at v2.6.19 111 kB view raw
1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/fs.h> 26#include <linux/binfmts.h> 27#include <linux/signal.h> 28#include <linux/resource.h> 29#include <linux/sem.h> 30#include <linux/shm.h> 31#include <linux/msg.h> 32#include <linux/sched.h> 33#include <linux/key.h> 34#include <linux/xfrm.h> 35#include <net/flow.h> 36 37struct ctl_table; 38 39/* 40 * These functions are in security/capability.c and are used 41 * as the default capabilities functions 42 */ 43extern int cap_capable (struct task_struct *tsk, int cap); 44extern int cap_settime (struct timespec *ts, struct timezone *tz); 45extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 46extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 48extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 49extern int cap_bprm_set_security (struct linux_binprm *bprm); 50extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 51extern int cap_bprm_secureexec(struct linux_binprm *bprm); 52extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 53extern int cap_inode_removexattr(struct dentry *dentry, char *name); 54extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 55extern void cap_task_reparent_to_init (struct task_struct *p); 56extern int cap_syslog (int type); 57extern int cap_vm_enough_memory (long pages); 58 59struct msghdr; 60struct sk_buff; 61struct sock; 62struct sockaddr; 63struct socket; 64struct flowi; 65struct dst_entry; 66struct xfrm_selector; 67struct xfrm_policy; 68struct xfrm_state; 69struct xfrm_user_sec_ctx; 70 71extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 72extern int cap_netlink_recv(struct sk_buff *skb, int cap); 73 74/* 75 * Values used in the task_security_ops calls 76 */ 77/* setuid or setgid, id0 == uid or gid */ 78#define LSM_SETID_ID 1 79 80/* setreuid or setregid, id0 == real, id1 == eff */ 81#define LSM_SETID_RE 2 82 83/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 84#define LSM_SETID_RES 4 85 86/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 87#define LSM_SETID_FS 8 88 89/* forward declares to avoid warnings */ 90struct nfsctl_arg; 91struct sched_param; 92struct swap_info_struct; 93struct request_sock; 94 95/* bprm_apply_creds unsafe reasons */ 96#define LSM_UNSAFE_SHARE 1 97#define LSM_UNSAFE_PTRACE 2 98#define LSM_UNSAFE_PTRACE_CAP 4 99 100#ifdef CONFIG_SECURITY 101 102/** 103 * struct security_operations - main security structure 104 * 105 * Security hooks for program execution operations. 106 * 107 * @bprm_alloc_security: 108 * Allocate and attach a security structure to the @bprm->security field. 109 * The security field is initialized to NULL when the bprm structure is 110 * allocated. 111 * @bprm contains the linux_binprm structure to be modified. 112 * Return 0 if operation was successful. 113 * @bprm_free_security: 114 * @bprm contains the linux_binprm structure to be modified. 115 * Deallocate and clear the @bprm->security field. 116 * @bprm_apply_creds: 117 * Compute and set the security attributes of a process being transformed 118 * by an execve operation based on the old attributes (current->security) 119 * and the information saved in @bprm->security by the set_security hook. 120 * Since this hook function (and its caller) are void, this hook can not 121 * return an error. However, it can leave the security attributes of the 122 * process unchanged if an access failure occurs at this point. 123 * bprm_apply_creds is called under task_lock. @unsafe indicates various 124 * reasons why it may be unsafe to change security state. 125 * @bprm contains the linux_binprm structure. 126 * @bprm_post_apply_creds: 127 * Runs after bprm_apply_creds with the task_lock dropped, so that 128 * functions which cannot be called safely under the task_lock can 129 * be used. This hook is a good place to perform state changes on 130 * the process such as closing open file descriptors to which access 131 * is no longer granted if the attributes were changed. 132 * Note that a security module might need to save state between 133 * bprm_apply_creds and bprm_post_apply_creds to store the decision 134 * on whether the process may proceed. 135 * @bprm contains the linux_binprm structure. 136 * @bprm_set_security: 137 * Save security information in the bprm->security field, typically based 138 * on information about the bprm->file, for later use by the apply_creds 139 * hook. This hook may also optionally check permissions (e.g. for 140 * transitions between security domains). 141 * This hook may be called multiple times during a single execve, e.g. for 142 * interpreters. The hook can tell whether it has already been called by 143 * checking to see if @bprm->security is non-NULL. If so, then the hook 144 * may decide either to retain the security information saved earlier or 145 * to replace it. 146 * @bprm contains the linux_binprm structure. 147 * Return 0 if the hook is successful and permission is granted. 