at v2.6.19 53 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67}; 68 69/* host-side wrapper for one interface setting's parsed descriptors */ 70struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81}; 82 83enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88}; 89 90/** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @driver: the USB driver that is bound to this interface. 98 * @minor: the minor number assigned to this interface, if this 99 * interface is bound to a driver that uses the USB major number. 100 * If this interface does not use the USB major, this field should 101 * be unused. The driver should set this value in the probe() 102 * function of the driver, after it has been assigned a minor 103 * number from the USB core by calling usb_register_dev(). 104 * @condition: binding state of the interface: not bound, binding 105 * (in probe()), bound to a driver, or unbinding (in disconnect()) 106 * @is_active: flag set when the interface is bound and not suspended. 107 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 108 * capability during autosuspend. 109 * @dev: driver model's view of this device 110 * @class_dev: driver model's class view of this device. 111 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 112 * allowed unless the counter is 0. 113 * 114 * USB device drivers attach to interfaces on a physical device. Each 115 * interface encapsulates a single high level function, such as feeding 116 * an audio stream to a speaker or reporting a change in a volume control. 117 * Many USB devices only have one interface. The protocol used to talk to 118 * an interface's endpoints can be defined in a usb "class" specification, 119 * or by a product's vendor. The (default) control endpoint is part of 120 * every interface, but is never listed among the interface's descriptors. 121 * 122 * The driver that is bound to the interface can use standard driver model 123 * calls such as dev_get_drvdata() on the dev member of this structure. 124 * 125 * Each interface may have alternate settings. The initial configuration 126 * of a device sets altsetting 0, but the device driver can change 127 * that setting using usb_set_interface(). Alternate settings are often 128 * used to control the the use of periodic endpoints, such as by having 129 * different endpoints use different amounts of reserved USB bandwidth. 130 * All standards-conformant USB devices that use isochronous endpoints 131 * will use them in non-default settings. 132 * 133 * The USB specification says that alternate setting numbers must run from 134 * 0 to one less than the total number of alternate settings. But some 135 * devices manage to mess this up, and the structures aren't necessarily 136 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 137 * look up an alternate setting in the altsetting array based on its number. 138 */ 139struct usb_interface { 140 /* array of alternate settings for this interface, 141 * stored in no particular order */ 142 struct usb_host_interface *altsetting; 143 144 struct usb_host_interface *cur_altsetting; /* the currently 145 * active alternate setting */ 146 unsigned num_altsetting; /* number of alternate settings */ 147 148 int minor; /* minor number this interface is 149 * bound to */ 150 enum usb_interface_condition condition; /* state of binding */ 151 unsigned is_active:1; /* the interface is not suspended */ 152 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 153 154 struct device dev; /* interface specific device info */ 155 struct class_device *class_dev; 156 int pm_usage_cnt; /* usage counter for autosuspend */ 157}; 158#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 159#define interface_to_usbdev(intf) \ 160 container_of(intf->dev.parent, struct usb_device, dev) 161 162static inline void *usb_get_intfdata (struct usb_interface *intf) 163{ 164 return dev_get_drvdata (&intf->dev); 165} 166 167static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 168{ 169 dev_set_drvdata(&intf->dev, data); 170} 171 172struct usb_interface *usb_get_intf(struct usb_interface *intf); 173void usb_put_intf(struct usb_interface *intf); 174 175/* this maximum is arbitrary */ 176#define USB_MAXINTERFACES 32 177 178/** 179 * struct usb_interface_cache - long-term representation of a device interface 180 * @num_altsetting: number of altsettings defined. 181 * @ref: reference counter. 182 * @altsetting: variable-length array of interface structures, one for 183 * each alternate setting that may be selected. Each one includes a 184 * set of endpoint configurations. They will be in no particular order. 185 * 186 * These structures persist for the lifetime of a usb_device, unlike 187 * struct usb_interface (which persists only as long as its configuration 188 * is installed). The altsetting arrays can be accessed through these 189 * structures at any time, permitting comparison of configurations and 190 * providing support for the /proc/bus/usb/devices pseudo-file. 191 */ 192struct usb_interface_cache { 193 unsigned num_altsetting; /* number of alternate settings */ 194 struct kref ref; /* reference counter */ 195 196 /* variable-length array of alternate settings for this interface, 197 * stored in no particular order */ 198 struct usb_host_interface altsetting[0]; 199}; 200#define ref_to_usb_interface_cache(r) \ 201 container_of(r, struct usb_interface_cache, ref) 202#define altsetting_to_usb_interface_cache(a) \ 203 container_of(a, struct usb_interface_cache, altsetting[0]) 204 205/** 206 * struct usb_host_config - representation of a device's configuration 207 * @desc: the device's configuration descriptor. 208 * @string: pointer to the cached version of the iConfiguration string, if 209 * present for this configuration. 210 * @interface: array of pointers to usb_interface structures, one for each 211 * interface in the configuration. The number of interfaces is stored 212 * in desc.bNumInterfaces. These pointers are valid only while the 213 * the configuration is active. 214 * @intf_cache: array of pointers to usb_interface_cache structures, one 215 * for each interface in the configuration. These structures exist 216 * for the entire life of the device. 217 * @extra: pointer to buffer containing all extra descriptors associated 218 * with this configuration (those preceding the first interface 219 * descriptor). 220 * @extralen: length of the extra descriptors buffer. 