_listen(struct socket *sock, int backlog) 2158{ 2159 return sock->ops->listen(sock, backlog); 2160} 2161 2162int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2163{ 2164 struct sock *sk = sock->sk; 2165 int err; 2166 2167 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2168 newsock); 2169 if (err < 0) 2170 goto done; 2171 2172 err = sock->ops->accept(sock, *newsock, flags); 2173 if (err < 0) { 2174 sock_release(*newsock); 2175 goto done; 2176 } 2177 2178 (*newsock)->ops = sock->ops; 2179 2180done: 2181 return err; 2182} 2183 2184int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2185 int flags) 2186{ 2187 return sock->ops->connect(sock, addr, addrlen, flags); 2188} 2189 2190int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2191 int *addrlen) 2192{ 2193 return sock->ops->getname(sock, addr, addrlen, 0); 2194} 2195 2196int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2197 int *addrlen) 2198{ 2199 return sock->ops->getname(sock, addr, addrlen, 1); 2200} 2201 2202int kernel_getsockopt(struct socket *sock, int level, int optname, 2203 char *optval, int *optlen) 2204{ 2205 mm_segment_t oldfs = get_fs(); 2206 int err; 2207 2208 set_fs(KERNEL_DS); 2209 if (level == SOL_SOCKET) 2210 err = sock_getsockopt(sock, level, optname, optval, optlen); 2211 else 2212 err = sock->ops->getsockopt(sock, level, optname, optval, 2213 optlen); 2214 set_fs(oldfs); 2215 return err; 2216} 2217 2218int kernel_setsockopt(struct socket *sock, int level, int optname, 2219 char *optval, int optlen) 2220{ 2221 mm_segment_t oldfs = get_fs(); 2222 int err; 2223 2224 set_fs(KERNEL_DS); 2225 if (level == SOL_SOCKET) 2226 err = sock_setsockopt(sock, level, optname, optval, optlen); 2227 else 2228 err = sock->ops->setsockopt(sock, level, optname, optval, 2229 optlen); 2230 set_fs(oldfs); 2231 return err; 2232} 2233 2234int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2235 size_t size, int flags) 2236{ 2237 if (sock->ops->sendpage) 2238 return sock->ops->sendpage(sock, page, offset, size, flags); 2239 2240 return sock_no_sendpage(sock, page, offset, size, flags); 2241} 2242 2243int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2244{ 2245 mm_segment_t oldfs = get_fs(); 2246 int err; 2247 2248 set_fs(KERNEL_DS); 2249 err = sock->ops->ioctl(sock, cmd, arg); 2250 set_fs(oldfs); 2251 2252 return err; 2253} 2254 2255/* ABI emulation layers need these two */ 2256EXPORT_SYMBOL(move_addr_to_kernel); 2257EXPORT_SYMBOL(move_addr_to_user); 2258EXPORT_SYMBOL(sock_create); 2259EXPORT_SYMBOL(sock_create_kern); 2260EXPORT_SYMBOL(sock_create_lite); 2261EXPORT_SYMBOL(sock_map_fd); 2262EXPORT_SYMBOL(sock_recvmsg); 2263EXPORT_SYMBOL(sock_register); 2264EXPORT_SYMBOL(sock_release); 2265EXPORT_SYMBOL(sock_sendmsg); 2266EXPORT_SYMBOL(sock_unregister); 2267EXPORT_SYMBOL(sock_wake_async); 2268EXPORT_SYMBOL(sockfd_lookup); 2269EXPORT_SYMBOL(kernel_sendmsg); 2270EXPORT_SYMBOL(kernel_recvmsg); 2271EXPORT_SYMBOL(kernel_bind); 2272EXPORT_SYMBOL(kernel_listen); 2273EXPORT_SYMBOL(kernel_accept); 2274EXPORT_SYMBOL(kernel_connect); 2275EXPORT_SYMBOL(kernel_getsockname); 2276EXPORT_SYMBOL(kernel_getpeername); 2277EXPORT_SYMBOL(kernel_getsockopt); 2278EXPORT_SYMBOL(kernel_setsockopt); 2279EXPORT_SYMBOL(kernel_sendpage); 2280EXPORT_SYMBOL(kernel_sock_ioctl);