148 * @bprm_check_security: 149 * This hook mediates the point when a search for a binary handler will 150 * begin. It allows a check the @bprm->security value which is set in 151 * the preceding set_security call. The primary difference from 152 * set_security is that the argv list and envp list are reliably 153 * available in @bprm. This hook may be called multiple times 154 * during a single execve; and in each pass set_security is called 155 * first. 156 * @bprm contains the linux_binprm structure. 157 * Return 0 if the hook is successful and permission is granted. 158 * @bprm_secureexec: 159 * Return a boolean value (0 or 1) indicating whether a "secure exec" 160 * is required. The flag is passed in the auxiliary table 161 * on the initial stack to the ELF interpreter to indicate whether libc 162 * should enable secure mode. 163 * @bprm contains the linux_binprm structure. 164 * 165 * Security hooks for filesystem operations. 166 * 167 * @sb_alloc_security: 168 * Allocate and attach a security structure to the sb->s_security field. 169 * The s_security field is initialized to NULL when the structure is 170 * allocated. 171 * @sb contains the super_block structure to be modified. 172 * Return 0 if operation was successful. 173 * @sb_free_security: 174 * Deallocate and clear the sb->s_security field. 175 * @sb contains the super_block structure to be modified. 176 * @sb_statfs: 177 * Check permission before obtaining filesystem statistics for the @mnt 178 * mountpoint. 179 * @dentry is a handle on the superblock for the filesystem. 180 * Return 0 if permission is granted. 181 * @sb_mount: 182 * Check permission before an object specified by @dev_name is mounted on 183 * the mount point named by @nd. For an ordinary mount, @dev_name 184 * identifies a device if the file system type requires a device. For a 185 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 186 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 187 * pathname of the object being mounted. 188 * @dev_name contains the name for object being mounted. 189 * @nd contains the nameidata structure for mount point object. 190 * @type contains the filesystem type. 191 * @flags contains the mount flags. 192 * @data contains the filesystem-specific data. 193 * Return 0 if permission is granted. 194 * @sb_copy_data: 195 * Allow mount option data to be copied prior to parsing by the filesystem, 196 * so that the security module can extract security-specific mount 197 * options cleanly (a filesystem may modify the data e.g. with strsep()). 198 * This also allows the original mount data to be stripped of security- 199 * specific options to avoid having to make filesystems aware of them. 200 * @type the type of filesystem being mounted. 201 * @orig the original mount data copied from userspace. 202 * @copy copied data which will be passed to the security module. 203 * Returns 0 if the copy was successful. 204 * @sb_check_sb: 205 * Check permission before the device with superblock @mnt->sb is mounted 206 * on the mount point named by @nd. 207 * @mnt contains the vfsmount for device being mounted. 208 * @nd contains the nameidata object for the mount point. 209 * Return 0 if permission is granted. 210 * @sb_umount: 211 * Check permission before the @mnt file system is unmounted. 212 * @mnt contains the mounted file system. 213 * @flags contains the unmount flags, e.g. MNT_FORCE. 214 * Return 0 if permission is granted. 215 * @sb_umount_close: 216 * Close any files in the @mnt mounted filesystem that are held open by 217 * the security module. This hook is called during an umount operation 218 * prior to checking whether the filesystem is still busy. 219 * @mnt contains the mounted filesystem. 220 * @sb_umount_busy: 221 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 222 * any files that were closed by umount_close. This hook is called during 223 * an umount operation if the umount fails after a call to the 224 * umount_close hook. 225 * @mnt contains the mounted filesystem. 226 * @sb_post_remount: 227 * Update the security module's state when a filesystem is remounted. 228 * This hook is only called if the remount was successful. 229 * @mnt contains the mounted file system. 230 * @flags contains the new filesystem flags. 231 * @data contains the filesystem-specific data. 232 * @sb_post_mountroot: 233 * Update the security module's state when the root filesystem is mounted. 234 * This hook is only called if the mount was successful. 235 * @sb_post_addmount: 236 * Update the security module's state when a filesystem is mounted. 237 * This hook is called any time a mount is successfully grafetd to 238 * the tree. 239 * @mnt contains the mounted filesystem. 240 * @mountpoint_nd contains the nameidata structure for the mount point. 241 * @sb_pivotroot: 242 * Check permission before pivoting the root filesystem. 243 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 244 * @new_nd contains the nameidata structure for the new root (new_root). 245 * Return 0 if permission is granted. 246 * @sb_post_pivotroot: 247 * Update module state after a successful pivot. 