at v2.6.19 88 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/notifier.h> 94#include <linux/skbuff.h> 95#include <net/sock.h> 96#include <linux/rtnetlink.h> 97#include <linux/proc_fs.h> 98#include <linux/seq_file.h> 99#include <linux/stat.h> 100#include <linux/if_bridge.h> 101#include <linux/divert.h> 102#include <net/dst.h> 103#include <net/pkt_sched.h> 104#include <net/checksum.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/kmod.h> 108#include <linux/module.h> 109#include <linux/kallsyms.h> 110#include <linux/netpoll.h> 111#include <linux/rcupdate.h> 112#include <linux/delay.h> 113#include <linux/wireless.h> 114#include <net/iw_handler.h> 115#include <asm/current.h> 116#include <linux/audit.h> 117#include <linux/dmaengine.h> 118#include <linux/err.h> 119#include <linux/ctype.h> 120 121/* 122 * The list of packet types we will receive (as opposed to discard) 123 * and the routines to invoke. 124 * 125 * Why 16. Because with 16 the only overlap we get on a hash of the 126 * low nibble of the protocol value is RARP/SNAP/X.25. 127 * 128 * NOTE: That is no longer true with the addition of VLAN tags. Not 129 * sure which should go first, but I bet it won't make much 130 * difference if we are running VLANs. The good news is that 131 * this protocol won't be in the list unless compiled in, so 132 * the average user (w/out VLANs) will not be adversely affected. 133 * --BLG 134 * 135 * 0800 IP 136 * 8100 802.1Q VLAN 137 * 0001 802.3 138 * 0002 AX.25 139 * 0004 802.2 140 * 8035 RARP 141 * 0005 SNAP 142 * 0805 X.25 143 * 0806 ARP 144 * 8137 IPX 145 * 0009 Localtalk 146 * 86DD IPv6 147 */ 148 149static DEFINE_SPINLOCK(ptype_lock); 150static struct list_head ptype_base[16]; /* 16 way hashed list */ 151static struct list_head ptype_all; /* Taps */ 152 153#ifdef CONFIG_NET_DMA 154static struct dma_client *net_dma_client; 155static unsigned int net_dma_count; 156static spinlock_t net_dma_event_lock; 157#endif 158 159/* 160 * The @dev_base list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading. 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178struct net_device *dev_base; 179static struct net_device **dev_tail = &dev_base; 180DEFINE_RWLOCK(dev_base_lock); 181 182EXPORT_SYMBOL(dev_base); 183EXPORT_SYMBOL(dev_base_lock); 184 185#define NETDEV_HASHBITS 8 186static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 187static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 188 189static inline struct hlist_head *dev_name_hash(const char *name) 190{ 191 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 192 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 193} 194 195static inline struct hlist_head *dev_index_hash(int ifindex) 196{ 197 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 198} 199 200/* 201 * Our notifier list 202 */ 203 204static RAW_NOTIFIER_HEAD(netdev_chain); 205 206/* 207 * Device drivers call our routines to queue packets here. We empty the 208 * queue in the local softnet handler. 209 */ 210DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 211 212#ifdef CONFIG_SYSFS 213extern int netdev_sysfs_init(void); 214extern int netdev_register_sysfs(struct net_device *); 215extern void netdev_unregister_sysfs(struct net_device *); 216#else 217#define netdev_sysfs_init() (0) 218#define netdev_register_sysfs(dev) (0) 219#define netdev_unregister_sysfs(dev) do { } while(0) 220#endif 221 222 223/******************************************************************************* 224 225 Protocol management and registration routines 226 227*******************************************************************************/ 228 229/* 230 * For efficiency 231 */ 232 233static int netdev_nit; 234 235/* 236 * Add a protocol ID to the list. Now that the input handler is 237 * smarter we can dispense with all the messy stuff that used to be 238 * here. 239 * 240 * BEWARE!!! Protocol handlers, mangling input packets, 241 * MUST BE last in hash buckets and checking protocol handlers 242 * MUST start from promiscuous ptype_all chain in net_bh. 243 * It is true now, do not change it. 244 * Explanation follows: if protocol handler, mangling packet, will 245 * be the first on list, it is not able to sense, that packet 246 * is cloned and should be copied-on-write, so that it will 247 * change it and subsequent readers will get broken packet. 248 * --ANK (980803) 249 */ 250 251/** 252 * dev_add_pack - add packet handler 253 * @pt: packet type declaration 254 * 255 * Add a protocol handler to the networking stack. The passed &packet_type 256 * is linked into kernel lists and may not be freed until it has been 257 * removed from the kernel lists. 258 * 259 * This call does not sleep therefore it can not 260 * guarantee all CPU's that are in middle of receiving packets 261 * will see the new packet type (until the next received packet). 262 */ 263 264void dev_add_pack(struct packet_type *pt) 265{ 266 int hash; 267 268 spin_lock_bh(&ptype_lock); 269 if (pt->type == htons(ETH_P_ALL)) { 270 netdev_nit++; 271 list_add_rcu(&pt->list, &ptype_all); 272 } else { 273 hash = ntohs(pt->type) & 15; 274 list_add_rcu(&pt->list, &ptype_base[hash]); 275 } 276 spin_unlock_bh(&ptype_lock); 277} 278 279/** 280 * __dev_remove_pack - remove packet handler 281 * @pt: packet type declaration 282 * 283 * Remove a protocol handler that was previously added to the kernel 284 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 285 * from the kernel lists and can be freed or reused once this function 286 * returns. 287 * 288 * The packet type might still be in use by receivers 289 * and must not be freed until after all the CPU's have gone 290 * through a quiescent state. 291 */ 292void __dev_remove_pack(struct packet_type *pt) 293{ 294 struct list_head *head; 295 struct packet_type *pt1; 296 297 spin_lock_bh(&ptype_lock); 298 299 if (pt->type == htons(ETH_P_ALL)) { 300 netdev_nit--; 301 head = &ptype_all; 302 } else 303 head = &ptype_base[ntohs(pt->type) & 15]; 304 305 list_for_each_entry(pt1, head, list) { 306 if (pt == pt1) { 307 list_del_rcu(&pt->list); 308 goto out; 309 } 310 } 311 312 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 313out: 314 spin_unlock_bh(&ptype_lock); 315} 316/** 317 * dev_remove_pack - remove packet handler 318 * @pt: packet type declaration 319 * 320 * Remove a protocol handler that was previously added to the kernel 321 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 322 * from the kernel lists and can be freed or reused once this function 323 * returns. 324 * 325 * This call sleeps to guarantee that no CPU is looking at the packet 326 * type after return. 327 */ 328void dev_remove_pack(struct packet_type *pt) 329{ 330 __dev_remove_pack(pt); 331 332 synchronize_net(); 333} 334 335/****************************************************************************** 336 337 Device Boot-time Settings Routines 338 339*******************************************************************************/ 340 341/* Boot time configuration table */ 342static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 343 344/** 345 * netdev_boot_setup_add - add new setup entry 346 * @name: name of the device 347 * @map: configured settings for the device 348 * 349 * Adds new setup entry to the dev_boot_setup list. The function 350 * returns 0 on error and 1 on success. This is a generic routine to 351 * all netdevices. 352 */ 353static int netdev_boot_setup_add(char *name, struct ifmap *map) 354{ 355 struct netdev_boot_setup *s; 356 int i; 357 358 s = dev_boot_setup; 359 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 360 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 361 memset(s[i].name, 0, sizeof(s[i].name)); 362 strcpy(s[i].name, name); 363 memcpy(&s[i].map, map, sizeof(s[i].map)); 364 break; 365 } 366 } 367 368 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 369} 370 371/** 372 * netdev_boot_setup_check - check boot time settings 373 * @dev: the netdevice 374 * 375 * Check boot time settings for the device. 376 * The found settings are set for the device to be used 377 * later in the device probing. 378 * Returns 0 if no settings found, 1 if they are. 379 */ 380int netdev_boot_setup_check(struct net_device *dev) 381{ 382 struct netdev_boot_setup *s = dev_boot_setup; 383 int i; 384 385 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 386 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 387 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 388 dev->irq = s[i].map.irq; 389 dev->base_addr = s[i].map.base_addr; 390 dev->mem_start = s[i].map.mem_start; 391 dev->mem_end = s[i].map.mem_end; 392 return 1; 393 } 394 } 395 return 0; 396} 397 398 399/** 400 * netdev_boot_base - get address from boot time settings 401 * @prefix: prefix for network device 402 * @unit: id for network device 403 * 404 * Check boot time settings for the base address of device. 405 * The found settings are set for the device to be used 406 * later in the device probing. 407 * Returns 0 if no settings found. 408 */ 409unsigned long netdev_boot_base(const char *prefix, int unit) 410{ 411 const struct netdev_boot_setup *s = dev_boot_setup; 412 char name[IFNAMSIZ]; 413 int i; 414 415 sprintf(name, "%s%d", prefix, unit); 416 417 /* 418 * If device already registered then return base of 1 419 * to indicate not to probe for this interface 420 */ 421 if (__dev_get_by_name(name)) 422 return 1; 423 424 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 425 if (!strcmp(name, s[i].name)) 426 return s[i].map.base_addr; 427 return 0; 428} 429 430/* 431 * Saves at boot time configured settings for any netdevice. 432 */ 433int __init netdev_boot_setup(char *str) 434{ 435 int ints[5]; 436 struct ifmap map; 437 438 str = get_options(str, ARRAY_SIZE(ints), ints); 439 if (!str || !*str) 440 return 0; 441 442 /* Save settings */ 443 memset(&map, 0, sizeof(map)); 444 if (ints[0] > 0) 445 map.irq = ints[1]; 446 if (ints[0] > 1) 447 map.base_addr = ints[2]; 448 if (ints[0] > 2) 449 map.mem_start = ints[3]; 450 if (ints[0] > 3) 451 map.mem_end = ints[4]; 452 453 /* Add new entry to the list */ 454 return netdev_boot_setup_add(str, &map); 455} 456 457__setup("netdev=", netdev_boot_setup); 458 459/******************************************************************************* 460 461 Device Interface Subroutines 462 463*******************************************************************************/ 464 465/** 466 * __dev_get_by_name - find a device by its name 467 * @name: name to find 468 * 469 * Find an interface by name. Must be called under RTNL semaphore 470 * or @dev_base_lock. If the name is found a pointer to the device 471 * is returned. If the name is not found then %NULL is returned. The 472 * reference counters are not incremented so the caller must be 473 * careful with locks. 474 */ 475 476struct net_device *__dev_get_by_name(const char *name) 477{ 478 struct hlist_node *p; 479 480 hlist_for_each(p, dev_name_hash(name)) { 481 struct net_device *dev 482 = hlist_entry(p, struct net_device, name_hlist); 483 if (!strncmp(dev->name, name, IFNAMSIZ)) 484 return dev; 485 } 486 return NULL; 487} 488 489/** 490 * dev_get_by_name - find a device by its name 491 * @name: name to find 492 * 493 * Find an interface by name. This can be called from any 494 * context and does its own locking. The returned handle has 495 * the usage count incremented and the caller must use dev_put() to 496 * release it when it is no longer needed. %NULL is returned if no 497 * matching device is found. 