221 * 222 * USB devices may have multiple configurations, but only one can be active 223 * at any time. Each encapsulates a different operational environment; 224 * for example, a dual-speed device would have separate configurations for 225 * full-speed and high-speed operation. The number of configurations 226 * available is stored in the device descriptor as bNumConfigurations. 227 * 228 * A configuration can contain multiple interfaces. Each corresponds to 229 * a different function of the USB device, and all are available whenever 230 * the configuration is active. The USB standard says that interfaces 231 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 232 * of devices get this wrong. In addition, the interface array is not 233 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 234 * look up an interface entry based on its number. 235 * 236 * Device drivers should not attempt to activate configurations. The choice 237 * of which configuration to install is a policy decision based on such 238 * considerations as available power, functionality provided, and the user's 239 * desires (expressed through userspace tools). However, drivers can call 240 * usb_reset_configuration() to reinitialize the current configuration and 241 * all its interfaces. 242 */ 243struct usb_host_config { 244 struct usb_config_descriptor desc; 245 246 char *string; /* iConfiguration string, if present */ 247 /* the interfaces associated with this configuration, 248 * stored in no particular order */ 249 struct usb_interface *interface[USB_MAXINTERFACES]; 250 251 /* Interface information available even when this is not the 252 * active configuration */ 253 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 254 255 unsigned char *extra; /* Extra descriptors */ 256 int extralen; 257}; 258 259int __usb_get_extra_descriptor(char *buffer, unsigned size, 260 unsigned char type, void **ptr); 261#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 262 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 263 type,(void**)ptr) 264 265/* ----------------------------------------------------------------------- */ 266 267/* USB device number allocation bitmap */ 268struct usb_devmap { 269 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 270}; 271 272/* 273 * Allocated per bus (tree of devices) we have: 274 */ 275struct usb_bus { 276 struct device *controller; /* host/master side hardware */ 277 int busnum; /* Bus number (in order of reg) */ 278 char *bus_name; /* stable id (PCI slot_name etc) */ 279 u8 uses_dma; /* Does the host controller use DMA? */ 280 u8 otg_port; /* 0, or number of OTG/HNP port */ 281 unsigned is_b_host:1; /* true during some HNP roleswitches */ 282 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 283 284 int devnum_next; /* Next open device number in 285 * round-robin allocation */ 286 287 struct usb_devmap devmap; /* device address allocation map */ 288 struct usb_device *root_hub; /* Root hub */ 289 struct list_head bus_list; /* list of busses */ 290 291 int bandwidth_allocated; /* on this bus: how much of the time 292 * reserved for periodic (intr/iso) 293 * requests is used, on average? 294 * Units: microseconds/frame. 295 * Limits: Full/low speed reserve 90%, 296 * while high speed reserves 80%. 297 */ 298 int bandwidth_int_reqs; /* number of Interrupt requests */ 299 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 300 301 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 302 303 struct class_device *class_dev; /* class device for this bus */ 304 305#if defined(CONFIG_USB_MON) 306 struct mon_bus *mon_bus; /* non-null when associated */ 307 int monitored; /* non-zero when monitored */ 308#endif 309}; 310 311/* ----------------------------------------------------------------------- */ 312 313/* This is arbitrary. 314 * From USB 2.0 spec Table 11-13, offset 7, a hub can 315 * have up to 255 ports. The most yet reported is 10. 316 */ 317#define USB_MAXCHILDREN (16) 318 319struct usb_tt; 320 321/* 322 * struct usb_device - kernel's representation of a USB device 323 * 324 * FIXME: Write the kerneldoc! 325 * 326 * Usbcore drivers should not set usbdev->state directly. Instead use 327 * usb_set_device_state(). 328 */ 329struct usb_device { 330 int devnum; /* Address on USB bus */ 331 char devpath [16]; /* Use in messages: /port/port/... */ 332 enum usb_device_state state; /* configured, not attached, etc */ 333 enum usb_device_speed speed; /* high/full/low (or error) */ 334 335 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 336 int ttport; /* device port on that tt hub */ 337 338 unsigned int toggle[2]; /* one bit for each endpoint 339 * ([0] = IN, [1] = OUT) */ 340 341 struct usb_device *parent; /* our hub, unless we're the root */ 342 struct usb_bus *bus; /* Bus we're part of */ 343 struct usb_host_endpoint ep0; 344 345 struct device dev; /* Generic device interface */ 346 347 struct usb_device_descriptor descriptor;/* Descriptor */ 348 struct usb_host_config *config; /* All of the configs */ 349 350 struct usb_host_config *actconfig;/* the active configuration */ 351 struct usb_host_endpoint *ep_in[16]; 352 struct usb_host_endpoint *ep_out[16]; 353 354 char **rawdescriptors; /* Raw descriptors for each config */ 355 356 unsigned short bus_mA; /* Current available from the bus */ 357 u8 portnum; /* Parent port number (origin 1) */ 358 u8 level; /* Number of USB hub ancestors */ 359 360 int have_langid; /* whether string_langid is valid */ 361 int string_langid; /* language ID for strings */ 362 363 /* static strings from the device */ 364 char *product; /* iProduct string, if present */ 365 char *manufacturer; /* iManufacturer string, if present */ 366 char *serial; /* iSerialNumber string, if present */ 367 368 struct list_head filelist; 369 struct class_device *class_dev; 370 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 371 372 /* 373 * Child devices - these can be either new devices 374 * (if this is a hub device), or different instances 375 * of this same device. 376 * 377 * Each instance needs its own set of data structures. 