248 * @old_nd contains the nameidata structure for the old root. 249 * @new_nd contains the nameidata structure for the new root. 250 * 251 * Security hooks for inode operations. 252 * 253 * @inode_alloc_security: 254 * Allocate and attach a security structure to @inode->i_security. The 255 * i_security field is initialized to NULL when the inode structure is 256 * allocated. 257 * @inode contains the inode structure. 258 * Return 0 if operation was successful. 259 * @inode_free_security: 260 * @inode contains the inode structure. 261 * Deallocate the inode security structure and set @inode->i_security to 262 * NULL. 263 * @inode_init_security: 264 * Obtain the security attribute name suffix and value to set on a newly 265 * created inode and set up the incore security field for the new inode. 266 * This hook is called by the fs code as part of the inode creation 267 * transaction and provides for atomic labeling of the inode, unlike 268 * the post_create/mkdir/... hooks called by the VFS. The hook function 269 * is expected to allocate the name and value via kmalloc, with the caller 270 * being responsible for calling kfree after using them. 271 * If the security module does not use security attributes or does 272 * not wish to put a security attribute on this particular inode, 273 * then it should return -EOPNOTSUPP to skip this processing. 274 * @inode contains the inode structure of the newly created inode. 275 * @dir contains the inode structure of the parent directory. 276 * @name will be set to the allocated name suffix (e.g. selinux). 277 * @value will be set to the allocated attribute value. 278 * @len will be set to the length of the value. 279 * Returns 0 if @name and @value have been successfully set, 280 * -EOPNOTSUPP if no security attribute is needed, or 281 * -ENOMEM on memory allocation failure. 282 * @inode_create: 283 * Check permission to create a regular file. 284 * @dir contains inode structure of the parent of the new file. 285 * @dentry contains the dentry structure for the file to be created. 286 * @mode contains the file mode of the file to be created. 287 * Return 0 if permission is granted. 288 * @inode_link: 289 * Check permission before creating a new hard link to a file. 290 * @old_dentry contains the dentry structure for an existing link to the file. 291 * @dir contains the inode structure of the parent directory of the new link. 292 * @new_dentry contains the dentry structure for the new link. 293 * Return 0 if permission is granted. 294 * @inode_unlink: 295 * Check the permission to remove a hard link to a file. 296 * @dir contains the inode structure of parent directory of the file. 297 * @dentry contains the dentry structure for file to be unlinked. 298 * Return 0 if permission is granted. 299 * @inode_symlink: 300 * Check the permission to create a symbolic link to a file. 301 * @dir contains the inode structure of parent directory of the symbolic link. 302 * @dentry contains the dentry structure of the symbolic link. 303 * @old_name contains the pathname of file. 304 * Return 0 if permission is granted. 305 * @inode_mkdir: 306 * Check permissions to create a new directory in the existing directory 307 * associated with inode strcture @dir. 308 * @dir containst the inode structure of parent of the directory to be created. 309 * @dentry contains the dentry structure of new directory. 310 * @mode contains the mode of new directory. 311 * Return 0 if permission is granted. 312 * @inode_rmdir: 313 * Check the permission to remove a directory. 314 * @dir contains the inode structure of parent of the directory to be removed. 315 * @dentry contains the dentry structure of directory to be removed. 316 * Return 0 if permission is granted. 317 * @inode_mknod: 318 * Check permissions when creating a special file (or a socket or a fifo 319 * file created via the mknod system call). Note that if mknod operation 320 * is being done for a regular file, then the create hook will be called 321 * and not this hook. 322 * @dir contains the inode structure of parent of the new file. 323 * @dentry contains the dentry structure of the new file. 324 * @mode contains the mode of the new file. 325 * @dev contains the the device number. 326 * Return 0 if permission is granted. 327 * @inode_rename: 328 * Check for permission to rename a file or directory. 329 * @old_dir contains the inode structure for parent of the old link. 330 * @old_dentry contains the dentry structure of the old link. 331 * @new_dir contains the inode structure for parent of the new link. 332 * @new_dentry contains the dentry structure of the new link. 333 * Return 0 if permission is granted. 334 * @inode_readlink: 335 * Check the permission to read the symbolic link. 336 * @dentry contains the dentry structure for the file link. 337 * Return 0 if permission is granted. 338 * @inode_follow_link: 339 * Check permission to follow a symbolic link when looking up a pathname. 340 * @dentry contains the dentry structure for the link. 341 * @nd contains the nameidata structure for the parent directory. 342 * Return 0 if permission is granted. 