498 */ 499 500struct net_device *dev_get_by_name(const char *name) 501{ 502 struct net_device *dev; 503 504 read_lock(&dev_base_lock); 505 dev = __dev_get_by_name(name); 506 if (dev) 507 dev_hold(dev); 508 read_unlock(&dev_base_lock); 509 return dev; 510} 511 512/** 513 * __dev_get_by_index - find a device by its ifindex 514 * @ifindex: index of device 515 * 516 * Search for an interface by index. Returns %NULL if the device 517 * is not found or a pointer to the device. The device has not 518 * had its reference counter increased so the caller must be careful 519 * about locking. The caller must hold either the RTNL semaphore 520 * or @dev_base_lock. 521 */ 522 523struct net_device *__dev_get_by_index(int ifindex) 524{ 525 struct hlist_node *p; 526 527 hlist_for_each(p, dev_index_hash(ifindex)) { 528 struct net_device *dev 529 = hlist_entry(p, struct net_device, index_hlist); 530 if (dev->ifindex == ifindex) 531 return dev; 532 } 533 return NULL; 534} 535 536 537/** 538 * dev_get_by_index - find a device by its ifindex 539 * @ifindex: index of device 540 * 541 * Search for an interface by index. Returns NULL if the device 542 * is not found or a pointer to the device. The device returned has 543 * had a reference added and the pointer is safe until the user calls 544 * dev_put to indicate they have finished with it. 545 */ 546 547struct net_device *dev_get_by_index(int ifindex) 548{ 549 struct net_device *dev; 550 551 read_lock(&dev_base_lock); 552 dev = __dev_get_by_index(ifindex); 553 if (dev) 554 dev_hold(dev); 555 read_unlock(&dev_base_lock); 556 return dev; 557} 558 559/** 560 * dev_getbyhwaddr - find a device by its hardware address 561 * @type: media type of device 562 * @ha: hardware address 563 * 564 * Search for an interface by MAC address. Returns NULL if the device 565 * is not found or a pointer to the device. The caller must hold the 566 * rtnl semaphore. The returned device has not had its ref count increased 567 * and the caller must therefore be careful about locking 568 * 569 * BUGS: 570 * If the API was consistent this would be __dev_get_by_hwaddr 571 */ 572 573struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 574{ 575 struct net_device *dev; 576 577 ASSERT_RTNL(); 578 579 for (dev = dev_base; dev; dev = dev->next) 580 if (dev->type == type && 581 !memcmp(dev->dev_addr, ha, dev->addr_len)) 582 break; 583 return dev; 584} 585 586EXPORT_SYMBOL(dev_getbyhwaddr); 587 588struct net_device *dev_getfirstbyhwtype(unsigned short type) 589{ 590 struct net_device *dev; 591 592 rtnl_lock(); 593 for (dev = dev_base; dev; dev = dev->next) { 594 if (dev->type == type) { 595 dev_hold(dev); 596 break; 597 } 598 } 599 rtnl_unlock(); 600 return dev; 601} 602 603EXPORT_SYMBOL(dev_getfirstbyhwtype); 604 605/** 606 * dev_get_by_flags - find any device with given flags 607 * @if_flags: IFF_* values 608 * @mask: bitmask of bits in if_flags to check 609 * 610 * Search for any interface with the given flags. Returns NULL if a device 611 * is not found or a pointer to the device. The device returned has 612 * had a reference added and the pointer is safe until the user calls 613 * dev_put to indicate they have finished with it. 614 */ 615 616struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 617{ 618 struct net_device *dev; 619 620 read_lock(&dev_base_lock); 621 for (dev = dev_base; dev != NULL; dev = dev->next) { 622 if (((dev->flags ^ if_flags) & mask) == 0) { 623 dev_hold(dev); 624 break; 625 } 626 } 627 read_unlock(&dev_base_lock); 628 return dev; 629} 630 631/** 632 * dev_valid_name - check if name is okay for network device 633 * @name: name string 634 * 635 * Network device names need to be valid file names to 636 * to allow sysfs to work. We also disallow any kind of 637 * whitespace. 638 */ 639int dev_valid_name(const char *name) 640{ 641 if (*name == '\0') 642 return 0; 643 if (strlen(name) >= IFNAMSIZ) 644 return 0; 645 if (!strcmp(name, ".") || !strcmp(name, "..")) 646 return 0; 647 648 while (*name) { 649 if (*name == '/' || isspace(*name)) 650 return 0; 651 name++; 652 } 653 return 1; 654} 655 656/** 657 * dev_alloc_name - allocate a name for a device 658 * @dev: device 659 * @name: name format string 660 * 661 * Passed a format string - eg "lt%d" it will try and find a suitable 662 * id. It scans list of devices to build up a free map, then chooses 663 * the first empty slot. The caller must hold the dev_base or rtnl lock 664 * while allocating the name and adding the device in order to avoid 665 * duplicates. 666 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 667 * Returns the number of the unit assigned or a negative errno code. 668 */ 669 670int dev_alloc_name(struct net_device *dev, const char *name) 671{ 672 int i = 0; 673 char buf[IFNAMSIZ]; 674 const char *p; 675 const int max_netdevices = 8*PAGE_SIZE; 676 long *inuse; 677 struct net_device *d; 678 679 p = strnchr(name, IFNAMSIZ-1, '%'); 680 if (p) { 681 /* 682 * Verify the string as this thing may have come from 683 * the user. There must be either one "%d" and no other "%" 684 * characters. 685 */ 686 if (p[1] != 'd' || strchr(p + 2, '%')) 687 return -EINVAL; 688 689 /* Use one page as a bit array of possible slots */ 690 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 691 if (!inuse) 692 return -ENOMEM; 693 694 for (d = dev_base; d; d = d->next) { 695 if (!sscanf(d->name, name, &i)) 696 continue; 697 if (i < 0 || i >= max_netdevices) 698 continue; 699 700 /* avoid cases where sscanf is not exact inverse of printf */ 701 snprintf(buf, sizeof(buf), name, i); 702 if (!strncmp(buf, d->name, IFNAMSIZ)) 703 set_bit(i, inuse); 704 } 705 706 i = find_first_zero_bit(inuse, max_netdevices); 707 free_page((unsigned long) inuse); 708 } 709 710 snprintf(buf, sizeof(buf), name, i); 711 if (!__dev_get_by_name(buf)) { 712 strlcpy(dev->name, buf, IFNAMSIZ); 713 return i; 714 } 715 716 /* It is possible to run out of possible slots 717 * when the name is long and there isn't enough space left 718 * for the digits, or if all bits are used. 719 */ 720 return -ENFILE; 721} 722 723 724/** 725 * dev_change_name - change name of a device 726 * @dev: device 727 * @newname: name (or format string) must be at least IFNAMSIZ 728 * 729 * Change name of a device, can pass format strings "eth%d". 730 * for wildcarding. 731 */ 732int dev_change_name(struct net_device *dev, char *newname) 733{ 734 int err = 0; 735 736 ASSERT_RTNL(); 737 738 if (dev->flags & IFF_UP) 739 return -EBUSY; 740 741 if (!dev_valid_name(newname)) 742 return -EINVAL; 743 744 if (strchr(newname, '%')) { 745 err = dev_alloc_name(dev, newname); 746 if (err < 0) 747 return err; 748 strcpy(newname, dev->name); 749 } 750 else if (__dev_get_by_name(newname)) 751 return -EEXIST; 752 else 753 strlcpy(dev->name, newname, IFNAMSIZ); 754 755 err = class_device_rename(&dev->class_dev, dev->name); 756 if (!err) { 757 hlist_del(&dev->name_hlist); 758 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 759 raw_notifier_call_chain(&netdev_chain, 760 NETDEV_CHANGENAME, dev); 761 } 762 763 return err; 764} 765 766/** 767 * netdev_features_change - device changes features 768 * @dev: device to cause notification 769 * 770 * Called to indicate a device has changed features. 771 */ 772void netdev_features_change(struct net_device *dev) 773{ 774 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 775} 776EXPORT_SYMBOL(netdev_features_change); 777 778/** 779 * netdev_state_change - device changes state 780 * @dev: device to cause notification 781 * 782 * Called to indicate a device has changed state. This function calls 783 * the notifier chains for netdev_chain and sends a NEWLINK message 784 * to the routing socket. 785 */ 786void netdev_state_change(struct net_device *dev) 787{ 788 if (dev->flags & IFF_UP) { 789 raw_notifier_call_chain(&netdev_chain, 790 NETDEV_CHANGE, dev); 791 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 792 } 793} 794 795/** 796 * dev_load - load a network module 797 * @name: name of interface 798 * 799 * If a network interface is not present and the process has suitable 800 * privileges this function loads the module. If module loading is not 801 * available in this kernel then it becomes a nop. 802 */ 803 804void dev_load(const char *name) 805{ 806 struct net_device *dev; 807 808 read_lock(&dev_base_lock); 809 dev = __dev_get_by_name(name); 810 read_unlock(&dev_base_lock); 811 812 if (!dev && capable(CAP_SYS_MODULE)) 813 request_module("%s", name); 814} 815 816static int default_rebuild_header(struct sk_buff *skb) 817{ 818 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 819 skb->dev ? skb->dev->name : "NULL!!!"); 820 kfree_skb(skb); 821 return 1; 822} 823 824 825/** 826 * dev_open - prepare an interface for use. 827 * @dev: device to open 828 * 829 * Takes a device from down to up state. The device's private open 830 * function is invoked and then the multicast lists are loaded. Finally 831 * the device is moved into the up state and a %NETDEV_UP message is 832 * sent to the netdev notifier chain. 833 * 834 * Calling this function on an active interface is a nop. On a failure 835 * a negative errno code is returned. 836 */ 837int dev_open(struct net_device *dev) 838{ 839 int ret = 0; 840 841 /* 842 * Is it already up? 843 */ 844 845 if (dev->flags & IFF_UP) 846 return 0; 847 848 /* 849 * Is it even present? 850 */ 851 if (!netif_device_present(dev)) 852 return -ENODEV; 853 854 /* 855 * Call device private open method 856 */ 857 set_bit(__LINK_STATE_START, &dev->state); 858 if (dev->open) { 859 ret = dev->open(dev); 860 if (ret) 861 clear_bit(__LINK_STATE_START, &dev->state); 862 } 863 864 /* 865 * If it went open OK then: 866 */ 867 868 if (!ret) { 869 /* 870 * Set the flags. 871 */ 872 dev->flags |= IFF_UP; 873 874 /* 875 * Initialize multicasting status 876 */ 877 dev_mc_upload(dev); 878 879 /* 880 * Wakeup transmit queue engine 881 */ 882 dev_activate(dev); 883 884 /* 885 * ... and announce new interface. 886 */ 887 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 888 } 889 return ret; 890} 891 892/** 893 * dev_close - shutdown an interface. 894 * @dev: device to shutdown 895 * 896 * This function moves an active device into down state. A 897 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 898 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 899 * chain. 900 */ 901int dev_close(struct net_device *dev) 902{ 903 if (!(dev->flags & IFF_UP)) 904 return 0; 905 906 /* 907 * Tell people we are going down, so that they can 908 * prepare to death, when device is still operating. 909 */ 910 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 911 912 dev_deactivate(dev); 913 914 clear_bit(__LINK_STATE_START, &dev->state); 915 916 /* Synchronize to scheduled poll. We cannot touch poll list, 917 * it can be even on different cpu. So just clear netif_running(), 918 * and wait when poll really will happen. Actually, the best place 919 * for this is inside dev->stop() after device stopped its irq 920 * engine, but this requires more changes in devices. */ 921 922 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 923 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 924 /* No hurry. */ 925 msleep(1); 926 } 927 928 /* 929 * Call the device specific close. This cannot fail. 930 * Only if device is UP 931 * 932 * We allow it to be called even after a DETACH hot-plug 933 * event. 934 */ 935 if (dev->stop) 936 dev->stop(dev); 937 938 /* 939 * Device is now down. 940 */ 941 942 dev->flags &= ~IFF_UP; 943 944 /* 945 * Tell people we are down 946 */ 947 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 948 949 return 0; 950} 951 952 953/* 954 * Device change register/unregister. These are not inline or static 955 * as we export them to the world. 956 */ 957 958/** 959 * register_netdevice_notifier - register a network notifier block 960 * @nb: notifier 961 * 962 * Register a notifier to be called when network device events occur. 963 * The notifier passed is linked into the kernel structures and must 964 * not be reused until it has been unregistered. A negative errno code 965 * is returned on a failure. 