378 */ 379 380 int maxchild; /* Number of ports if hub */ 381 struct usb_device *children[USB_MAXCHILDREN]; 382 383 int pm_usage_cnt; /* usage counter for autosuspend */ 384#ifdef CONFIG_PM 385 struct work_struct autosuspend; /* for delayed autosuspends */ 386 struct mutex pm_mutex; /* protects PM operations */ 387 388 unsigned auto_pm:1; /* autosuspend/resume in progress */ 389 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 390#endif 391}; 392#define to_usb_device(d) container_of(d, struct usb_device, dev) 393 394extern struct usb_device *usb_get_dev(struct usb_device *dev); 395extern void usb_put_dev(struct usb_device *dev); 396 397/* USB device locking */ 398#define usb_lock_device(udev) down(&(udev)->dev.sem) 399#define usb_unlock_device(udev) up(&(udev)->dev.sem) 400#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 401extern int usb_lock_device_for_reset(struct usb_device *udev, 402 const struct usb_interface *iface); 403 404/* USB port reset for device reinitialization */ 405extern int usb_reset_device(struct usb_device *dev); 406extern int usb_reset_composite_device(struct usb_device *dev, 407 struct usb_interface *iface); 408 409extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 410 411/* USB autosuspend and autoresume */ 412#ifdef CONFIG_USB_SUSPEND 413extern int usb_autopm_get_interface(struct usb_interface *intf); 414extern void usb_autopm_put_interface(struct usb_interface *intf); 415 416#else 417#define usb_autopm_get_interface(intf) 0 418#define usb_autopm_put_interface(intf) do {} while (0) 419#endif 420 421 422/*-------------------------------------------------------------------------*/ 423 424/* for drivers using iso endpoints */ 425extern int usb_get_current_frame_number (struct usb_device *usb_dev); 426 427/* used these for multi-interface device registration */ 428extern int usb_driver_claim_interface(struct usb_driver *driver, 429 struct usb_interface *iface, void* priv); 430 431/** 432 * usb_interface_claimed - returns true iff an interface is claimed 433 * @iface: the interface being checked 434 * 435 * Returns true (nonzero) iff the interface is claimed, else false (zero). 436 * Callers must own the driver model's usb bus readlock. So driver 437 * probe() entries don't need extra locking, but other call contexts 438 * may need to explicitly claim that lock. 439 * 440 */ 441static inline int usb_interface_claimed(struct usb_interface *iface) { 442 return (iface->dev.driver != NULL); 443} 444 445extern void usb_driver_release_interface(struct usb_driver *driver, 446 struct usb_interface *iface); 447const struct usb_device_id *usb_match_id(struct usb_interface *interface, 448 const struct usb_device_id *id); 449 450extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 451 int minor); 452extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 453 unsigned ifnum); 454extern struct usb_host_interface *usb_altnum_to_altsetting( 455 const struct usb_interface *intf, unsigned int altnum); 456 457 458/** 459 * usb_make_path - returns stable device path in the usb tree 460 * @dev: the device whose path is being constructed 461 * @buf: where to put the string 462 * @size: how big is "buf"? 463 * 464 * Returns length of the string (> 0) or negative if size was too small. 465 * 466 * This identifier is intended to be "stable", reflecting physical paths in 467 * hardware such as physical bus addresses for host controllers or ports on 468 * USB hubs. That makes it stay the same until systems are physically 469 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 470 * controllers. Adding and removing devices, including virtual root hubs 471 * in host controller driver modules, does not change these path identifers; 472 * neither does rebooting or re-enumerating. These are more useful identifiers 473 * than changeable ("unstable") ones like bus numbers or device addresses. 474 * 475 * With a partial exception for devices connected to USB 2.0 root hubs, these 476 * identifiers are also predictable. So long as the device tree isn't changed, 477 * plugging any USB device into a given hub port always gives it the same path. 478 * Because of the use of "companion" controllers, devices connected to ports on 479 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 480 * high speed, and a different one if they are full or low speed. 481 */ 482static inline int usb_make_path (struct usb_device *dev, char *buf, 483 size_t size) 484{ 485 int actual; 486 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 487 dev->devpath); 488 return (actual >= (int)size) ? -1 : actual; 489} 490 491/*-------------------------------------------------------------------------*/ 492 493extern int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd); 494extern int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd); 495extern int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd); 496extern int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd); 497extern int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd); 498extern int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd); 499extern int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd); 500extern int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd); 501extern int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd); 502extern int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd); 503extern int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd); 504 505/*-------------------------------------------------------------------------*/ 506 507#define USB_DEVICE_ID_MATCH_DEVICE \ 508 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 509#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 510 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 511#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 512 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 513#define USB_DEVICE_ID_MATCH_DEV_INFO \ 514 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 515 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 516 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 517#define USB_DEVICE_ID_MATCH_INT_INFO \ 518 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 519 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 520 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 521 522/** 523 * USB_DEVICE - macro used to describe a specific usb device 524 * @vend: the 16 bit USB Vendor ID 525 * @prod: the 16 bit USB Product ID 526 * 527 * This macro is used to create a struct usb_device_id that matches a 528 * specific device. 529 */ 530#define USB_DEVICE(vend,prod) \ 531 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 532 .idProduct = (prod) 533/** 534 * USB_DEVICE_VER - macro used to describe a specific usb device with a 535 * version range 536 * @vend: the 16 bit USB Vendor ID 537 * @prod: the 16 bit USB Product ID 538 * @lo: the bcdDevice_lo value 539 * @hi: the bcdDevice_hi value 540 * 541 * This macro is used to create a struct usb_device_id that matches a 542 * specific device, with a version range. 