343 * @inode_permission: 344 * Check permission before accessing an inode. This hook is called by the 345 * existing Linux permission function, so a security module can use it to 346 * provide additional checking for existing Linux permission checks. 347 * Notice that this hook is called when a file is opened (as well as many 348 * other operations), whereas the file_security_ops permission hook is 349 * called when the actual read/write operations are performed. 350 * @inode contains the inode structure to check. 351 * @mask contains the permission mask. 352 * @nd contains the nameidata (may be NULL). 353 * Return 0 if permission is granted. 354 * @inode_setattr: 355 * Check permission before setting file attributes. Note that the kernel 356 * call to notify_change is performed from several locations, whenever 357 * file attributes change (such as when a file is truncated, chown/chmod 358 * operations, transferring disk quotas, etc). 359 * @dentry contains the dentry structure for the file. 360 * @attr is the iattr structure containing the new file attributes. 361 * Return 0 if permission is granted. 362 * @inode_getattr: 363 * Check permission before obtaining file attributes. 364 * @mnt is the vfsmount where the dentry was looked up 365 * @dentry contains the dentry structure for the file. 366 * Return 0 if permission is granted. 367 * @inode_delete: 368 * @inode contains the inode structure for deleted inode. 369 * This hook is called when a deleted inode is released (i.e. an inode 370 * with no hard links has its use count drop to zero). A security module 371 * can use this hook to release any persistent label associated with the 372 * inode. 373 * @inode_setxattr: 374 * Check permission before setting the extended attributes 375 * @value identified by @name for @dentry. 376 * Return 0 if permission is granted. 377 * @inode_post_setxattr: 378 * Update inode security field after successful setxattr operation. 379 * @value identified by @name for @dentry. 380 * @inode_getxattr: 381 * Check permission before obtaining the extended attributes 382 * identified by @name for @dentry. 383 * Return 0 if permission is granted. 384 * @inode_listxattr: 385 * Check permission before obtaining the list of extended attribute 386 * names for @dentry. 387 * Return 0 if permission is granted. 388 * @inode_removexattr: 389 * Check permission before removing the extended attribute 390 * identified by @name for @dentry. 391 * Return 0 if permission is granted. 392 * @inode_getsecurity: 393 * Copy the extended attribute representation of the security label 394 * associated with @name for @inode into @buffer. @buffer may be 395 * NULL to request the size of the buffer required. @size indicates 396 * the size of @buffer in bytes. Note that @name is the remainder 397 * of the attribute name after the security. prefix has been removed. 398 * @err is the return value from the preceding fs getxattr call, 399 * and can be used by the security module to determine whether it 400 * should try and canonicalize the attribute value. 401 * Return number of bytes used/required on success. 402 * @inode_setsecurity: 403 * Set the security label associated with @name for @inode from the 404 * extended attribute value @value. @size indicates the size of the 405 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 406 * Note that @name is the remainder of the attribute name after the 407 * security. prefix has been removed. 408 * Return 0 on success. 409 * @inode_listsecurity: 410 * Copy the extended attribute names for the security labels 411 * associated with @inode into @buffer. The maximum size of @buffer 412 * is specified by @buffer_size. @buffer may be NULL to request 413 * the size of the buffer required. 414 * Returns number of bytes used/required on success. 415 * 416 * Security hooks for file operations 417 * 418 * @file_permission: 419 * Check file permissions before accessing an open file. This hook is 420 * called by various operations that read or write files. A security 421 * module can use this hook to perform additional checking on these 422 * operations, e.g. to revalidate permissions on use to support privilege 423 * bracketing or policy changes. Notice that this hook is used when the 424 * actual read/write operations are performed, whereas the 425 * inode_security_ops hook is called when a file is opened (as well as 426 * many other operations). 427 * Caveat: Although this hook can be used to revalidate permissions for 428 * various system call operations that read or write files, it does not 429 * address the revalidation of permissions for memory-mapped files. 430 * Security modules must handle this separately if they need such 431 * revalidation. 432 * @file contains the file structure being accessed. 433 * @mask contains the requested permissions. 434 * Return 0 if permission is granted. 435 * @file_alloc_security: 436 * Allocate and attach a security structure to the file->f_security field. 437 * The security field is initialized to NULL when the structure is first 438 * created. 