966 * 967 * When registered all registration and up events are replayed 968 * to the new notifier to allow device to have a race free 969 * view of the network device list. 970 */ 971 972int register_netdevice_notifier(struct notifier_block *nb) 973{ 974 struct net_device *dev; 975 int err; 976 977 rtnl_lock(); 978 err = raw_notifier_chain_register(&netdev_chain, nb); 979 if (!err) { 980 for (dev = dev_base; dev; dev = dev->next) { 981 nb->notifier_call(nb, NETDEV_REGISTER, dev); 982 983 if (dev->flags & IFF_UP) 984 nb->notifier_call(nb, NETDEV_UP, dev); 985 } 986 } 987 rtnl_unlock(); 988 return err; 989} 990 991/** 992 * unregister_netdevice_notifier - unregister a network notifier block 993 * @nb: notifier 994 * 995 * Unregister a notifier previously registered by 996 * register_netdevice_notifier(). The notifier is unlinked into the 997 * kernel structures and may then be reused. A negative errno code 998 * is returned on a failure. 999 */ 1000 1001int unregister_netdevice_notifier(struct notifier_block *nb) 1002{ 1003 int err; 1004 1005 rtnl_lock(); 1006 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1007 rtnl_unlock(); 1008 return err; 1009} 1010 1011/** 1012 * call_netdevice_notifiers - call all network notifier blocks 1013 * @val: value passed unmodified to notifier function 1014 * @v: pointer passed unmodified to notifier function 1015 * 1016 * Call all network notifier blocks. Parameters and return value 1017 * are as for raw_notifier_call_chain(). 1018 */ 1019 1020int call_netdevice_notifiers(unsigned long val, void *v) 1021{ 1022 return raw_notifier_call_chain(&netdev_chain, val, v); 1023} 1024 1025/* When > 0 there are consumers of rx skb time stamps */ 1026static atomic_t netstamp_needed = ATOMIC_INIT(0); 1027 1028void net_enable_timestamp(void) 1029{ 1030 atomic_inc(&netstamp_needed); 1031} 1032 1033void net_disable_timestamp(void) 1034{ 1035 atomic_dec(&netstamp_needed); 1036} 1037 1038void __net_timestamp(struct sk_buff *skb) 1039{ 1040 struct timeval tv; 1041 1042 do_gettimeofday(&tv); 1043 skb_set_timestamp(skb, &tv); 1044} 1045EXPORT_SYMBOL(__net_timestamp); 1046 1047static inline void net_timestamp(struct sk_buff *skb) 1048{ 1049 if (atomic_read(&netstamp_needed)) 1050 __net_timestamp(skb); 1051 else { 1052 skb->tstamp.off_sec = 0; 1053 skb->tstamp.off_usec = 0; 1054 } 1055} 1056 1057/* 1058 * Support routine. Sends outgoing frames to any network 1059 * taps currently in use. 1060 */ 1061 1062static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1063{ 1064 struct packet_type *ptype; 1065 1066 net_timestamp(skb); 1067 1068 rcu_read_lock(); 1069 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1070 /* Never send packets back to the socket 1071 * they originated from - MvS (miquels@drinkel.ow.org) 1072 */ 1073 if ((ptype->dev == dev || !ptype->dev) && 1074 (ptype->af_packet_priv == NULL || 1075 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1076 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1077 if (!skb2) 1078 break; 1079 1080 /* skb->nh should be correctly 1081 set by sender, so that the second statement is 1082 just protection against buggy protocols. 1083 */ 1084 skb2->mac.raw = skb2->data; 1085 1086 if (skb2->nh.raw < skb2->data || 1087 skb2->nh.raw > skb2->tail) { 1088 if (net_ratelimit()) 1089 printk(KERN_CRIT "protocol %04x is " 1090 "buggy, dev %s\n", 1091 skb2->protocol, dev->name); 1092 skb2->nh.raw = skb2->data; 1093 } 1094 1095 skb2->h.raw = skb2->nh.raw; 1096 skb2->pkt_type = PACKET_OUTGOING; 1097 ptype->func(skb2, skb->dev, ptype, skb->dev); 1098 } 1099 } 1100 rcu_read_unlock(); 1101} 1102 1103 1104void __netif_schedule(struct net_device *dev) 1105{ 1106 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1107 unsigned long flags; 1108 struct softnet_data *sd; 1109 1110 local_irq_save(flags); 1111 sd = &__get_cpu_var(softnet_data); 1112 dev->next_sched = sd->output_queue; 1113 sd->output_queue = dev; 1114 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1115 local_irq_restore(flags); 1116 } 1117} 1118EXPORT_SYMBOL(__netif_schedule); 1119 1120void __netif_rx_schedule(struct net_device *dev) 1121{ 1122 unsigned long flags; 1123 1124 local_irq_save(flags); 1125 dev_hold(dev); 1126 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1127 if (dev->quota < 0) 1128 dev->quota += dev->weight; 1129 else 1130 dev->quota = dev->weight; 1131 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1132 local_irq_restore(flags); 1133} 1134EXPORT_SYMBOL(__netif_rx_schedule); 1135 1136void dev_kfree_skb_any(struct sk_buff *skb) 1137{ 1138 if (in_irq() || irqs_disabled()) 1139 dev_kfree_skb_irq(skb); 1140 else 1141 dev_kfree_skb(skb); 1142} 1143EXPORT_SYMBOL(dev_kfree_skb_any); 1144 1145 1146/* Hot-plugging. */ 1147void netif_device_detach(struct net_device *dev) 1148{ 1149 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1150 netif_running(dev)) { 1151 netif_stop_queue(dev); 1152 } 1153} 1154EXPORT_SYMBOL(netif_device_detach); 1155 1156void netif_device_attach(struct net_device *dev) 1157{ 1158 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1159 netif_running(dev)) { 1160 netif_wake_queue(dev); 1161 __netdev_watchdog_up(dev); 1162 } 1163} 1164EXPORT_SYMBOL(netif_device_attach); 1165 1166 1167/* 1168 * Invalidate hardware checksum when packet is to be mangled, and 1169 * complete checksum manually on outgoing path. 1170 */ 1171int skb_checksum_help(struct sk_buff *skb) 1172{ 1173 unsigned int csum; 1174 int ret = 0, offset = skb->h.raw - skb->data; 1175 1176 if (skb->ip_summed == CHECKSUM_COMPLETE) 1177 goto out_set_summed; 1178 1179 if (unlikely(skb_shinfo(skb)->gso_size)) { 1180 /* Let GSO fix up the checksum. */ 1181 goto out_set_summed; 1182 } 1183 1184 if (skb_cloned(skb)) { 1185 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1186 if (ret) 1187 goto out; 1188 } 1189 1190 BUG_ON(offset > (int)skb->len); 1191 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1192 1193 offset = skb->tail - skb->h.raw; 1194 BUG_ON(offset <= 0); 1195 BUG_ON(skb->csum + 2 > offset); 1196 1197 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1198 1199out_set_summed: 1200 skb->ip_summed = CHECKSUM_NONE; 1201out: 1202 return ret; 1203} 1204 1205/** 1206 * skb_gso_segment - Perform segmentation on skb. 1207 * @skb: buffer to segment 1208 * @features: features for the output path (see dev->features) 1209 * 1210 * This function segments the given skb and returns a list of segments. 1211 * 1212 * It may return NULL if the skb requires no segmentation. This is 1213 * only possible when GSO is used for verifying header integrity. 1214 */ 1215struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1216{ 1217 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1218 struct packet_type *ptype; 1219 int type = skb->protocol; 1220 int err; 1221 1222 BUG_ON(skb_shinfo(skb)->frag_list); 1223 1224 skb->mac.raw = skb->data; 1225 skb->mac_len = skb->nh.raw - skb->data; 1226 __skb_pull(skb, skb->mac_len); 1227 1228 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1229 if (skb_header_cloned(skb) && 1230 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1231 return ERR_PTR(err); 1232 } 1233 1234 rcu_read_lock(); 1235 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1236 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1237 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1238 err = ptype->gso_send_check(skb); 1239 segs = ERR_PTR(err); 1240 if (err || skb_gso_ok(skb, features)) 1241 break; 1242 __skb_push(skb, skb->data - skb->nh.raw); 1243 } 1244 segs = ptype->gso_segment(skb, features); 1245 break; 1246 } 1247 } 1248 rcu_read_unlock(); 1249 1250 __skb_push(skb, skb->data - skb->mac.raw); 1251 1252 return segs; 1253} 1254 1255EXPORT_SYMBOL(skb_gso_segment); 1256 1257/* Take action when hardware reception checksum errors are detected. */ 1258#ifdef CONFIG_BUG 1259void netdev_rx_csum_fault(struct net_device *dev) 1260{ 1261 if (net_ratelimit()) { 1262 printk(KERN_ERR "%s: hw csum failure.\n", 1263 dev ? dev->name : "<unknown>"); 1264 dump_stack(); 1265 } 1266} 1267EXPORT_SYMBOL(netdev_rx_csum_fault); 1268#endif 1269 1270/* Actually, we should eliminate this check as soon as we know, that: 1271 * 1. IOMMU is present and allows to map all the memory. 1272 * 2. No high memory really exists on this machine. 1273 */ 1274 1275static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1276{ 1277#ifdef CONFIG_HIGHMEM 1278 int i; 1279 1280 if (dev->features & NETIF_F_HIGHDMA) 1281 return 0; 1282 1283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1284 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1285 return 1; 1286 1287#endif 1288 return 0; 1289} 1290 1291struct dev_gso_cb { 1292 void (*destructor)(struct sk_buff *skb); 1293}; 1294 1295#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1296 1297static void dev_gso_skb_destructor(struct sk_buff *skb) 1298{ 1299 struct dev_gso_cb *cb; 1300 1301 do { 1302 struct sk_buff *nskb = skb->next; 1303 1304 skb->next = nskb->next; 1305 nskb->next = NULL; 1306 kfree_skb(nskb); 1307 } while (skb->next); 1308 1309 cb = DEV_GSO_CB(skb); 1310 if (cb->destructor) 1311 cb->destructor(skb); 1312} 1313 1314/** 1315 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1316 * @skb: buffer to segment 1317 * 1318 * This function segments the given skb and stores the list of segments 1319 * in skb->next. 1320 */ 1321static int dev_gso_segment(struct sk_buff *skb) 1322{ 1323 struct net_device *dev = skb->dev; 1324 struct sk_buff *segs; 1325 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1326 NETIF_F_SG : 0); 1327 1328 segs = skb_gso_segment(skb, features); 1329 1330 /* Verifying header integrity only. */ 1331 if (!segs) 1332 return 0; 1333 1334 if (unlikely(IS_ERR(segs))) 1335 return PTR_ERR(segs); 1336 1337 skb->next = segs; 1338 DEV_GSO_CB(skb)->destructor = skb->destructor; 1339 skb->destructor = dev_gso_skb_destructor; 1340 1341 return 0; 1342} 1343 1344int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1345{ 1346 if (likely(!skb->next)) { 1347 if (netdev_nit) 1348 dev_queue_xmit_nit(skb, dev); 1349 1350 if (netif_needs_gso(dev, skb)) { 1351 if (unlikely(dev_gso_segment(skb))) 1352 goto out_kfree_skb; 1353 if (skb->next) 1354 goto gso; 1355 } 1356 1357 return dev->hard_start_xmit(skb, dev); 1358 } 1359 1360gso: 1361 do { 1362 struct sk_buff *nskb = skb->next; 1363 int rc; 1364 1365 skb->next = nskb->next; 1366 nskb->next = NULL; 1367 rc = dev->hard_start_xmit(nskb, dev); 1368 if (unlikely(rc)) { 1369 nskb->next = skb->next; 1370 skb->next = nskb; 1371 return rc; 1372 } 1373 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1374 return NETDEV_TX_BUSY; 1375 } while (skb->next); 1376 1377 skb->destructor = DEV_GSO_CB(skb)->destructor; 1378 1379out_kfree_skb: 1380 kfree_skb(skb); 1381 return 0; 1382} 1383 1384#define HARD_TX_LOCK(dev, cpu) { \ 1385 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1386 netif_tx_lock(dev); \ 1387 } \ 1388} 1389 1390#define HARD_TX_UNLOCK(dev) { \ 1391 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1392 netif_tx_unlock(dev); \ 1393 } \ 1394} 1395 1396/** 1397 * dev_queue_xmit - transmit a buffer 1398 * @skb: buffer to transmit 1399 * 1400 * Queue a buffer for transmission to a network device. The caller must 1401 * have set the device and priority and built the buffer before calling 1402 * this function. The function can be called from an interrupt. 1403 * 1404 * A negative errno code is returned on a failure. A success does not 1405 * guarantee the frame will be transmitted as it may be dropped due 1406 * to congestion or traffic shaping. 