543 */ 544#define USB_DEVICE_VER(vend,prod,lo,hi) \ 545 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 546 .idVendor = (vend), .idProduct = (prod), \ 547 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 548 549/** 550 * USB_DEVICE_INFO - macro used to describe a class of usb devices 551 * @cl: bDeviceClass value 552 * @sc: bDeviceSubClass value 553 * @pr: bDeviceProtocol value 554 * 555 * This macro is used to create a struct usb_device_id that matches a 556 * specific class of devices. 557 */ 558#define USB_DEVICE_INFO(cl,sc,pr) \ 559 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 560 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 561 562/** 563 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 564 * @cl: bInterfaceClass value 565 * @sc: bInterfaceSubClass value 566 * @pr: bInterfaceProtocol value 567 * 568 * This macro is used to create a struct usb_device_id that matches a 569 * specific class of interfaces. 570 */ 571#define USB_INTERFACE_INFO(cl,sc,pr) \ 572 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 573 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 574 575/* ----------------------------------------------------------------------- */ 576 577struct usb_dynids { 578 spinlock_t lock; 579 struct list_head list; 580}; 581 582/** 583 * struct usbdrv_wrap - wrapper for driver-model structure 584 * @driver: The driver-model core driver structure. 585 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 586 */ 587struct usbdrv_wrap { 588 struct device_driver driver; 589 int for_devices; 590}; 591 592/** 593 * struct usb_driver - identifies USB interface driver to usbcore 594 * @name: The driver name should be unique among USB drivers, 595 * and should normally be the same as the module name. 596 * @probe: Called to see if the driver is willing to manage a particular 597 * interface on a device. If it is, probe returns zero and uses 598 * dev_set_drvdata() to associate driver-specific data with the 599 * interface. It may also use usb_set_interface() to specify the 600 * appropriate altsetting. If unwilling to manage the interface, 601 * return a negative errno value. 602 * @disconnect: Called when the interface is no longer accessible, usually 603 * because its device has been (or is being) disconnected or the 604 * driver module is being unloaded. 605 * @ioctl: Used for drivers that want to talk to userspace through 606 * the "usbfs" filesystem. This lets devices provide ways to 607 * expose information to user space regardless of where they 608 * do (or don't) show up otherwise in the filesystem. 609 * @suspend: Called when the device is going to be suspended by the system. 610 * @resume: Called when the device is being resumed by the system. 611 * @pre_reset: Called by usb_reset_composite_device() when the device 612 * is about to be reset. 613 * @post_reset: Called by usb_reset_composite_device() after the device 614 * has been reset. 615 * @id_table: USB drivers use ID table to support hotplugging. 616 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 617 * or your driver's probe function will never get called. 618 * @dynids: used internally to hold the list of dynamically added device 619 * ids for this driver. 620 * @drvwrap: Driver-model core structure wrapper. 621 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 622 * added to this driver by preventing the sysfs file from being created. 623 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 624 * for interfaces bound to this driver. 625 * 626 * USB interface drivers must provide a name, probe() and disconnect() 627 * methods, and an id_table. Other driver fields are optional. 628 * 629 * The id_table is used in hotplugging. It holds a set of descriptors, 630 * and specialized data may be associated with each entry. That table 631 * is used by both user and kernel mode hotplugging support. 632 * 633 * The probe() and disconnect() methods are called in a context where 634 * they can sleep, but they should avoid abusing the privilege. Most 635 * work to connect to a device should be done when the device is opened, 636 * and undone at the last close. The disconnect code needs to address 637 * concurrency issues with respect to open() and close() methods, as 638 * well as forcing all pending I/O requests to complete (by unlinking 639 * them as necessary, and blocking until the unlinks complete). 640 */ 641struct usb_driver { 642 const char *name; 643 644 int (*probe) (struct usb_interface *intf, 645 const struct usb_device_id *id); 646 647 void (*disconnect) (struct usb_interface *intf); 648 649 int (*ioctl) (struct usb_interface *intf, unsigned int code, 650 void *buf); 651 652 int (*suspend) (struct usb_interface *intf, pm_message_t message); 653 int (*resume) (struct usb_interface *intf); 654 655 void (*pre_reset) (struct usb_interface *intf); 656 void (*post_reset) (struct usb_interface *intf); 657 658 const struct usb_device_id *id_table; 659 660 struct usb_dynids dynids; 661 struct usbdrv_wrap drvwrap; 662 unsigned int no_dynamic_id:1; 663 unsigned int supports_autosuspend:1; 664}; 665#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 666 667/** 668 * struct usb_device_driver - identifies USB device driver to usbcore 669 * @name: The driver name should be unique among USB drivers, 670 * and should normally be the same as the module name. 671 * @probe: Called to see if the driver is willing to manage a particular 672 * device. If it is, probe returns zero and uses dev_set_drvdata() 673 * to associate driver-specific data with the device. If unwilling 674 * to manage the device, return a negative errno value. 675 * @disconnect: Called when the device is no longer accessible, usually 676 * because it has been (or is being) disconnected or the driver's 677 * module is being unloaded. 678 * @suspend: Called when the device is going to be suspended by the system. 679 * @resume: Called when the device is being resumed by the system. 680 * @drvwrap: Driver-model core structure wrapper. 681 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 682 * for devices bound to this driver. 683 * 684 * USB drivers must provide all the fields listed above except drvwrap. 