439 * @file contains the file structure to secure. 440 * Return 0 if the hook is successful and permission is granted. 441 * @file_free_security: 442 * Deallocate and free any security structures stored in file->f_security. 443 * @file contains the file structure being modified. 444 * @file_ioctl: 445 * @file contains the file structure. 446 * @cmd contains the operation to perform. 447 * @arg contains the operational arguments. 448 * Check permission for an ioctl operation on @file. Note that @arg can 449 * sometimes represents a user space pointer; in other cases, it may be a 450 * simple integer value. When @arg represents a user space pointer, it 451 * should never be used by the security module. 452 * Return 0 if permission is granted. 453 * @file_mmap : 454 * Check permissions for a mmap operation. The @file may be NULL, e.g. 455 * if mapping anonymous memory. 456 * @file contains the file structure for file to map (may be NULL). 457 * @reqprot contains the protection requested by the application. 458 * @prot contains the protection that will be applied by the kernel. 459 * @flags contains the operational flags. 460 * Return 0 if permission is granted. 461 * @file_mprotect: 462 * Check permissions before changing memory access permissions. 463 * @vma contains the memory region to modify. 464 * @reqprot contains the protection requested by the application. 465 * @prot contains the protection that will be applied by the kernel. 466 * Return 0 if permission is granted. 467 * @file_lock: 468 * Check permission before performing file locking operations. 469 * Note: this hook mediates both flock and fcntl style locks. 470 * @file contains the file structure. 471 * @cmd contains the posix-translated lock operation to perform 472 * (e.g. F_RDLCK, F_WRLCK). 473 * Return 0 if permission is granted. 474 * @file_fcntl: 475 * Check permission before allowing the file operation specified by @cmd 476 * from being performed on the file @file. Note that @arg can sometimes 477 * represents a user space pointer; in other cases, it may be a simple 478 * integer value. When @arg represents a user space pointer, it should 479 * never be used by the security module. 480 * @file contains the file structure. 481 * @cmd contains the operation to be performed. 482 * @arg contains the operational arguments. 483 * Return 0 if permission is granted. 484 * @file_set_fowner: 485 * Save owner security information (typically from current->security) in 486 * file->f_security for later use by the send_sigiotask hook. 487 * @file contains the file structure to update. 488 * Return 0 on success. 489 * @file_send_sigiotask: 490 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 491 * process @tsk. Note that this hook is sometimes called from interrupt. 492 * Note that the fown_struct, @fown, is never outside the context of a 493 * struct file, so the file structure (and associated security information) 494 * can always be obtained: 495 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 496 * @tsk contains the structure of task receiving signal. 497 * @fown contains the file owner information. 498 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 499 * Return 0 if permission is granted. 500 * @file_receive: 501 * This hook allows security modules to control the ability of a process 502 * to receive an open file descriptor via socket IPC. 503 * @file contains the file structure being received. 504 * Return 0 if permission is granted. 505 * 506 * Security hooks for task operations. 507 * 508 * @task_create: 509 * Check permission before creating a child process. See the clone(2) 510 * manual page for definitions of the @clone_flags. 511 * @clone_flags contains the flags indicating what should be shared. 512 * Return 0 if permission is granted. 513 * @task_alloc_security: 514 * @p contains the task_struct for child process. 515 * Allocate and attach a security structure to the p->security field. The 516 * security field is initialized to NULL when the task structure is 517 * allocated. 518 * Return 0 if operation was successful. 519 * @task_free_security: 520 * @p contains the task_struct for process. 521 * Deallocate and clear the p->security field. 522 * @task_setuid: 523 * Check permission before setting one or more of the user identity 524 * attributes of the current process. The @flags parameter indicates 525 * which of the set*uid system calls invoked this hook and how to 526 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 527 * definitions at the beginning of this file for the @flags values and 528 * their meanings. 529 * @id0 contains a uid. 530 * @id1 contains a uid. 531 * @id2 contains a uid. 532 * @flags contains one of the LSM_SETID_* values. 533 * Return 0 if permission is granted. 