1407 * 1408 * ----------------------------------------------------------------------------------- 1409 * I notice this method can also return errors from the queue disciplines, 1410 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1411 * be positive. 1412 * 1413 * Regardless of the return value, the skb is consumed, so it is currently 1414 * difficult to retry a send to this method. (You can bump the ref count 1415 * before sending to hold a reference for retry if you are careful.) 1416 * 1417 * When calling this method, interrupts MUST be enabled. This is because 1418 * the BH enable code must have IRQs enabled so that it will not deadlock. 1419 * --BLG 1420 */ 1421 1422int dev_queue_xmit(struct sk_buff *skb) 1423{ 1424 struct net_device *dev = skb->dev; 1425 struct Qdisc *q; 1426 int rc = -ENOMEM; 1427 1428 /* GSO will handle the following emulations directly. */ 1429 if (netif_needs_gso(dev, skb)) 1430 goto gso; 1431 1432 if (skb_shinfo(skb)->frag_list && 1433 !(dev->features & NETIF_F_FRAGLIST) && 1434 __skb_linearize(skb)) 1435 goto out_kfree_skb; 1436 1437 /* Fragmented skb is linearized if device does not support SG, 1438 * or if at least one of fragments is in highmem and device 1439 * does not support DMA from it. 1440 */ 1441 if (skb_shinfo(skb)->nr_frags && 1442 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1443 __skb_linearize(skb)) 1444 goto out_kfree_skb; 1445 1446 /* If packet is not checksummed and device does not support 1447 * checksumming for this protocol, complete checksumming here. 1448 */ 1449 if (skb->ip_summed == CHECKSUM_PARTIAL && 1450 (!(dev->features & NETIF_F_GEN_CSUM) && 1451 (!(dev->features & NETIF_F_IP_CSUM) || 1452 skb->protocol != htons(ETH_P_IP)))) 1453 if (skb_checksum_help(skb)) 1454 goto out_kfree_skb; 1455 1456gso: 1457 spin_lock_prefetch(&dev->queue_lock); 1458 1459 /* Disable soft irqs for various locks below. Also 1460 * stops preemption for RCU. 1461 */ 1462 rcu_read_lock_bh(); 1463 1464 /* Updates of qdisc are serialized by queue_lock. 1465 * The struct Qdisc which is pointed to by qdisc is now a 1466 * rcu structure - it may be accessed without acquiring 1467 * a lock (but the structure may be stale.) The freeing of the 1468 * qdisc will be deferred until it's known that there are no 1469 * more references to it. 1470 * 1471 * If the qdisc has an enqueue function, we still need to 1472 * hold the queue_lock before calling it, since queue_lock 1473 * also serializes access to the device queue. 1474 */ 1475 1476 q = rcu_dereference(dev->qdisc); 1477#ifdef CONFIG_NET_CLS_ACT 1478 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1479#endif 1480 if (q->enqueue) { 1481 /* Grab device queue */ 1482 spin_lock(&dev->queue_lock); 1483 q = dev->qdisc; 1484 if (q->enqueue) { 1485 rc = q->enqueue(skb, q); 1486 qdisc_run(dev); 1487 spin_unlock(&dev->queue_lock); 1488 1489 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1490 goto out; 1491 } 1492 spin_unlock(&dev->queue_lock); 1493 } 1494 1495 /* The device has no queue. Common case for software devices: 1496 loopback, all the sorts of tunnels... 1497 1498 Really, it is unlikely that netif_tx_lock protection is necessary 1499 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1500 counters.) 1501 However, it is possible, that they rely on protection 1502 made by us here. 1503 1504 Check this and shot the lock. It is not prone from deadlocks. 1505 Either shot noqueue qdisc, it is even simpler 8) 1506 */ 1507 if (dev->flags & IFF_UP) { 1508 int cpu = smp_processor_id(); /* ok because BHs are off */ 1509 1510 if (dev->xmit_lock_owner != cpu) { 1511 1512 HARD_TX_LOCK(dev, cpu); 1513 1514 if (!netif_queue_stopped(dev)) { 1515 rc = 0; 1516 if (!dev_hard_start_xmit(skb, dev)) { 1517 HARD_TX_UNLOCK(dev); 1518 goto out; 1519 } 1520 } 1521 HARD_TX_UNLOCK(dev); 1522 if (net_ratelimit()) 1523 printk(KERN_CRIT "Virtual device %s asks to " 1524 "queue packet!\n", dev->name); 1525 } else { 1526 /* Recursion is detected! It is possible, 1527 * unfortunately */ 1528 if (net_ratelimit()) 1529 printk(KERN_CRIT "Dead loop on virtual device " 1530 "%s, fix it urgently!\n", dev->name); 1531 } 1532 } 1533 1534 rc = -ENETDOWN; 1535 rcu_read_unlock_bh(); 1536 1537out_kfree_skb: 1538 kfree_skb(skb); 1539 return rc; 1540out: 1541 rcu_read_unlock_bh(); 1542 return rc; 1543} 1544 1545 1546/*======================================================================= 1547 Receiver routines 1548 =======================================================================*/ 1549 1550int netdev_max_backlog = 1000; 1551int netdev_budget = 300; 1552int weight_p = 64; /* old backlog weight */ 1553 1554DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1555 1556 1557/** 1558 * netif_rx - post buffer to the network code 1559 * @skb: buffer to post 1560 * 1561 * This function receives a packet from a device driver and queues it for 1562 * the upper (protocol) levels to process. It always succeeds. The buffer 1563 * may be dropped during processing for congestion control or by the 1564 * protocol layers. 1565 * 1566 * return values: 1567 * NET_RX_SUCCESS (no congestion) 1568 * NET_RX_CN_LOW (low congestion) 1569 * NET_RX_CN_MOD (moderate congestion) 1570 * NET_RX_CN_HIGH (high congestion) 1571 * NET_RX_DROP (packet was dropped) 1572 * 1573 */ 1574 1575int netif_rx(struct sk_buff *skb) 1576{ 1577 struct softnet_data *queue; 1578 unsigned long flags; 1579 1580 /* if netpoll wants it, pretend we never saw it */ 1581 if (netpoll_rx(skb)) 1582 return NET_RX_DROP; 1583 1584 if (!skb->tstamp.off_sec) 1585 net_timestamp(skb); 1586 1587 /* 1588 * The code is rearranged so that the path is the most 1589 * short when CPU is congested, but is still operating. 1590 */ 1591 local_irq_save(flags); 1592 queue = &__get_cpu_var(softnet_data); 1593 1594 __get_cpu_var(netdev_rx_stat).total++; 1595 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1596 if (queue->input_pkt_queue.qlen) { 1597enqueue: 1598 dev_hold(skb->dev); 1599 __skb_queue_tail(&queue->input_pkt_queue, skb); 1600 local_irq_restore(flags); 1601 return NET_RX_SUCCESS; 1602 } 1603 1604 netif_rx_schedule(&queue->backlog_dev); 1605 goto enqueue; 1606 } 1607 1608 __get_cpu_var(netdev_rx_stat).dropped++; 1609 local_irq_restore(flags); 1610 1611 kfree_skb(skb); 1612 return NET_RX_DROP; 1613} 1614 1615int netif_rx_ni(struct sk_buff *skb) 1616{ 1617 int err; 1618 1619 preempt_disable(); 1620 err = netif_rx(skb); 1621 if (local_softirq_pending()) 1622 do_softirq(); 1623 preempt_enable(); 1624 1625 return err; 1626} 1627 1628EXPORT_SYMBOL(netif_rx_ni); 1629 1630static inline struct net_device *skb_bond(struct sk_buff *skb) 1631{ 1632 struct net_device *dev = skb->dev; 1633 1634 if (dev->master) { 1635 if (skb_bond_should_drop(skb)) { 1636 kfree_skb(skb); 1637 return NULL; 1638 } 1639 skb->dev = dev->master; 1640 } 1641 1642 return dev; 1643} 1644 1645static void net_tx_action(struct softirq_action *h) 1646{ 1647 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1648 1649 if (sd->completion_queue) { 1650 struct sk_buff *clist; 1651 1652 local_irq_disable(); 1653 clist = sd->completion_queue; 1654 sd->completion_queue = NULL; 1655 local_irq_enable(); 1656 1657 while (clist) { 1658 struct sk_buff *skb = clist; 1659 clist = clist->next; 1660 1661 BUG_TRAP(!atomic_read(&skb->users)); 1662 __kfree_skb(skb); 1663 } 1664 } 1665 1666 if (sd->output_queue) { 1667 struct net_device *head; 1668 1669 local_irq_disable(); 1670 head = sd->output_queue; 1671 sd->output_queue = NULL; 1672 local_irq_enable(); 1673 1674 while (head) { 1675 struct net_device *dev = head; 1676 head = head->next_sched; 1677 1678 smp_mb__before_clear_bit(); 1679 clear_bit(__LINK_STATE_SCHED, &dev->state); 1680 1681 if (spin_trylock(&dev->queue_lock)) { 1682 qdisc_run(dev); 1683 spin_unlock(&dev->queue_lock); 1684 } else { 1685 netif_schedule(dev); 1686 } 1687 } 1688 } 1689} 1690 1691static __inline__ int deliver_skb(struct sk_buff *skb, 1692 struct packet_type *pt_prev, 1693 struct net_device *orig_dev) 1694{ 1695 atomic_inc(&skb->users); 1696 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1697} 1698 1699#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1700int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1701struct net_bridge; 1702struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1703 unsigned char *addr); 1704void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1705 1706static __inline__ int handle_bridge(struct sk_buff **pskb, 1707 struct packet_type **pt_prev, int *ret, 1708 struct net_device *orig_dev) 1709{ 1710 struct net_bridge_port *port; 1711 1712 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1713 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1714 return 0; 1715 1716 if (*pt_prev) { 1717 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1718 *pt_prev = NULL; 1719 } 1720 1721 return br_handle_frame_hook(port, pskb); 1722} 1723#else 1724#define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1725#endif 1726 1727#ifdef CONFIG_NET_CLS_ACT 1728/* TODO: Maybe we should just force sch_ingress to be compiled in 1729 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1730 * a compare and 2 stores extra right now if we dont have it on 1731 * but have CONFIG_NET_CLS_ACT 1732 * NOTE: This doesnt stop any functionality; if you dont have 1733 * the ingress scheduler, you just cant add policies on ingress. 1734 * 1735 */ 1736static int ing_filter(struct sk_buff *skb) 1737{ 1738 struct Qdisc *q; 1739 struct net_device *dev = skb->dev; 1740 int result = TC_ACT_OK; 1741 1742 if (dev->qdisc_ingress) { 1743 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1744 if (MAX_RED_LOOP < ttl++) { 1745 printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n", 1746 skb->input_dev->name, skb->dev->name); 1747 return TC_ACT_SHOT; 1748 } 1749 1750 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1751 1752 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1753 1754 spin_lock(&dev->ingress_lock); 1755 if ((q = dev->qdisc_ingress) != NULL) 1756 result = q->enqueue(skb, q); 1757 spin_unlock(&dev->ingress_lock); 1758 1759 } 1760 1761 return result; 1762} 1763#endif 1764 1765int netif_receive_skb(struct sk_buff *skb) 1766{ 1767 struct packet_type *ptype, *pt_prev; 1768 struct net_device *orig_dev; 1769 int ret = NET_RX_DROP; 1770 unsigned short type; 1771 1772 /* if we've gotten here through NAPI, check netpoll */ 1773 if (skb->dev->poll && netpoll_rx(skb)) 1774 return NET_RX_DROP; 1775 1776 if (!skb->tstamp.off_sec) 1777 net_timestamp(skb); 1778 1779 if (!skb->input_dev) 1780 skb->input_dev = skb->dev; 1781 1782 orig_dev = skb_bond(skb); 1783 1784 if (!orig_dev) 1785 return NET_RX_DROP; 1786 1787 __get_cpu_var(netdev_rx_stat).total++; 1788 1789 skb->h.raw = skb->nh.raw = skb->data; 1790 skb->mac_len = skb->nh.raw - skb->mac.raw; 1791 1792 pt_prev = NULL; 1793 1794 rcu_read_lock(); 1795 1796#ifdef CONFIG_NET_CLS_ACT 1797 if (skb->tc_verd & TC_NCLS) { 1798 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1799 goto ncls; 1800 } 1801#endif 1802 1803 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1804 if (!ptype->dev || ptype->dev == skb->dev) { 1805 if (pt_prev) 1806 ret = deliver_skb(skb, pt_prev, orig_dev); 1807 pt_prev = ptype; 1808 } 1809 } 1810 1811#ifdef CONFIG_NET_CLS_ACT 1812 if (pt_prev) { 1813 ret = deliver_skb(skb, pt_prev, orig_dev); 1814 pt_prev = NULL; /* noone else should process this after*/ 1815 } else { 1816 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1817 } 1818 1819 ret = ing_filter(skb); 1820 1821 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1822 kfree_skb(skb); 1823 goto out; 1824 } 1825 1826 skb->tc_verd = 0; 1827ncls: 1828#endif 1829 1830 handle_diverter(skb); 1831 1832 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1833 goto out; 1834 1835 type = skb->protocol; 1836 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1837 