685 */ 686struct usb_device_driver { 687 const char *name; 688 689 int (*probe) (struct usb_device *udev); 690 void (*disconnect) (struct usb_device *udev); 691 692 int (*suspend) (struct usb_device *udev, pm_message_t message); 693 int (*resume) (struct usb_device *udev); 694 struct usbdrv_wrap drvwrap; 695 unsigned int supports_autosuspend:1; 696}; 697#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 698 drvwrap.driver) 699 700extern struct bus_type usb_bus_type; 701 702/** 703 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 704 * @name: the usb class device name for this driver. Will show up in sysfs. 705 * @fops: pointer to the struct file_operations of this driver. 706 * @minor_base: the start of the minor range for this driver. 707 * 708 * This structure is used for the usb_register_dev() and 709 * usb_unregister_dev() functions, to consolidate a number of the 710 * parameters used for them. 711 */ 712struct usb_class_driver { 713 char *name; 714 const struct file_operations *fops; 715 int minor_base; 716}; 717 718/* 719 * use these in module_init()/module_exit() 720 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 721 */ 722extern int usb_register_driver(struct usb_driver *, struct module *); 723static inline int usb_register(struct usb_driver *driver) 724{ 725 return usb_register_driver(driver, THIS_MODULE); 726} 727extern void usb_deregister(struct usb_driver *); 728 729extern int usb_register_device_driver(struct usb_device_driver *, 730 struct module *); 731extern void usb_deregister_device_driver(struct usb_device_driver *); 732 733extern int usb_register_dev(struct usb_interface *intf, 734 struct usb_class_driver *class_driver); 735extern void usb_deregister_dev(struct usb_interface *intf, 736 struct usb_class_driver *class_driver); 737 738extern int usb_disabled(void); 739 740/* ----------------------------------------------------------------------- */ 741 742/* 743 * URB support, for asynchronous request completions 744 */ 745 746/* 747 * urb->transfer_flags: 748 */ 749#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 750#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 751 * ignored */ 752#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 753#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 754#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 755#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 756#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 757 * needed */ 758 759struct usb_iso_packet_descriptor { 760 unsigned int offset; 761 unsigned int length; /* expected length */ 762 unsigned int actual_length; 763 unsigned int status; 764}; 765 766struct urb; 767 768typedef void (*usb_complete_t)(struct urb *); 769 770/** 771 * struct urb - USB Request Block 772 * @urb_list: For use by current owner of the URB. 773 * @pipe: Holds endpoint number, direction, type, and more. 774 * Create these values with the eight macros available; 775 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 776 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 777 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 778 * numbers range from zero to fifteen. Note that "in" endpoint two 779 * is a different endpoint (and pipe) from "out" endpoint two. 780 * The current configuration controls the existence, type, and 781 * maximum packet size of any given endpoint. 782 * @dev: Identifies the USB device to perform the request. 783 * @status: This is read in non-iso completion functions to get the 784 * status of the particular request. ISO requests only use it 785 * to tell whether the URB was unlinked; detailed status for 786 * each frame is in the fields of the iso_frame-desc. 787 * @transfer_flags: A variety of flags may be used to affect how URB 788 * submission, unlinking, or operation are handled. Different 789 * kinds of URB can use different flags. 790 * @transfer_buffer: This identifies the buffer to (or from) which 791 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 792 * is set). This buffer must be suitable for DMA; allocate it with 793 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 794 * of this buffer will be modified. This buffer is used for the data 795 * stage of control transfers. 796 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 797 * the device driver is saying that it provided this DMA address, 798 * which the host controller driver should use in preference to the 799 * transfer_buffer. 800 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 801 * be broken up into chunks according to the current maximum packet 802 * size for the endpoint, which is a function of the configuration 803 * and is encoded in the pipe. When the length is zero, neither 804 * transfer_buffer nor transfer_dma is used. 805 * @actual_length: This is read in non-iso completion functions, and 806 * it tells how many bytes (out of transfer_buffer_length) were 807 * transferred. It will normally be the same as requested, unless 808 * either an error was reported or a short read was performed. 809 * The URB_SHORT_NOT_OK transfer flag may be used to make such 810 * short reads be reported as errors. 811 * @setup_packet: Only used for control transfers, this points to eight bytes 812 * of setup data. Control transfers always start by sending this data 813 * to the device. Then transfer_buffer is read or written, if needed. 814 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 815 * device driver has provided this DMA address for the setup packet. 816 * The host controller driver should use this in preference to 817 * setup_packet. 818 * @start_frame: Returns the initial frame for isochronous transfers. 819 * @number_of_packets: Lists the number of ISO transfer buffers. 820 * @interval: Specifies the polling interval for interrupt or isochronous 821 * transfers. The units are frames (milliseconds) for for full and low 822 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 823 * @error_count: Returns the number of ISO transfers that reported errors. 824 * @context: For use in completion functions. This normally points to 825 * request-specific driver context. 826 * @complete: Completion handler. This URB is passed as the parameter to the 827 * completion function. The completion function may then do what 828 * it likes with the URB, including resubmitting or freeing it. 829 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 830 * collect the transfer status for each buffer. 831 * 832 * This structure identifies USB transfer requests. URBs must be allocated by 833 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 834 * Initialization may be done using various usb_fill_*_urb() functions. URBs 835 * are submitted using usb_submit_urb(), and pending requests may be canceled 836 * using usb_unlink_urb() or usb_kill_urb(). 