534 * @task_post_setuid: 535 * Update the module's state after setting one or more of the user 536 * identity attributes of the current process. The @flags parameter 537 * indicates which of the set*uid system calls invoked this hook. If 538 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 539 * parameters are not used. 540 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 541 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 542 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 543 * @flags contains one of the LSM_SETID_* values. 544 * Return 0 on success. 545 * @task_setgid: 546 * Check permission before setting one or more of the group identity 547 * attributes of the current process. The @flags parameter indicates 548 * which of the set*gid system calls invoked this hook and how to 549 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 550 * definitions at the beginning of this file for the @flags values and 551 * their meanings. 552 * @id0 contains a gid. 553 * @id1 contains a gid. 554 * @id2 contains a gid. 555 * @flags contains one of the LSM_SETID_* values. 556 * Return 0 if permission is granted. 557 * @task_setpgid: 558 * Check permission before setting the process group identifier of the 559 * process @p to @pgid. 560 * @p contains the task_struct for process being modified. 561 * @pgid contains the new pgid. 562 * Return 0 if permission is granted. 563 * @task_getpgid: 564 * Check permission before getting the process group identifier of the 565 * process @p. 566 * @p contains the task_struct for the process. 567 * Return 0 if permission is granted. 568 * @task_getsid: 569 * Check permission before getting the session identifier of the process 570 * @p. 571 * @p contains the task_struct for the process. 572 * Return 0 if permission is granted. 573 * @task_getsecid: 574 * Retrieve the security identifier of the process @p. 575 * @p contains the task_struct for the process and place is into @secid. 576 * @task_setgroups: 577 * Check permission before setting the supplementary group set of the 578 * current process. 579 * @group_info contains the new group information. 580 * Return 0 if permission is granted. 581 * @task_setnice: 582 * Check permission before setting the nice value of @p to @nice. 583 * @p contains the task_struct of process. 584 * @nice contains the new nice value. 585 * Return 0 if permission is granted. 586 * @task_setioprio 587 * Check permission before setting the ioprio value of @p to @ioprio. 588 * @p contains the task_struct of process. 589 * @ioprio contains the new ioprio value 590 * Return 0 if permission is granted. 591 * @task_getioprio 592 * Check permission before getting the ioprio value of @p. 593 * @p contains the task_struct of process. 594 * Return 0 if permission is granted. 595 * @task_setrlimit: 596 * Check permission before setting the resource limits of the current 597 * process for @resource to @new_rlim. The old resource limit values can 598 * be examined by dereferencing (current->signal->rlim + resource). 599 * @resource contains the resource whose limit is being set. 600 * @new_rlim contains the new limits for @resource. 601 * Return 0 if permission is granted. 602 * @task_setscheduler: 603 * Check permission before setting scheduling policy and/or parameters of 604 * process @p based on @policy and @lp. 605 * @p contains the task_struct for process. 606 * @policy contains the scheduling policy. 607 * @lp contains the scheduling parameters. 608 * Return 0 if permission is granted. 609 * @task_getscheduler: 610 * Check permission before obtaining scheduling information for process 611 * @p. 612 * @p contains the task_struct for process. 613 * Return 0 if permission is granted. 614 * @task_movememory 615 * Check permission before moving memory owned by process @p. 616 * @p contains the task_struct for process. 617 * Return 0 if permission is granted. 618 * @task_kill: 619 * Check permission before sending signal @sig to @p. @info can be NULL, 620 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 621 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 622 * from the kernel and should typically be permitted. 623 * SIGIO signals are handled separately by the send_sigiotask hook in 624 * file_security_ops. 625 * @p contains the task_struct for process. 626 * @info contains the signal information. 627 * @sig contains the signal value. 628 * @secid contains the sid of the process where the signal originated 629 * Return 0 if permission is granted. 630 * @task_wait: 631 * Check permission before allowing a process to reap a child process @p 632 * and collect its status information. 633 * @p contains the task_struct for process. 634 * Return 0 if permission is granted. 635 * @task_prctl: 636 * Check permission before performing a process control operation on the 637 * current process. 638 * @option contains the operation. 639 * @arg2 contains a argument. 640 * @arg3 contains a argument. 641 * @arg4 contains a argument. 642 * @arg5 contains a argument. 643 * Return 0 if permission is granted. 644 * @task_reparent_to_init: 645 * Set the security attributes in @p->security for a kernel thread that 646 * is being reparented to the init task. 647 * @p contains the task_struct for the kernel thread. 