if (ptype->type == type && 1838 (!ptype->dev || ptype->dev == skb->dev)) { 1839 if (pt_prev) 1840 ret = deliver_skb(skb, pt_prev, orig_dev); 1841 pt_prev = ptype; 1842 } 1843 } 1844 1845 if (pt_prev) { 1846 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1847 } else { 1848 kfree_skb(skb); 1849 /* Jamal, now you will not able to escape explaining 1850 * me how you were going to use this. :-) 1851 */ 1852 ret = NET_RX_DROP; 1853 } 1854 1855out: 1856 rcu_read_unlock(); 1857 return ret; 1858} 1859 1860static int process_backlog(struct net_device *backlog_dev, int *budget) 1861{ 1862 int work = 0; 1863 int quota = min(backlog_dev->quota, *budget); 1864 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1865 unsigned long start_time = jiffies; 1866 1867 backlog_dev->weight = weight_p; 1868 for (;;) { 1869 struct sk_buff *skb; 1870 struct net_device *dev; 1871 1872 local_irq_disable(); 1873 skb = __skb_dequeue(&queue->input_pkt_queue); 1874 if (!skb) 1875 goto job_done; 1876 local_irq_enable(); 1877 1878 dev = skb->dev; 1879 1880 netif_receive_skb(skb); 1881 1882 dev_put(dev); 1883 1884 work++; 1885 1886 if (work >= quota || jiffies - start_time > 1) 1887 break; 1888 1889 } 1890 1891 backlog_dev->quota -= work; 1892 *budget -= work; 1893 return -1; 1894 1895job_done: 1896 backlog_dev->quota -= work; 1897 *budget -= work; 1898 1899 list_del(&backlog_dev->poll_list); 1900 smp_mb__before_clear_bit(); 1901 netif_poll_enable(backlog_dev); 1902 1903 local_irq_enable(); 1904 return 0; 1905} 1906 1907static void net_rx_action(struct softirq_action *h) 1908{ 1909 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1910 unsigned long start_time = jiffies; 1911 int budget = netdev_budget; 1912 void *have; 1913 1914 local_irq_disable(); 1915 1916 while (!list_empty(&queue->poll_list)) { 1917 struct net_device *dev; 1918 1919 if (budget <= 0 || jiffies - start_time > 1) 1920 goto softnet_break; 1921 1922 local_irq_enable(); 1923 1924 dev = list_entry(queue->poll_list.next, 1925 struct net_device, poll_list); 1926 have = netpoll_poll_lock(dev); 1927 1928 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1929 netpoll_poll_unlock(have); 1930 local_irq_disable(); 1931 list_move_tail(&dev->poll_list, &queue->poll_list); 1932 if (dev->quota < 0) 1933 dev->quota += dev->weight; 1934 else 1935 dev->quota = dev->weight; 1936 } else { 1937 netpoll_poll_unlock(have); 1938 dev_put(dev); 1939 local_irq_disable(); 1940 } 1941 } 1942out: 1943#ifdef CONFIG_NET_DMA 1944 /* 1945 * There may not be any more sk_buffs coming right now, so push 1946 * any pending DMA copies to hardware 1947 */ 1948 if (net_dma_client) { 1949 struct dma_chan *chan; 1950 rcu_read_lock(); 1951 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1952 dma_async_memcpy_issue_pending(chan); 1953 rcu_read_unlock(); 1954 } 1955#endif 1956 local_irq_enable(); 1957 return; 1958 1959softnet_break: 1960 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1961 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1962 goto out; 1963} 1964 1965static gifconf_func_t * gifconf_list [NPROTO]; 1966 1967/** 1968 * register_gifconf - register a SIOCGIF handler 1969 * @family: Address family 1970 * @gifconf: Function handler 1971 * 1972 * Register protocol dependent address dumping routines. The handler 1973 * that is passed must not be freed or reused until it has been replaced 1974 * by another handler. 1975 */ 1976int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1977{ 1978 if (family >= NPROTO) 1979 return -EINVAL; 1980 gifconf_list[family] = gifconf; 1981 return 0; 1982} 1983 1984 1985/* 1986 * Map an interface index to its name (SIOCGIFNAME) 1987 */ 1988 1989/* 1990 * We need this ioctl for efficient implementation of the 1991 * if_indextoname() function required by the IPv6 API. Without 1992 * it, we would have to search all the interfaces to find a 1993 * match. --pb 1994 */ 1995 1996static int dev_ifname(struct ifreq __user *arg) 1997{ 1998 struct net_device *dev; 1999 struct ifreq ifr; 2000 2001 /* 2002 * Fetch the caller's info block. 2003 */ 2004 2005 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2006 return -EFAULT; 2007 2008 read_lock(&dev_base_lock); 2009 dev = __dev_get_by_index(ifr.ifr_ifindex); 2010 if (!dev) { 2011 read_unlock(&dev_base_lock); 2012 return -ENODEV; 2013 } 2014 2015 strcpy(ifr.ifr_name, dev->name); 2016 read_unlock(&dev_base_lock); 2017 2018 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2019 return -EFAULT; 2020 return 0; 2021} 2022 2023/* 2024 * Perform a SIOCGIFCONF call. This structure will change 2025 * size eventually, and there is nothing I can do about it. 2026 * Thus we will need a 'compatibility mode'. 2027 */ 2028 2029static int dev_ifconf(char __user *arg) 2030{ 2031 struct ifconf ifc; 2032 struct net_device *dev; 2033 char __user *pos; 2034 int len; 2035 int total; 2036 int i; 2037 2038 /* 2039 * Fetch the caller's info block. 2040 */ 2041 2042 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2043 return -EFAULT; 2044 2045 pos = ifc.ifc_buf; 2046 len = ifc.ifc_len; 2047 2048 /* 2049 * Loop over the interfaces, and write an info block for each. 2050 */ 2051 2052 total = 0; 2053 for (dev = dev_base; dev; dev = dev->next) { 2054 for (i = 0; i < NPROTO; i++) { 2055 if (gifconf_list[i]) { 2056 int done; 2057 if (!pos) 2058 done = gifconf_list[i](dev, NULL, 0); 2059 else 2060 done = gifconf_list[i](dev, pos + total, 2061 len - total); 2062 if (done < 0) 2063 return -EFAULT; 2064 total += done; 2065 } 2066 } 2067 } 2068 2069 /* 2070 * All done. Write the updated control block back to the caller. 2071 */ 2072 ifc.ifc_len = total; 2073 2074 /* 2075 * Both BSD and Solaris return 0 here, so we do too. 2076 */ 2077 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2078} 2079 2080#ifdef CONFIG_PROC_FS 2081/* 2082 * This is invoked by the /proc filesystem handler to display a device 2083 * in detail. 2084 */ 2085static __inline__ struct net_device *dev_get_idx(loff_t pos) 2086{ 2087 struct net_device *dev; 2088 loff_t i; 2089 2090 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2091 2092 return i == pos ? dev : NULL; 2093} 2094 2095void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2096{ 2097 read_lock(&dev_base_lock); 2098 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2099} 2100 2101void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2102{ 2103 ++*pos; 2104 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2105} 2106 2107void dev_seq_stop(struct seq_file *seq, void *v) 2108{ 2109 read_unlock(&dev_base_lock); 2110} 2111 2112static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2113{ 2114 if (dev->get_stats) { 2115 struct net_device_stats *stats = dev->get_stats(dev); 2116 2117 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2118 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2119 dev->name, stats->rx_bytes, stats->rx_packets, 2120 stats->rx_errors, 2121 stats->rx_dropped + stats->rx_missed_errors, 2122 stats->rx_fifo_errors, 2123 stats->rx_length_errors + stats->rx_over_errors + 2124 stats->rx_crc_errors + stats->rx_frame_errors, 2125 stats->rx_compressed, stats->multicast, 2126 stats->tx_bytes, stats->tx_packets, 2127 stats->tx_errors, stats->tx_dropped, 2128 stats->tx_fifo_errors, stats->collisions, 2129 stats->tx_carrier_errors + 2130 stats->tx_aborted_errors + 2131 stats->tx_window_errors + 2132 stats->tx_heartbeat_errors, 2133 stats->tx_compressed); 2134 } else 2135 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2136} 2137 2138/* 2139 * Called from the PROCfs module. This now uses the new arbitrary sized 2140 * /proc/net interface to create /proc/net/dev 2141 */ 2142static int dev_seq_show(struct seq_file *seq, void *v) 2143{ 2144 if (v == SEQ_START_TOKEN) 2145 seq_puts(seq, "Inter-| Receive " 2146 " | Transmit\n" 2147 " face |bytes packets errs drop fifo frame " 2148 "compressed multicast|bytes packets errs " 2149 "drop fifo colls carrier compressed\n"); 2150 else 2151 dev_seq_printf_stats(seq, v); 2152 return 0; 2153} 2154 2155static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2156{ 2157 struct netif_rx_stats *rc = NULL; 2158 2159 while (*pos < NR_CPUS) 2160 if (cpu_online(*pos)) { 2161 rc = &per_cpu(netdev_rx_stat, *pos); 2162 break; 2163 } else 2164 ++*pos; 2165 return rc; 2166} 2167 2168static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2169{ 2170 return softnet_get_online(pos); 2171} 2172 2173static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2174{ 2175 ++*pos; 2176 return softnet_get_online(pos); 2177} 2178 2179static void softnet_seq_stop(struct seq_file *seq, void *v) 2180{ 2181} 2182 2183static int softnet_seq_show(struct seq_file *seq, void *v) 2184{ 2185 struct netif_rx_stats *s = v; 2186 2187 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2188 s->total, s->dropped, s->time_squeeze, 0, 2189 0, 0, 0, 0, /* was fastroute */ 2190 s->cpu_collision ); 2191 return 0; 2192} 2193 2194static struct seq_operations dev_seq_ops = { 2195 .start = dev_seq_start, 2196 .next = dev_seq_next, 2197 .stop = dev_seq_stop, 2198 .show = dev_seq_show, 2199}; 2200 2201static int dev_seq_open(struct inode *inode, struct file *file) 2202{ 2203 return seq_open(file, &dev_seq_ops); 2204} 2205 2206static struct file_operations dev_seq_fops = { 2207 .owner = THIS_MODULE, 2208 .open = dev_seq_open, 2209 .read = seq_read, 2210 .llseek = seq_lseek, 2211 .release = seq_release, 2212}; 2213 2214static struct seq_operations softnet_seq_ops = { 2215 .start = softnet_seq_start, 2216 .next = softnet_seq_next, 2217 .stop = softnet_seq_stop, 2218 .show = softnet_seq_show, 2219}; 2220 2221static int softnet_seq_open(struct inode *inode, struct file *file) 2222{ 2223 return seq_open(file, &softnet_seq_ops); 2224} 2225 2226static struct file_operations softnet_seq_fops = { 2227 .owner = THIS_MODULE, 2228 .open = softnet_seq_open, 2229 .read = seq_read, 2230 .llseek = seq_lseek, 2231 .release = seq_release, 2232}; 2233 2234#ifdef CONFIG_WIRELESS_EXT 2235extern int wireless_proc_init(void); 2236#else 2237#define wireless_proc_init() 0 2238#endif 2239 2240static int __init dev_proc_init(void) 2241{ 2242 int rc = -ENOMEM; 2243 2244 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2245 goto out; 2246 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2247 goto out_dev; 2248 if (wireless_proc_init()) 2249 goto out_softnet; 2250 rc = 0; 2251out: 2252 return rc; 2253out_softnet: 2254 proc_net_remove("softnet_stat"); 2255out_dev: 2256 proc_net_remove("dev"); 2257 goto out; 2258} 2259#else 2260#define dev_proc_init() 0 2261#endif /* CONFIG_PROC_FS */ 2262 2263 2264/** 2265 * netdev_set_master - set up master/slave pair 2266 * @slave: slave device 2267 * @master: new master device 2268 * 2269 * Changes the master device of the slave. Pass %NULL to break the 2270 * bonding. The caller must hold the RTNL semaphore. On a failure 2271 * a negative errno code is returned. On success the reference counts 2272 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2273 * function returns zero. 2274 */ 2275int netdev_set_master(struct net_device *slave, struct net_device *master) 2276{ 2277 struct net_device *old = slave->master; 2278 2279 ASSERT_RTNL(); 2280 2281 if (master) { 2282 if (old) 2283 return -EBUSY; 2284 dev_hold(master); 2285 } 2286 2287 slave->master = master; 2288 2289 synchronize_net(); 2290 2291 if (old) 2292 dev_put(old); 2293 2294 if (master) 2295 slave->flags |= IFF_SLAVE; 2296 else 2297 slave->flags &= ~IFF_SLAVE; 2298 2299 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2300 return 0; 2301} 2302 2303/** 2304 * dev_set_promiscuity - update promiscuity count on a device 2305 * @dev: device 2306 * @inc: modifier 2307 * 2308 * Add or remove promiscuity from a device. While the count in the device 2309 * remains above zero the interface remains promiscuous. Once it hits zero 2310 * the device reverts back to normal filtering operation. A negative inc 2311 * value is used to drop promiscuity on the device. 