837 * 838 * Data Transfer Buffers: 839 * 840 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 841 * taken from the general page pool. That is provided by transfer_buffer 842 * (control requests also use setup_packet), and host controller drivers 843 * perform a dma mapping (and unmapping) for each buffer transferred. Those 844 * mapping operations can be expensive on some platforms (perhaps using a dma 845 * bounce buffer or talking to an IOMMU), 846 * although they're cheap on commodity x86 and ppc hardware. 847 * 848 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 849 * which tell the host controller driver that no such mapping is needed since 850 * the device driver is DMA-aware. For example, a device driver might 851 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 852 * When these transfer flags are provided, host controller drivers will 853 * attempt to use the dma addresses found in the transfer_dma and/or 854 * setup_dma fields rather than determining a dma address themselves. (Note 855 * that transfer_buffer and setup_packet must still be set because not all 856 * host controllers use DMA, nor do virtual root hubs). 857 * 858 * Initialization: 859 * 860 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 861 * zero), and complete fields. All URBs must also initialize 862 * transfer_buffer and transfer_buffer_length. They may provide the 863 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 864 * to be treated as errors; that flag is invalid for write requests. 865 * 866 * Bulk URBs may 867 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 868 * should always terminate with a short packet, even if it means adding an 869 * extra zero length packet. 870 * 871 * Control URBs must provide a setup_packet. The setup_packet and 872 * transfer_buffer may each be mapped for DMA or not, independently of 873 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 874 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 875 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 876 * 877 * Interrupt URBs must provide an interval, saying how often (in milliseconds 878 * or, for highspeed devices, 125 microsecond units) 879 * to poll for transfers. After the URB has been submitted, the interval 880 * field reflects how the transfer was actually scheduled. 881 * The polling interval may be more frequent than requested. 882 * For example, some controllers have a maximum interval of 32 milliseconds, 883 * while others support intervals of up to 1024 milliseconds. 884 * Isochronous URBs also have transfer intervals. (Note that for isochronous 885 * endpoints, as well as high speed interrupt endpoints, the encoding of 886 * the transfer interval in the endpoint descriptor is logarithmic. 887 * Device drivers must convert that value to linear units themselves.) 888 * 889 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 890 * the host controller to schedule the transfer as soon as bandwidth 891 * utilization allows, and then set start_frame to reflect the actual frame 892 * selected during submission. Otherwise drivers must specify the start_frame 893 * and handle the case where the transfer can't begin then. However, drivers 894 * won't know how bandwidth is currently allocated, and while they can 895 * find the current frame using usb_get_current_frame_number () they can't 896 * know the range for that frame number. (Ranges for frame counter values 897 * are HC-specific, and can go from 256 to 65536 frames from "now".) 898 * 899 * Isochronous URBs have a different data transfer model, in part because 900 * the quality of service is only "best effort". Callers provide specially 901 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 902 * at the end. Each such packet is an individual ISO transfer. Isochronous 903 * URBs are normally queued, submitted by drivers to arrange that 904 * transfers are at least double buffered, and then explicitly resubmitted 905 * in completion handlers, so 906 * that data (such as audio or video) streams at as constant a rate as the 907 * host controller scheduler can support. 908 * 909 * Completion Callbacks: 910 * 911 * The completion callback is made in_interrupt(), and one of the first 912 * things that a completion handler should do is check the status field. 913 * The status field is provided for all URBs. It is used to report 914 * unlinked URBs, and status for all non-ISO transfers. It should not 915 * be examined before the URB is returned to the completion handler. 916 * 917 * The context field is normally used to link URBs back to the relevant 918 * driver or request state. 919 * 920 * When the completion callback is invoked for non-isochronous URBs, the 921 * actual_length field tells how many bytes were transferred. This field 922 * is updated even when the URB terminated with an error or was unlinked. 923 * 924 * ISO transfer status is reported in the status and actual_length fields 925 * of the iso_frame_desc array, and the number of errors is reported in 926 * error_count. Completion callbacks for ISO transfers will normally 927 * (re)submit URBs to ensure a constant transfer rate. 928 * 929 * Note that even fields marked "public" should not be touched by the driver 930 * when the urb is owned by the hcd, that is, since the call to 931 * usb_submit_urb() till the entry into the completion routine. 932 */ 933struct urb 934{ 935 /* private: usb core and host controller only fields in the urb */ 936 struct kref kref; /* reference count of the URB */ 937 spinlock_t lock; /* lock for the URB */ 938 void *hcpriv; /* private data for host controller */ 939 int bandwidth; /* bandwidth for INT/ISO request */ 940 atomic_t use_count; /* concurrent submissions counter */ 941 u8 reject; /* submissions will fail */ 942 943 /* public: documented fields in the urb that can be used by drivers */ 944 struct list_head urb_list; /* list head for use by the urb's 945 * current owner */ 946 struct usb_device *dev; /* (in) pointer to associated device */ 947 unsigned int pipe; /* (in) pipe information */ 948 int status; /* (return) non-ISO status */ 949 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 950 void *transfer_buffer; /* (in) associated data buffer */ 951 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 952 int transfer_buffer_length; /* (in) data buffer length */ 953 int actual_length; /* (return) actual transfer length */ 954 unsigned char *setup_packet; /* (in) setup packet (control only) */ 955 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 956 int start_frame; /* (modify) start frame (ISO) */ 957 int number_of_packets; /* (in) number of ISO packets */ 958 int interval; /* (modify) transfer interval 959 * (INT/ISO) */ 960 int error_count; /* (return) number of ISO errors */ 961 void *context; /* (in) context for completion */ 962 usb_complete_t complete; /* (in) completion routine */ 963 struct usb_iso_packet_descriptor iso_frame_desc[0]; 964 /* (in) ISO ONLY */ 965}; 966 967/* ----------------------------------------------------------------------- */ 968 969/** 970 * usb_fill_control_urb - initializes a control urb 971 * @urb: pointer to the urb to initialize. 