648 * @task_to_inode: 649 * Set the security attributes for an inode based on an associated task's 650 * security attributes, e.g. for /proc/pid inodes. 651 * @p contains the task_struct for the task. 652 * @inode contains the inode structure for the inode. 653 * 654 * Security hooks for Netlink messaging. 655 * 656 * @netlink_send: 657 * Save security information for a netlink message so that permission 658 * checking can be performed when the message is processed. The security 659 * information can be saved using the eff_cap field of the 660 * netlink_skb_parms structure. Also may be used to provide fine 661 * grained control over message transmission. 662 * @sk associated sock of task sending the message., 663 * @skb contains the sk_buff structure for the netlink message. 664 * Return 0 if the information was successfully saved and message 665 * is allowed to be transmitted. 666 * @netlink_recv: 667 * Check permission before processing the received netlink message in 668 * @skb. 669 * @skb contains the sk_buff structure for the netlink message. 670 * @cap indicates the capability required 671 * Return 0 if permission is granted. 672 * 673 * Security hooks for Unix domain networking. 674 * 675 * @unix_stream_connect: 676 * Check permissions before establishing a Unix domain stream connection 677 * between @sock and @other. 678 * @sock contains the socket structure. 679 * @other contains the peer socket structure. 680 * Return 0 if permission is granted. 681 * @unix_may_send: 682 * Check permissions before connecting or sending datagrams from @sock to 683 * @other. 684 * @sock contains the socket structure. 685 * @sock contains the peer socket structure. 686 * Return 0 if permission is granted. 687 * 688 * The @unix_stream_connect and @unix_may_send hooks were necessary because 689 * Linux provides an alternative to the conventional file name space for Unix 690 * domain sockets. Whereas binding and connecting to sockets in the file name 691 * space is mediated by the typical file permissions (and caught by the mknod 692 * and permission hooks in inode_security_ops), binding and connecting to 693 * sockets in the abstract name space is completely unmediated. Sufficient 694 * control of Unix domain sockets in the abstract name space isn't possible 695 * using only the socket layer hooks, since we need to know the actual target 696 * socket, which is not looked up until we are inside the af_unix code. 697 * 698 * Security hooks for socket operations. 699 * 700 * @socket_create: 701 * Check permissions prior to creating a new socket. 702 * @family contains the requested protocol family. 703 * @type contains the requested communications type. 704 * @protocol contains the requested protocol. 705 * @kern set to 1 if a kernel socket. 706 * Return 0 if permission is granted. 707 * @socket_post_create: 708 * This hook allows a module to update or allocate a per-socket security 709 * structure. Note that the security field was not added directly to the 710 * socket structure, but rather, the socket security information is stored 711 * in the associated inode. Typically, the inode alloc_security hook will 712 * allocate and and attach security information to 713 * sock->inode->i_security. This hook may be used to update the 714 * sock->inode->i_security field with additional information that wasn't 715 * available when the inode was allocated. 716 * @sock contains the newly created socket structure. 717 * @family contains the requested protocol family. 718 * @type contains the requested communications type. 719 * @protocol contains the requested protocol. 720 * @kern set to 1 if a kernel socket. 721 * @socket_bind: 722 * Check permission before socket protocol layer bind operation is 723 * performed and the socket @sock is bound to the address specified in the 724 * @address parameter. 725 * @sock contains the socket structure. 726 * @address contains the address to bind to. 727 * @addrlen contains the length of address. 728 * Return 0 if permission is granted. 729 * @socket_connect: 730 * Check permission before socket protocol layer connect operation 731 * attempts to connect socket @sock to a remote address, @address. 732 * @sock contains the socket structure. 733 * @address contains the address of remote endpoint. 734 * @addrlen contains the length of address. 735 * Return 0 if permission is granted. 736 * @socket_listen: 737 * Check permission before socket protocol layer listen operation. 738 * @sock contains the socket structure. 739 * @backlog contains the maximum length for the pending connection queue. 740 * Return 0 if permission is granted. 741 * @socket_accept: 742 * Check permission before accepting a new connection. Note that the new 743 * socket, @newsock, has been created and some information copied to it, 744 * but the accept operation has not actually been performed. 745 * @sock contains the listening socket structure. 746 * @newsock contains the newly created server socket for connection. 747 * Return 0 if permission is granted. 