2312 */ 2313void dev_set_promiscuity(struct net_device *dev, int inc) 2314{ 2315 unsigned short old_flags = dev->flags; 2316 2317 if ((dev->promiscuity += inc) == 0) 2318 dev->flags &= ~IFF_PROMISC; 2319 else 2320 dev->flags |= IFF_PROMISC; 2321 if (dev->flags != old_flags) { 2322 dev_mc_upload(dev); 2323 printk(KERN_INFO "device %s %s promiscuous mode\n", 2324 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2325 "left"); 2326 audit_log(current->audit_context, GFP_ATOMIC, 2327 AUDIT_ANOM_PROMISCUOUS, 2328 "dev=%s prom=%d old_prom=%d auid=%u", 2329 dev->name, (dev->flags & IFF_PROMISC), 2330 (old_flags & IFF_PROMISC), 2331 audit_get_loginuid(current->audit_context)); 2332 } 2333} 2334 2335/** 2336 * dev_set_allmulti - update allmulti count on a device 2337 * @dev: device 2338 * @inc: modifier 2339 * 2340 * Add or remove reception of all multicast frames to a device. While the 2341 * count in the device remains above zero the interface remains listening 2342 * to all interfaces. Once it hits zero the device reverts back to normal 2343 * filtering operation. A negative @inc value is used to drop the counter 2344 * when releasing a resource needing all multicasts. 2345 */ 2346 2347void dev_set_allmulti(struct net_device *dev, int inc) 2348{ 2349 unsigned short old_flags = dev->flags; 2350 2351 dev->flags |= IFF_ALLMULTI; 2352 if ((dev->allmulti += inc) == 0) 2353 dev->flags &= ~IFF_ALLMULTI; 2354 if (dev->flags ^ old_flags) 2355 dev_mc_upload(dev); 2356} 2357 2358unsigned dev_get_flags(const struct net_device *dev) 2359{ 2360 unsigned flags; 2361 2362 flags = (dev->flags & ~(IFF_PROMISC | 2363 IFF_ALLMULTI | 2364 IFF_RUNNING | 2365 IFF_LOWER_UP | 2366 IFF_DORMANT)) | 2367 (dev->gflags & (IFF_PROMISC | 2368 IFF_ALLMULTI)); 2369 2370 if (netif_running(dev)) { 2371 if (netif_oper_up(dev)) 2372 flags |= IFF_RUNNING; 2373 if (netif_carrier_ok(dev)) 2374 flags |= IFF_LOWER_UP; 2375 if (netif_dormant(dev)) 2376 flags |= IFF_DORMANT; 2377 } 2378 2379 return flags; 2380} 2381 2382int dev_change_flags(struct net_device *dev, unsigned flags) 2383{ 2384 int ret; 2385 int old_flags = dev->flags; 2386 2387 /* 2388 * Set the flags on our device. 2389 */ 2390 2391 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2392 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2393 IFF_AUTOMEDIA)) | 2394 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2395 IFF_ALLMULTI)); 2396 2397 /* 2398 * Load in the correct multicast list now the flags have changed. 2399 */ 2400 2401 dev_mc_upload(dev); 2402 2403 /* 2404 * Have we downed the interface. We handle IFF_UP ourselves 2405 * according to user attempts to set it, rather than blindly 2406 * setting it. 2407 */ 2408 2409 ret = 0; 2410 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2411 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2412 2413 if (!ret) 2414 dev_mc_upload(dev); 2415 } 2416 2417 if (dev->flags & IFF_UP && 2418 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2419 IFF_VOLATILE))) 2420 raw_notifier_call_chain(&netdev_chain, 2421 NETDEV_CHANGE, dev); 2422 2423 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2424 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2425 dev->gflags ^= IFF_PROMISC; 2426 dev_set_promiscuity(dev, inc); 2427 } 2428 2429 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2430 is important. Some (broken) drivers set IFF_PROMISC, when 2431 IFF_ALLMULTI is requested not asking us and not reporting. 2432 */ 2433 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2434 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2435 dev->gflags ^= IFF_ALLMULTI; 2436 dev_set_allmulti(dev, inc); 2437 } 2438 2439 if (old_flags ^ dev->flags) 2440 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2441 2442 return ret; 2443} 2444 2445int dev_set_mtu(struct net_device *dev, int new_mtu) 2446{ 2447 int err; 2448 2449 if (new_mtu == dev->mtu) 2450 return 0; 2451 2452 /* MTU must be positive. */ 2453 if (new_mtu < 0) 2454 return -EINVAL; 2455 2456 if (!netif_device_present(dev)) 2457 return -ENODEV; 2458 2459 err = 0; 2460 if (dev->change_mtu) 2461 err = dev->change_mtu(dev, new_mtu); 2462 else 2463 dev->mtu = new_mtu; 2464 if (!err && dev->flags & IFF_UP) 2465 raw_notifier_call_chain(&netdev_chain, 2466 NETDEV_CHANGEMTU, dev); 2467 return err; 2468} 2469 2470int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2471{ 2472 int err; 2473 2474 if (!dev->set_mac_address) 2475 return -EOPNOTSUPP; 2476 if (sa->sa_family != dev->type) 2477 return -EINVAL; 2478 if (!netif_device_present(dev)) 2479 return -ENODEV; 2480 err = dev->set_mac_address(dev, sa); 2481 if (!err) 2482 raw_notifier_call_chain(&netdev_chain, 2483 NETDEV_CHANGEADDR, dev); 2484 return err; 2485} 2486 2487/* 2488 * Perform the SIOCxIFxxx calls. 2489 */ 2490static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2491{ 2492 int err; 2493 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2494 2495 if (!dev) 2496 return -ENODEV; 2497 2498 switch (cmd) { 2499 case SIOCGIFFLAGS: /* Get interface flags */ 2500 ifr->ifr_flags = dev_get_flags(dev); 2501 return 0; 2502 2503 case SIOCSIFFLAGS: /* Set interface flags */ 2504 return dev_change_flags(dev, ifr->ifr_flags); 2505 2506 case SIOCGIFMETRIC: /* Get the metric on the interface 2507 (currently unused) */ 2508 ifr->ifr_metric = 0; 2509 return 0; 2510 2511 case SIOCSIFMETRIC: /* Set the metric on the interface 2512 (currently unused) */ 2513 return -EOPNOTSUPP; 2514 2515 case SIOCGIFMTU: /* Get the MTU of a device */ 2516 ifr->ifr_mtu = dev->mtu; 2517 return 0; 2518 2519 case SIOCSIFMTU: /* Set the MTU of a device */ 2520 return dev_set_mtu(dev, ifr->ifr_mtu); 2521 2522 case SIOCGIFHWADDR: 2523 if (!dev->addr_len) 2524 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2525 else 2526 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2527 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2528 ifr->ifr_hwaddr.sa_family = dev->type; 2529 return 0; 2530 2531 case SIOCSIFHWADDR: 2532 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2533 2534 case SIOCSIFHWBROADCAST: 2535 if (ifr->ifr_hwaddr.sa_family != dev->type) 2536 return -EINVAL; 2537 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2538 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2539 raw_notifier_call_chain(&netdev_chain, 2540 NETDEV_CHANGEADDR, dev); 2541 return 0; 2542 2543 case SIOCGIFMAP: 2544 ifr->ifr_map.mem_start = dev->mem_start; 2545 ifr->ifr_map.mem_end = dev->mem_end; 2546 ifr->ifr_map.base_addr = dev->base_addr; 2547 ifr->ifr_map.irq = dev->irq; 2548 ifr->ifr_map.dma = dev->dma; 2549 ifr->ifr_map.port = dev->if_port; 2550 return 0; 2551 2552 case SIOCSIFMAP: 2553 if (dev->set_config) { 2554 if (!netif_device_present(dev)) 2555 return -ENODEV; 2556 return dev->set_config(dev, &ifr->ifr_map); 2557 } 2558 return -EOPNOTSUPP; 2559 2560 case SIOCADDMULTI: 2561 if (!dev->set_multicast_list || 2562 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2563 return -EINVAL; 2564 if (!netif_device_present(dev)) 2565 return -ENODEV; 2566 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2567 dev->addr_len, 1); 2568 2569 case SIOCDELMULTI: 2570 if (!dev->set_multicast_list || 2571 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2572 return -EINVAL; 2573 if (!netif_device_present(dev)) 2574 return -ENODEV; 2575 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2576 dev->addr_len, 1); 2577 2578 case SIOCGIFINDEX: 2579 ifr->ifr_ifindex = dev->ifindex; 2580 return 0; 2581 2582 case SIOCGIFTXQLEN: 2583 ifr->ifr_qlen = dev->tx_queue_len; 2584 return 0; 2585 2586 case SIOCSIFTXQLEN: 2587 if (ifr->ifr_qlen < 0) 2588 return -EINVAL; 2589 dev->tx_queue_len = ifr->ifr_qlen; 2590 return 0; 2591 2592 case SIOCSIFNAME: 2593 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2594 return dev_change_name(dev, ifr->ifr_newname); 2595 2596 /* 2597 * Unknown or private ioctl 2598 */ 2599 2600 default: 2601 if ((cmd >= SIOCDEVPRIVATE && 2602 cmd <= SIOCDEVPRIVATE + 15) || 2603 cmd == SIOCBONDENSLAVE || 2604 cmd == SIOCBONDRELEASE || 2605 cmd == SIOCBONDSETHWADDR || 2606 cmd == SIOCBONDSLAVEINFOQUERY || 2607 cmd == SIOCBONDINFOQUERY || 2608 cmd == SIOCBONDCHANGEACTIVE || 2609 cmd == SIOCGMIIPHY || 2610 cmd == SIOCGMIIREG || 2611 cmd == SIOCSMIIREG || 2612 cmd == SIOCBRADDIF || 2613 cmd == SIOCBRDELIF || 2614 cmd == SIOCWANDEV) { 2615 err = -EOPNOTSUPP; 2616 if (dev->do_ioctl) { 2617 if (netif_device_present(dev)) 2618 err = dev->do_ioctl(dev, ifr, 2619 cmd); 2620 else 2621 err = -ENODEV; 2622 } 2623 } else 2624 err = -EINVAL; 2625 2626 } 2627 return err; 2628} 2629 2630/* 2631 * This function handles all "interface"-type I/O control requests. The actual 2632 * 'doing' part of this is dev_ifsioc above. 2633 */ 2634 2635/** 2636 * dev_ioctl - network device ioctl 2637 * @cmd: command to issue 2638 * @arg: pointer to a struct ifreq in user space 2639 * 2640 * Issue ioctl functions to devices. This is normally called by the 2641 * user space syscall interfaces but can sometimes be useful for 2642 * other purposes. The return value is the return from the syscall if 2643 * positive or a negative errno code on error. 2644 */ 2645 2646int dev_ioctl(unsigned int cmd, void __user *arg) 2647{ 2648 struct ifreq ifr; 2649 int ret; 2650 char *colon; 2651 2652 /* One special case: SIOCGIFCONF takes ifconf argument 2653 and requires shared lock, because it sleeps writing 2654 to user space. 2655 */ 2656 2657 if (cmd == SIOCGIFCONF) { 2658 rtnl_lock(); 2659 ret = dev_ifconf((char __user *) arg); 2660 rtnl_unlock(); 2661 return ret; 2662 } 2663 if (cmd == SIOCGIFNAME) 2664 return dev_ifname((struct ifreq __user *)arg); 2665 2666 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2667 return -EFAULT; 2668 2669 ifr.ifr_name[IFNAMSIZ-1] = 0; 2670 2671 colon = strchr(ifr.ifr_name, ':'); 2672 if (colon) 2673 *colon = 0; 2674 2675 /* 2676 * See which interface the caller is talking about. 2677 */ 2678 2679 switch (cmd) { 2680 /* 2681 * These ioctl calls: 2682 * - can be done by all. 2683 * - atomic and do not require locking. 2684 * - return a value 2685 */ 2686 case SIOCGIFFLAGS: 2687 case SIOCGIFMETRIC: 2688 case SIOCGIFMTU: 2689 case SIOCGIFHWADDR: 2690 case SIOCGIFSLAVE: 2691 case SIOCGIFMAP: 2692 case SIOCGIFINDEX: 2693 case SIOCGIFTXQLEN: 2694 dev_load(ifr.ifr_name); 2695 read_lock(&dev_base_lock); 2696 ret = dev_ifsioc(&ifr, cmd); 2697 read_unlock(&dev_base_lock); 2698 if (!ret) { 2699 if (colon) 2700 *colon = ':'; 2701 if (copy_to_user(arg, &ifr, 2702 sizeof(struct ifreq))) 2703 ret = -EFAULT; 2704 } 2705 return ret; 2706 2707 case SIOCETHTOOL: 2708 dev_load(ifr.ifr_name); 2709 rtnl_lock(); 2710 ret = dev_ethtool(&ifr); 2711 rtnl_unlock(); 2712 if (!ret) { 2713 if (colon) 2714 *colon = ':'; 2715 if (copy_to_user(arg, &ifr, 2716 sizeof(struct ifreq))) 2717 ret = -EFAULT; 2718 } 2719 return ret; 2720 2721 /* 2722 * These ioctl calls: 2723 * - require superuser power. 2724 * - require strict serialization. 2725 * - return a value 2726 */ 2727 case SIOCGMIIPHY: 2728 case SIOCGMIIREG: 2729 case SIOCSIFNAME: 2730 if (!capable(CAP_NET_ADMIN)) 2731 return -EPERM; 2732 dev_load(ifr.ifr_name); 2733 rtnl_lock(); 2734 ret = dev_ifsioc(&ifr, cmd); 2735 rtnl_unlock(); 2736 if (!ret) { 2737 if (colon) 2738 *colon = ':'; 2739 if (copy_to_user(arg, &ifr, 2740 sizeof(struct ifreq))) 2741 ret = -EFAULT; 2742 } 2743 return ret; 2744 2745 /* 2746 * These ioctl calls: 2747 * - require superuser power. 2748 * - require strict serialization. 