972 * @dev: pointer to the struct usb_device for this urb. 973 * @pipe: the endpoint pipe 974 * @setup_packet: pointer to the setup_packet buffer 975 * @transfer_buffer: pointer to the transfer buffer 976 * @buffer_length: length of the transfer buffer 977 * @complete_fn: pointer to the usb_complete_t function 978 * @context: what to set the urb context to. 979 * 980 * Initializes a control urb with the proper information needed to submit 981 * it to a device. 982 */ 983static inline void usb_fill_control_urb (struct urb *urb, 984 struct usb_device *dev, 985 unsigned int pipe, 986 unsigned char *setup_packet, 987 void *transfer_buffer, 988 int buffer_length, 989 usb_complete_t complete_fn, 990 void *context) 991{ 992 spin_lock_init(&urb->lock); 993 urb->dev = dev; 994 urb->pipe = pipe; 995 urb->setup_packet = setup_packet; 996 urb->transfer_buffer = transfer_buffer; 997 urb->transfer_buffer_length = buffer_length; 998 urb->complete = complete_fn; 999 urb->context = context; 1000} 1001 1002/** 1003 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1004 * @urb: pointer to the urb to initialize. 1005 * @dev: pointer to the struct usb_device for this urb. 1006 * @pipe: the endpoint pipe 1007 * @transfer_buffer: pointer to the transfer buffer 1008 * @buffer_length: length of the transfer buffer 1009 * @complete_fn: pointer to the usb_complete_t function 1010 * @context: what to set the urb context to. 1011 * 1012 * Initializes a bulk urb with the proper information needed to submit it 1013 * to a device. 1014 */ 1015static inline void usb_fill_bulk_urb (struct urb *urb, 1016 struct usb_device *dev, 1017 unsigned int pipe, 1018 void *transfer_buffer, 1019 int buffer_length, 1020 usb_complete_t complete_fn, 1021 void *context) 1022{ 1023 spin_lock_init(&urb->lock); 1024 urb->dev = dev; 1025 urb->pipe = pipe; 1026 urb->transfer_buffer = transfer_buffer; 1027 urb->transfer_buffer_length = buffer_length; 1028 urb->complete = complete_fn; 1029 urb->context = context; 1030} 1031 1032/** 1033 * usb_fill_int_urb - macro to help initialize a interrupt urb 1034 * @urb: pointer to the urb to initialize. 1035 * @dev: pointer to the struct usb_device for this urb. 1036 * @pipe: the endpoint pipe 1037 * @transfer_buffer: pointer to the transfer buffer 1038 * @buffer_length: length of the transfer buffer 1039 * @complete_fn: pointer to the usb_complete_t function 1040 * @context: what to set the urb context to. 1041 * @interval: what to set the urb interval to, encoded like 1042 * the endpoint descriptor's bInterval value. 1043 * 1044 * Initializes a interrupt urb with the proper information needed to submit 1045 * it to a device. 1046 * Note that high speed interrupt endpoints use a logarithmic encoding of 1047 * the endpoint interval, and express polling intervals in microframes 1048 * (eight per millisecond) rather than in frames (one per millisecond). 1049 */ 1050static inline void usb_fill_int_urb (struct urb *urb, 1051 struct usb_device *dev, 1052 unsigned int pipe, 1053 void *transfer_buffer, 1054 int buffer_length, 1055 usb_complete_t complete_fn, 1056 void *context, 1057 int interval) 1058{ 1059 spin_lock_init(&urb->lock); 1060 urb->dev = dev; 1061 urb->pipe = pipe; 1062 urb->transfer_buffer = transfer_buffer; 1063 urb->transfer_buffer_length = buffer_length; 1064 urb->complete = complete_fn; 1065 urb->context = context; 1066 if (dev->speed == USB_SPEED_HIGH) 1067 urb->interval = 1 << (interval - 1); 1068 else 1069 urb->interval = interval; 1070 urb->start_frame = -1; 1071} 1072 1073extern void usb_init_urb(struct urb *urb); 1074extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1075extern void usb_free_urb(struct urb *urb); 1076#define usb_put_urb usb_free_urb 1077extern struct urb *usb_get_urb(struct urb *urb); 1078extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1079extern int usb_unlink_urb(struct urb *urb); 1080extern void usb_kill_urb(struct urb *urb); 1081 1082void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1083 gfp_t mem_flags, dma_addr_t *dma); 1084void usb_buffer_free (struct usb_device *dev, size_t size, 1085 void *addr, dma_addr_t dma); 1086 1087#if 0 1088struct urb *usb_buffer_map (struct urb *urb); 1089void usb_buffer_dmasync (struct urb *urb); 1090void usb_buffer_unmap (struct urb *urb); 1091#endif 1092 1093struct scatterlist; 1094int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1095 struct scatterlist *sg, int nents); 1096#if 0 1097void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1098 struct scatterlist *sg, int n_hw_ents); 1099#endif 1100void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1101 struct scatterlist *sg, int n_hw_ents); 1102 1103/*-------------------------------------------------------------------* 1104 * SYNCHRONOUS CALL SUPPORT * 1105 *-------------------------------------------------------------------*/ 1106 1107extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1108 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1109 void *data, __u16 size, int timeout); 1110extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1111 void *data, int len, int *actual_length, int timeout); 1112extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1113 void *data, int len, int *actual_length, 1114 int timeout); 1115 1116/* wrappers around usb_control_msg() for the most common standard requests */ 1117extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1118 unsigned char descindex, void *buf, int size); 1119extern int usb_get_status(struct usb_device *dev, 1120 int type, int target, void *data); 1121extern int usb_string(struct usb_device *dev, int index, 1122 char *buf, size_t size); 1123 1124/* wrappers that also update important state inside usbcore */ 1125extern int usb_clear_halt(struct usb_device *dev, int pipe); 1126extern int usb_reset_configuration(struct usb_device *dev); 1127extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1128 1129/* this request isn't really synchronous, but it belongs with the others */ 1130extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1131 1132/* 1133 * timeouts, in milliseconds, used for sending/receiving control messages 1134 * they typically complete within a few frames (msec) after they're issued 1135 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1136 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1137 */ 1138#define USB_CTRL_GET_TIMEOUT 5000 1139#define USB_CTRL_SET_TIMEOUT 5000 1140 1141 1142/** 1143 * struct usb_sg_request - support for scatter/gather I/O 1144 * @status: zero indicates success, else negative errno 1145 * @bytes: counts bytes transferred. 