2749 * - do not return a value 2750 */ 2751 case SIOCSIFFLAGS: 2752 case SIOCSIFMETRIC: 2753 case SIOCSIFMTU: 2754 case SIOCSIFMAP: 2755 case SIOCSIFHWADDR: 2756 case SIOCSIFSLAVE: 2757 case SIOCADDMULTI: 2758 case SIOCDELMULTI: 2759 case SIOCSIFHWBROADCAST: 2760 case SIOCSIFTXQLEN: 2761 case SIOCSMIIREG: 2762 case SIOCBONDENSLAVE: 2763 case SIOCBONDRELEASE: 2764 case SIOCBONDSETHWADDR: 2765 case SIOCBONDCHANGEACTIVE: 2766 case SIOCBRADDIF: 2767 case SIOCBRDELIF: 2768 if (!capable(CAP_NET_ADMIN)) 2769 return -EPERM; 2770 /* fall through */ 2771 case SIOCBONDSLAVEINFOQUERY: 2772 case SIOCBONDINFOQUERY: 2773 dev_load(ifr.ifr_name); 2774 rtnl_lock(); 2775 ret = dev_ifsioc(&ifr, cmd); 2776 rtnl_unlock(); 2777 return ret; 2778 2779 case SIOCGIFMEM: 2780 /* Get the per device memory space. We can add this but 2781 * currently do not support it */ 2782 case SIOCSIFMEM: 2783 /* Set the per device memory buffer space. 2784 * Not applicable in our case */ 2785 case SIOCSIFLINK: 2786 return -EINVAL; 2787 2788 /* 2789 * Unknown or private ioctl. 2790 */ 2791 default: 2792 if (cmd == SIOCWANDEV || 2793 (cmd >= SIOCDEVPRIVATE && 2794 cmd <= SIOCDEVPRIVATE + 15)) { 2795 dev_load(ifr.ifr_name); 2796 rtnl_lock(); 2797 ret = dev_ifsioc(&ifr, cmd); 2798 rtnl_unlock(); 2799 if (!ret && copy_to_user(arg, &ifr, 2800 sizeof(struct ifreq))) 2801 ret = -EFAULT; 2802 return ret; 2803 } 2804#ifdef CONFIG_WIRELESS_EXT 2805 /* Take care of Wireless Extensions */ 2806 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2807 /* If command is `set a parameter', or 2808 * `get the encoding parameters', check if 2809 * the user has the right to do it */ 2810 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2811 || cmd == SIOCGIWENCODEEXT) { 2812 if (!capable(CAP_NET_ADMIN)) 2813 return -EPERM; 2814 } 2815 dev_load(ifr.ifr_name); 2816 rtnl_lock(); 2817 /* Follow me in net/core/wireless.c */ 2818 ret = wireless_process_ioctl(&ifr, cmd); 2819 rtnl_unlock(); 2820 if (IW_IS_GET(cmd) && 2821 copy_to_user(arg, &ifr, 2822 sizeof(struct ifreq))) 2823 ret = -EFAULT; 2824 return ret; 2825 } 2826#endif /* CONFIG_WIRELESS_EXT */ 2827 return -EINVAL; 2828 } 2829} 2830 2831 2832/** 2833 * dev_new_index - allocate an ifindex 2834 * 2835 * Returns a suitable unique value for a new device interface 2836 * number. The caller must hold the rtnl semaphore or the 2837 * dev_base_lock to be sure it remains unique. 2838 */ 2839static int dev_new_index(void) 2840{ 2841 static int ifindex; 2842 for (;;) { 2843 if (++ifindex <= 0) 2844 ifindex = 1; 2845 if (!__dev_get_by_index(ifindex)) 2846 return ifindex; 2847 } 2848} 2849 2850static int dev_boot_phase = 1; 2851 2852/* Delayed registration/unregisteration */ 2853static DEFINE_SPINLOCK(net_todo_list_lock); 2854static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2855 2856static inline void net_set_todo(struct net_device *dev) 2857{ 2858 spin_lock(&net_todo_list_lock); 2859 list_add_tail(&dev->todo_list, &net_todo_list); 2860 spin_unlock(&net_todo_list_lock); 2861} 2862 2863/** 2864 * register_netdevice - register a network device 2865 * @dev: device to register 2866 * 2867 * Take a completed network device structure and add it to the kernel 2868 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2869 * chain. 0 is returned on success. A negative errno code is returned 2870 * on a failure to set up the device, or if the name is a duplicate. 2871 * 2872 * Callers must hold the rtnl semaphore. You may want 2873 * register_netdev() instead of this. 2874 * 2875 * BUGS: 2876 * The locking appears insufficient to guarantee two parallel registers 2877 * will not get the same name. 2878 */ 2879 2880int register_netdevice(struct net_device *dev) 2881{ 2882 struct hlist_head *head; 2883 struct hlist_node *p; 2884 int ret; 2885 2886 BUG_ON(dev_boot_phase); 2887 ASSERT_RTNL(); 2888 2889 might_sleep(); 2890 2891 /* When net_device's are persistent, this will be fatal. */ 2892 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2893 2894 spin_lock_init(&dev->queue_lock); 2895 spin_lock_init(&dev->_xmit_lock); 2896 dev->xmit_lock_owner = -1; 2897#ifdef CONFIG_NET_CLS_ACT 2898 spin_lock_init(&dev->ingress_lock); 2899#endif 2900 2901 ret = alloc_divert_blk(dev); 2902 if (ret) 2903 goto out; 2904 2905 dev->iflink = -1; 2906 2907 /* Init, if this function is available */ 2908 if (dev->init) { 2909 ret = dev->init(dev); 2910 if (ret) { 2911 if (ret > 0) 2912 ret = -EIO; 2913 goto out_err; 2914 } 2915 } 2916 2917 if (!dev_valid_name(dev->name)) { 2918 ret = -EINVAL; 2919 goto out_err; 2920 } 2921 2922 dev->ifindex = dev_new_index(); 2923 if (dev->iflink == -1) 2924 dev->iflink = dev->ifindex; 2925 2926 /* Check for existence of name */ 2927 head = dev_name_hash(dev->name); 2928 hlist_for_each(p, head) { 2929 struct net_device *d 2930 = hlist_entry(p, struct net_device, name_hlist); 2931 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2932 ret = -EEXIST; 2933 goto out_err; 2934 } 2935 } 2936 2937 /* Fix illegal SG+CSUM combinations. */ 2938 if ((dev->features & NETIF_F_SG) && 2939 !(dev->features & NETIF_F_ALL_CSUM)) { 2940 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 2941 dev->name); 2942 dev->features &= ~NETIF_F_SG; 2943 } 2944 2945 /* TSO requires that SG is present as well. */ 2946 if ((dev->features & NETIF_F_TSO) && 2947 !(dev->features & NETIF_F_SG)) { 2948 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 2949 dev->name); 2950 dev->features &= ~NETIF_F_TSO; 2951 } 2952 if (dev->features & NETIF_F_UFO) { 2953 if (!(dev->features & NETIF_F_HW_CSUM)) { 2954 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2955 "NETIF_F_HW_CSUM feature.\n", 2956 dev->name); 2957 dev->features &= ~NETIF_F_UFO; 2958 } 2959 if (!(dev->features & NETIF_F_SG)) { 2960 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2961 "NETIF_F_SG feature.\n", 2962 dev->name); 2963 dev->features &= ~NETIF_F_UFO; 2964 } 2965 } 2966 2967 /* 2968 * nil rebuild_header routine, 2969 * that should be never called and used as just bug trap. 2970 */ 2971 2972 if (!dev->rebuild_header) 2973 dev->rebuild_header = default_rebuild_header; 2974 2975 ret = netdev_register_sysfs(dev); 2976 if (ret) 2977 goto out_err; 2978 dev->reg_state = NETREG_REGISTERED; 2979 2980 /* 2981 * Default initial state at registry is that the 2982 * device is present. 2983 */ 2984 2985 set_bit(__LINK_STATE_PRESENT, &dev->state); 2986 2987 dev->next = NULL; 2988 dev_init_scheduler(dev); 2989 write_lock_bh(&dev_base_lock); 2990 *dev_tail = dev; 2991 dev_tail = &dev->next; 2992 hlist_add_head(&dev->name_hlist, head); 2993 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2994 dev_hold(dev); 2995 write_unlock_bh(&dev_base_lock); 2996 2997 /* Notify protocols, that a new device appeared. */ 2998 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2999 3000 ret = 0; 3001 3002out: 3003 return ret; 3004out_err: 3005 free_divert_blk(dev); 3006 goto out; 3007} 3008 3009/** 3010 * register_netdev - register a network device 3011 * @dev: device to register 3012 * 3013 * Take a completed network device structure and add it to the kernel 3014 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3015 * chain. 0 is returned on success. A negative errno code is returned 3016 * on a failure to set up the device, or if the name is a duplicate. 3017 * 3018 * This is a wrapper around register_netdev that takes the rtnl semaphore 3019 * and expands the device name if you passed a format string to 3020 * alloc_netdev. 3021 */ 3022int register_netdev(struct net_device *dev) 3023{ 3024 int err; 3025 3026 rtnl_lock(); 3027 3028 /* 3029 * If the name is a format string the caller wants us to do a 3030 * name allocation. 3031 */ 3032 if (strchr(dev->name, '%')) { 3033 err = dev_alloc_name(dev, dev->name); 3034 if (err < 0) 3035 goto out; 3036 } 3037 3038 /* 3039 * Back compatibility hook. Kill this one in 2.5 3040 */ 3041 if (dev->name[0] == 0 || dev->name[0] == ' ') { 3042 err = dev_alloc_name(dev, "eth%d"); 3043 if (err < 0) 3044 goto out; 3045 } 3046 3047 err = register_netdevice(dev); 3048out: 3049 rtnl_unlock(); 3050 return err; 3051} 3052EXPORT_SYMBOL(register_netdev); 3053 3054/* 3055 * netdev_wait_allrefs - wait until all references are gone. 3056 * 3057 * This is called when unregistering network devices. 3058 * 3059 * Any protocol or device that holds a reference should register 3060 * for netdevice notification, and cleanup and put back the 3061 * reference if they receive an UNREGISTER event. 3062 * We can get stuck here if buggy protocols don't correctly 3063 * call dev_put. 3064 */ 3065static void netdev_wait_allrefs(struct net_device *dev) 3066{ 3067 unsigned long rebroadcast_time, warning_time; 3068 3069 rebroadcast_time = warning_time = jiffies; 3070 while (atomic_read(&dev->refcnt) != 0) { 3071 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3072 rtnl_lock(); 3073 3074 /* Rebroadcast unregister notification */ 3075 raw_notifier_call_chain(&netdev_chain, 3076 NETDEV_UNREGISTER, dev); 3077 3078 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3079 &dev->state)) { 3080 /* We must not have linkwatch events 3081 * pending on unregister. If this 3082 * happens, we simply run the queue 3083 * unscheduled, resulting in a noop 3084 * for this device. 3085 */ 3086 linkwatch_run_queue(); 3087 } 3088 3089 __rtnl_unlock(); 3090 3091 rebroadcast_time = jiffies; 3092 } 3093 3094 msleep(250); 3095 3096 if (time_after(jiffies, warning_time + 10 * HZ)) { 3097 printk(KERN_EMERG "unregister_netdevice: " 3098 "waiting for %s to become free. Usage " 3099 "count = %d\n", 3100 dev->name, atomic_read(&dev->refcnt)); 3101 warning_time = jiffies; 3102 } 3103 } 3104} 3105 3106/* The sequence is: 3107 * 3108 * rtnl_lock(); 3109 * ... 3110 * register_netdevice(x1); 3111 * register_netdevice(x2); 3112 * ... 3113 * unregister_netdevice(y1); 3114 * unregister_netdevice(y2); 3115 * ... 3116 * rtnl_unlock(); 3117 * free_netdev(y1); 3118 * free_netdev(y2); 3119 * 3120 * We are invoked by rtnl_unlock() after it drops the semaphore. 3121 * This allows us to deal with problems: 3122 * 1) We can delete sysfs objects which invoke hotplug 3123 * without deadlocking with linkwatch via keventd. 3124 * 2) Since we run with the RTNL semaphore not held, we can sleep 3125 * safely in order to wait for the netdev refcnt to drop to zero. 3126 */ 3127static DEFINE_MUTEX(net_todo_run_mutex); 3128void netdev_run_todo(void) 3129{ 3130 struct list_head list; 3131 3132 /* Need to guard against multiple cpu's getting out of order. */ 3133 mutex_lock(&net_todo_run_mutex); 3134 3135 /* Not safe to do outside the semaphore. We must not return 3136 * until all unregister events invoked by the local processor 3137 * have been completed (either by this todo run, or one on 3138 * another cpu). 3139 */ 3140 if (list_empty(&net_todo_list)) 3141 goto out; 3142 3143 /* Snapshot list, allow later requests */ 3144 spin_lock(&net_todo_list_lock); 3145 list_replace_init(&net_todo_list, &list); 3146 spin_unlock(&net_todo_list_lock); 3147 3148 while (!list_empty(&list)) { 3149 struct net_device *dev 3150 = list_entry(list.next, struct net_device, todo_list); 3151 list_del(&dev->todo_list); 3152 3153 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3154 printk(KERN_ERR "network todo '%s' but state %d\n", 3155 dev->name, dev->reg_state); 3156 dump_stack(); 3157 continue; 3158 } 3159 3160 netdev_unregister_sysfs(dev); 3161 dev->reg_state = NETREG_UNREGISTERED; 3162 3163 netdev_wait_allrefs(dev); 3164 3165 /* paranoia */ 3166 BUG_ON(atomic_read(&dev->refcnt)); 3167 BUG_TRAP(!dev->ip_ptr); 3168 BUG_TRAP(!dev->ip6_ptr); 3169 BUG_TRAP(!dev->dn_ptr); 3170 3171 /* It must be the very last action, 3172 * after this 'dev' may point to freed up memory. 3173 */ 3174 if (dev->destructor) 3175 dev->destructor(dev); 3176 } 3177 3178out: 3179 mutex_unlock(&net_todo_run_mutex); 3180} 3181 3182/** 3183 * alloc_netdev - allocate network device 3184 * @sizeof_priv: size of private data to allocate space for 3185 * @name: device name format string 3186 * @setup: callback to initialize device 3187 * 3188 * Allocates a struct net_device with private data area for driver use 3189 * and performs basic initialization. 3190 */ 3191struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3192 void (*setup)(struct net_device *)) 3193{ 3194 void *p; 3195 struct net_device *dev; 3196 int alloc_size; 3197 3198 BUG_ON(strlen(name) >= sizeof(dev->name)); 3199 3200 /* ensure 32-byte alignment of both the device and private area */ 3201 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3202 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3203 3204 p = kzalloc(alloc_size, GFP_KERNEL); 3205 if (!p) { 3206 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3207 return NULL; 3208 } 3209 3210 dev = (struct net_device *) 3211 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3212 dev->padded = (char *)dev - (char *)p; 3213 3214 if (sizeof_priv) 3215 dev->priv = netdev_priv(dev); 3216 3217 setup(dev); 3218 strcpy(dev->name, name); 3219 return dev; 3220} 3221EXPORT_SYMBOL(alloc_netdev); 3222 3223/** 3224 * free_netdev - free network device 3225 * @dev: device 3226 * 3227 * This function does the last stage of destroying an allocated device 3228 * interface. The reference to the device object is released. 3229 * If this is the last reference then it will be freed. 3230 */ 3231void free_netdev(struct net_device *dev) 3232{ 3233#ifdef CONFIG_SYSFS 3234 /* Compatibility with error handling in drivers */ 3235 if (dev->reg_state == NETREG_UNINITIALIZED) { 3236 kfree((char *)dev - dev->padded); 3237 return; 3238 } 3239 3240 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3241 dev->reg_state = NETREG_RELEASED; 3242 3243 /* will free via class release */ 3244 class_device_put(&dev->class_dev); 3245#else 3246 kfree((char *)dev - dev->padded); 3247#endif 3248} 3249 3250/* Synchronize with packet receive processing. */ 3251void synchronize_net(void) 3252{ 3253 might_sleep(); 3254 synchronize_rcu(); 3255} 3256 3257/** 3258 * unregister_netdevice - remove device from the kernel 3259 * @dev: device 3260 * 3261 * This function shuts down a device interface and removes it 3262 * from the kernel tables. On success 0 is returned, on a failure 3263 * a negative errno code is returned. 3264 * 3265 * Callers must hold the rtnl semaphore. You may want 3266 * unregister_netdev() instead of this. 3267 */ 3268 3269int unregister_netdevice(struct net_device *dev) 3270{ 3271 struct net_device *d, **dp; 3272 3273 BUG_ON(dev_boot_phase); 3274 ASSERT_RTNL(); 3275 3276 /* Some devices call without registering for initialization unwind. */ 3277 if (dev->reg_state == NETREG_UNINITIALIZED) { 3278 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3279 "was registered\n", dev->name, dev); 3280 return -ENODEV; 3281 } 3282 3283 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3284 3285 /* If device is running, close it first. */ 3286 if (dev->flags & IFF_UP) 3287 dev_close(dev); 3288 3289 /* And unlink it from device chain. */ 3290 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3291 if (d == dev) { 3292 write_lock_bh(&dev_base_lock); 3293 hlist_del(&dev->name_hlist); 3294 hlist_del(&dev->index_hlist); 3295 if (dev_tail == &dev->next) 3296 dev_tail = dp; 3297 *dp = d->next; 3298 write_unlock_bh(&dev_base_lock); 3299 break; 3300 } 3301 } 3302 if (!d) { 3303 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3304 dev->name); 3305 return -ENODEV; 3306 } 3307 3308 dev->reg_state = NETREG_UNREGISTERING; 3309 3310 synchronize_net(); 3311 3312 /* Shutdown queueing discipline. */ 3313 dev_shutdown(dev); 3314 3315 3316 /* Notify protocols, that we are about to destroy 3317 this device. They should clean all the things. 3318 */ 3319 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3320 3321 /* 3322 * Flush the multicast chain 3323 */ 3324 dev_mc_discard(dev); 3325 3326 if (dev->uninit) 3327 dev->uninit(dev); 3328 3329 /* Notifier chain MUST detach us from master device. */ 3330 BUG_TRAP(!dev->master); 3331 3332 free_divert_blk(dev); 3333 3334 /* Finish processing unregister after unlock */ 3335 net_set_todo(dev); 3336 3337 synchronize_net(); 3338 3339 dev_put(dev); 3340 return 0; 3341} 3342 3343/** 3344 * unregister_netdev - remove device from the kernel 3345 * @dev: device 3346 * 3347 * This function shuts down a device interface and removes it 3348 * from the kernel tables. On success 0 is returned, on a failure 3349 * a negative errno code is returned. 3350 * 3351 * This is just a wrapper for unregister_netdevice that takes 3352 * the rtnl semaphore. In general you want to use this and not 3353 * unregister_netdevice. 3354 */ 3355void unregister_netdev(struct net_device *dev) 3356{ 3357 rtnl_lock(); 3358 unregister_netdevice(dev); 3359 rtnl_unlock(); 3360} 3361 3362EXPORT_SYMBOL(unregister_netdev); 3363 3364#ifdef CONFIG_HOTPLUG_CPU 3365static int dev_cpu_callback(struct notifier_block *nfb, 3366 unsigned long action, 3367 void *ocpu) 3368{ 3369 struct sk_buff **list_skb; 3370 struct net_device **list_net; 3371 struct sk_buff *skb; 3372 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3373 struct softnet_data *sd, *oldsd; 3374 3375 if (action != CPU_DEAD) 3376 return NOTIFY_OK; 3377 3378 local_irq_disable(); 3379 cpu = smp_processor_id(); 3380 sd = &per_cpu(softnet_data, cpu); 3381 oldsd = &per_cpu(softnet_data, oldcpu); 3382 3383 /* Find end of our completion_queue. */ 3384 list_skb = &sd->completion_queue; 3385 while (*list_skb) 3386 list_skb = &(*list_skb)->next; 3387 /* Append completion queue from offline CPU. */ 3388 *list_skb = oldsd->completion_queue; 3389 oldsd->completion_queue = NULL; 3390 3391 /* Find end of our output_queue. */ 3392 list_net = &sd->output_queue; 3393 while (*list_net) 3394 list_net = &(*list_net)->next_sched; 3395 /* Append output queue from offline CPU. */ 3396 *list_net = oldsd->output_queue; 3397 oldsd->output_queue = NULL; 3398 3399 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3400 local_irq_enable(); 3401 3402 /* Process offline CPU's input_pkt_queue */ 3403 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3404 netif_rx(skb); 3405 3406 return NOTIFY_OK; 3407} 3408#endif /* CONFIG_HOTPLUG_CPU */ 3409 3410#ifdef CONFIG_NET_DMA 3411/** 3412 * net_dma_rebalance - 3413 * This is called when the number of channels allocated to the net_dma_client 3414 * changes. The net_dma_client tries to have one DMA channel per CPU. 3415 */ 3416static void net_dma_rebalance(void) 3417{ 3418 unsigned int cpu, i, n; 3419 struct dma_chan *chan; 3420 3421 if (net_dma_count == 0) { 3422 for_each_online_cpu(cpu) 3423 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3424 return; 3425 } 3426 3427 i = 0; 3428 cpu = first_cpu(cpu_online_map); 3429 3430 rcu_read_lock(); 3431 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3432 n = ((num_online_cpus() / net_dma_count) 3433 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3434 3435 while(n) { 3436 per_cpu(softnet_data, cpu).net_dma = chan; 3437 cpu = next_cpu(cpu, cpu_online_map); 3438 n--; 3439 } 3440 i++; 3441 } 3442 rcu_read_unlock(); 3443} 3444 3445/** 3446 * netdev_dma_event - event callback for the net_dma_client 3447 * @client: should always be net_dma_client 3448 * @chan: DMA channel for the event 3449 * @event: event type 3450 */ 3451static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3452 enum dma_event event) 3453{ 3454 spin_lock(&net_dma_event_lock); 3455 switch (event) { 3456 case DMA_RESOURCE_ADDED: 3457 net_dma_count++; 3458 net_dma_rebalance(); 3459 break; 3460 case DMA_RESOURCE_REMOVED: 3461 net_dma_count--; 3462 net_dma_rebalance(); 3463 break; 3464 default: 3465 break; 3466 } 3467 spin_unlock(&net_dma_event_lock); 3468} 3469 3470/** 3471 * netdev_dma_regiser - register the networking subsystem as a DMA client 3472 */ 3473static int __init netdev_dma_register(void) 3474{ 3475 spin_lock_init(&net_dma_event_lock); 3476 net_dma_client = dma_async_client_register(netdev_dma_event); 3477 if (net_dma_client == NULL) 3478 return -ENOMEM; 3479 3480 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3481 return 0; 3482} 3483 3484#else 3485static int __init netdev_dma_register(void) { return -ENODEV; } 3486#endif /* CONFIG_NET_DMA */ 3487 3488/* 3489 * Initialize the DEV module. At boot time this walks the device list and 3490 * unhooks any devices that fail to initialise (normally hardware not 3491 * present) and leaves us with a valid list of present and active devices. 3492 * 3493 */ 3494 3495/* 3496 * This is called single threaded during boot, so no need 3497 * to take the rtnl semaphore. 3498 */ 3499static int __init net_dev_init(void) 3500{ 3501 int i, rc = -ENOMEM; 3502 3503 BUG_ON(!dev_boot_phase); 3504 3505 if (dev_proc_init()) 3506 goto out; 3507 3508 if (netdev_sysfs_init()) 3509 goto out; 3510 3511 INIT_LIST_HEAD(&ptype_all); 3512 for (i = 0; i < 16; i++) 3513 INIT_LIST_HEAD(&ptype_base[i]); 3514 3515 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3516 INIT_HLIST_HEAD(&dev_name_head[i]); 3517 3518 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3519 INIT_HLIST_HEAD(&dev_index_head[i]); 3520 3521 /* 3522 * Initialise the packet receive queues. 3523 */ 3524 3525 for_each_possible_cpu(i) { 3526 struct softnet_data *queue; 3527 3528 queue = &per_cpu(softnet_data, i); 3529 skb_queue_head_init(&queue->input_pkt_queue); 3530 queue->completion_queue = NULL; 3531 INIT_LIST_HEAD(&queue->poll_list); 3532 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3533 queue->backlog_dev.weight = weight_p; 3534 queue->backlog_dev.poll = process_backlog; 3535 atomic_set(&queue->backlog_dev.refcnt, 1); 3536 } 3537 3538 netdev_dma_register(); 3539 3540 dev_boot_phase = 0; 3541 3542 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3543 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3544 3545 hotcpu_notifier(dev_cpu_callback, 0); 3546 dst_init(); 3547 dev_mcast_init(); 3548 rc = 0; 3549out: 3550 return rc; 3551} 3552 3553subsys_initcall(net_dev_init); 3554 3555EXPORT_SYMBOL(__dev_get_by_index); 3556EXPORT_SYMBOL(__dev_get_by_name); 3557EXPORT_SYMBOL(__dev_remove_pack); 3558EXPORT_SYMBOL(dev_valid_name); 3559EXPORT_SYMBOL(dev_add_pack); 3560EXPORT_SYMBOL(dev_alloc_name); 3561EXPORT_SYMBOL(dev_close); 3562EXPORT_SYMBOL(dev_get_by_flags); 3563EXPORT_SYMBOL(dev_get_by_index); 3564EXPORT_SYMBOL(dev_get_by_name); 3565EXPORT_SYMBOL(dev_open); 3566EXPORT_SYMBOL(dev_queue_xmit); 3567EXPORT_SYMBOL(dev_remove_pack); 3568EXPORT_SYMBOL(dev_set_allmulti); 3569EXPORT_SYMBOL(dev_set_promiscuity); 3570EXPORT_SYMBOL(dev_change_flags); 3571EXPORT_SYMBOL(dev_set_mtu); 3572EXPORT_SYMBOL(dev_set_mac_address); 3573EXPORT_SYMBOL(free_netdev); 3574EXPORT_SYMBOL(netdev_boot_setup_check); 3575EXPORT_SYMBOL(netdev_set_master); 3576EXPORT_SYMBOL(netdev_state_change); 3577EXPORT_SYMBOL(netif_receive_skb); 3578EXPORT_SYMBOL(netif_rx); 3579EXPORT_SYMBOL(register_gifconf); 3580EXPORT_SYMBOL(register_netdevice); 3581EXPORT_SYMBOL(register_netdevice_notifier); 3582EXPORT_SYMBOL(skb_checksum_help); 3583EXPORT_SYMBOL(synchronize_net); 3584EXPORT_SYMBOL(unregister_netdevice); 3585EXPORT_SYMBOL(unregister_netdevice_notifier); 3586EXPORT_SYMBOL(net_enable_timestamp); 3587EXPORT_SYMBOL(net_disable_timestamp); 3588EXPORT_SYMBOL(dev_get_flags); 3589 3590#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3591EXPORT_SYMBOL(br_handle_frame_hook); 3592EXPORT_SYMBOL(br_fdb_get_hook); 3593EXPORT_SYMBOL(br_fdb_put_hook); 3594#endif 3595 3596#ifdef CONFIG_KMOD 3597EXPORT_SYMBOL(dev_load); 3598#endif 3599 3600EXPORT_PER_CPU_SYMBOL(softnet_data);