1146 * 1147 * These requests are initialized using usb_sg_init(), and then are used 1148 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1149 * members of the request object aren't for driver access. 1150 * 1151 * The status and bytecount values are valid only after usb_sg_wait() 1152 * returns. If the status is zero, then the bytecount matches the total 1153 * from the request. 1154 * 1155 * After an error completion, drivers may need to clear a halt condition 1156 * on the endpoint. 1157 */ 1158struct usb_sg_request { 1159 int status; 1160 size_t bytes; 1161 1162 /* 1163 * members below are private: to usbcore, 1164 * and are not provided for driver access! 1165 */ 1166 spinlock_t lock; 1167 1168 struct usb_device *dev; 1169 int pipe; 1170 struct scatterlist *sg; 1171 int nents; 1172 1173 int entries; 1174 struct urb **urbs; 1175 1176 int count; 1177 struct completion complete; 1178}; 1179 1180int usb_sg_init ( 1181 struct usb_sg_request *io, 1182 struct usb_device *dev, 1183 unsigned pipe, 1184 unsigned period, 1185 struct scatterlist *sg, 1186 int nents, 1187 size_t length, 1188 gfp_t mem_flags 1189); 1190void usb_sg_cancel (struct usb_sg_request *io); 1191void usb_sg_wait (struct usb_sg_request *io); 1192 1193 1194/* ----------------------------------------------------------------------- */ 1195 1196/* 1197 * For various legacy reasons, Linux has a small cookie that's paired with 1198 * a struct usb_device to identify an endpoint queue. Queue characteristics 1199 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1200 * an unsigned int encoded as: 1201 * 1202 * - direction: bit 7 (0 = Host-to-Device [Out], 1203 * 1 = Device-to-Host [In] ... 1204 * like endpoint bEndpointAddress) 1205 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1206 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1207 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1208 * 10 = control, 11 = bulk) 1209 * 1210 * Given the device address and endpoint descriptor, pipes are redundant. 1211 */ 1212 1213/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1214/* (yet ... they're the values used by usbfs) */ 1215#define PIPE_ISOCHRONOUS 0 1216#define PIPE_INTERRUPT 1 1217#define PIPE_CONTROL 2 1218#define PIPE_BULK 3 1219 1220#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1221#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1222 1223#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1224#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1225 1226#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1227#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1228#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1229#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1230#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1231 1232/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1233#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1234#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1235#define usb_settoggle(dev, ep, out, bit) \ 1236 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1237 ((bit) << (ep))) 1238 1239 1240static inline unsigned int __create_pipe(struct usb_device *dev, 1241 unsigned int endpoint) 1242{ 1243 return (dev->devnum << 8) | (endpoint << 15); 1244} 1245 1246/* Create various pipes... */ 1247#define usb_sndctrlpipe(dev,endpoint) \ 1248 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1249#define usb_rcvctrlpipe(dev,endpoint) \ 1250 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1251#define usb_sndisocpipe(dev,endpoint) \ 1252 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1253#define usb_rcvisocpipe(dev,endpoint) \ 1254 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1255#define usb_sndbulkpipe(dev,endpoint) \ 1256 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1257#define usb_rcvbulkpipe(dev,endpoint) \ 1258 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1259#define usb_sndintpipe(dev,endpoint) \ 1260 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1261#define usb_rcvintpipe(dev,endpoint) \ 1262 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1263 1264/*-------------------------------------------------------------------------*/ 1265 1266static inline __u16 1267usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1268{ 1269 struct usb_host_endpoint *ep; 1270 unsigned epnum = usb_pipeendpoint(pipe); 1271 1272 if (is_out) { 1273 WARN_ON(usb_pipein(pipe)); 1274 ep = udev->ep_out[epnum]; 1275 } else { 1276 WARN_ON(usb_pipeout(pipe)); 1277 ep = udev->ep_in[epnum]; 1278 } 1279 if (!ep) 1280 return 0; 1281 1282 /* NOTE: only 0x07ff bits are for packet size... */ 1283 return le16_to_cpu(ep->desc.wMaxPacketSize); 1284} 1285 1286/* ----------------------------------------------------------------------- */ 1287 1288/* Events from the usb core */ 1289#define USB_DEVICE_ADD 0x0001 1290#define USB_DEVICE_REMOVE 0x0002 1291#define USB_BUS_ADD 0x0003 1292#define USB_BUS_REMOVE 0x0004 1293extern void usb_register_notify(struct notifier_block *nb); 1294extern void usb_unregister_notify(struct notifier_block *nb); 1295 1296#ifdef DEBUG 1297#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1298 __FILE__ , ## arg) 1299#else 1300#define dbg(format, arg...) do {} while (0) 1301#endif 1302 1303#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1304 __FILE__ , ## arg) 1305#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1306 __FILE__ , ## arg) 1307#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1308 __FILE__ , ## arg) 1309 1310 1311#endif /* __KERNEL__ */ 1312 1313#endif