748 * @socket_post_accept: 749 * This hook allows a security module to copy security 750 * information into the newly created socket's inode. 751 * @sock contains the listening socket structure. 752 * @newsock contains the newly created server socket for connection. 753 * @socket_sendmsg: 754 * Check permission before transmitting a message to another socket. 755 * @sock contains the socket structure. 756 * @msg contains the message to be transmitted. 757 * @size contains the size of message. 758 * Return 0 if permission is granted. 759 * @socket_recvmsg: 760 * Check permission before receiving a message from a socket. 761 * @sock contains the socket structure. 762 * @msg contains the message structure. 763 * @size contains the size of message structure. 764 * @flags contains the operational flags. 765 * Return 0 if permission is granted. 766 * @socket_getsockname: 767 * Check permission before the local address (name) of the socket object 768 * @sock is retrieved. 769 * @sock contains the socket structure. 770 * Return 0 if permission is granted. 771 * @socket_getpeername: 772 * Check permission before the remote address (name) of a socket object 773 * @sock is retrieved. 774 * @sock contains the socket structure. 775 * Return 0 if permission is granted. 776 * @socket_getsockopt: 777 * Check permissions before retrieving the options associated with socket 778 * @sock. 779 * @sock contains the socket structure. 780 * @level contains the protocol level to retrieve option from. 781 * @optname contains the name of option to retrieve. 782 * Return 0 if permission is granted. 783 * @socket_setsockopt: 784 * Check permissions before setting the options associated with socket 785 * @sock. 786 * @sock contains the socket structure. 787 * @level contains the protocol level to set options for. 788 * @optname contains the name of the option to set. 789 * Return 0 if permission is granted. 790 * @socket_shutdown: 791 * Checks permission before all or part of a connection on the socket 792 * @sock is shut down. 793 * @sock contains the socket structure. 794 * @how contains the flag indicating how future sends and receives are handled. 795 * Return 0 if permission is granted. 796 * @socket_sock_rcv_skb: 797 * Check permissions on incoming network packets. This hook is distinct 798 * from Netfilter's IP input hooks since it is the first time that the 799 * incoming sk_buff @skb has been associated with a particular socket, @sk. 800 * @sk contains the sock (not socket) associated with the incoming sk_buff. 801 * @skb contains the incoming network data. 802 * @socket_getpeersec: 803 * This hook allows the security module to provide peer socket security 804 * state to userspace via getsockopt SO_GETPEERSEC. 805 * @sock is the local socket. 806 * @optval userspace memory where the security state is to be copied. 807 * @optlen userspace int where the module should copy the actual length 808 * of the security state. 809 * @len as input is the maximum length to copy to userspace provided 810 * by the caller. 811 * Return 0 if all is well, otherwise, typical getsockopt return 812 * values. 813 * @sk_alloc_security: 814 * Allocate and attach a security structure to the sk->sk_security field, 815 * which is used to copy security attributes between local stream sockets. 816 * @sk_free_security: 817 * Deallocate security structure. 818 * @sk_clone_security: 819 * Clone/copy security structure. 820 * @sk_getsecid: 821 * Retrieve the LSM-specific secid for the sock to enable caching of network 822 * authorizations. 823 * @sock_graft: 824 * Sets the socket's isec sid to the sock's sid. 825 * @inet_conn_request: 826 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 827 * @inet_csk_clone: 828 * Sets the new child socket's sid to the openreq sid. 829 * @req_classify_flow: 830 * Sets the flow's sid to the openreq sid. 831 * 832 * Security hooks for XFRM operations. 833 * 834 * @xfrm_policy_alloc_security: 835 * @xp contains the xfrm_policy being added to Security Policy Database 836 * used by the XFRM system. 837 * @sec_ctx contains the security context information being provided by 838 * the user-level policy update program (e.g., setkey). 839 * @sk refers to the sock from which to derive the security context. 840 * Allocate a security structure to the xp->security field; the security 841 * field is initialized to NULL when the xfrm_policy is allocated. Only 842 * one of sec_ctx or sock can be specified. 843 * Return 0 if operation was successful (memory to allocate, legal context) 844 * @xfrm_policy_clone_security: 845 * @old contains an existing xfrm_policy in the SPD. 846 * @new contains a new xfrm_policy being cloned from old. 847 * Allocate a security structure to the new->security field 848 * that contains the information from the old->security field. 849 * Return 0 if operation was successful (memory to allocate). 850 * @xfrm_policy_free_security: 851 * @xp contains the xfrm_policy 852 * Deallocate xp->security. 853 * @xfrm_policy_delete_security: 854 * @xp contains the xfrm_policy. 855 * Authorize deletion of xp->security. 856 * @xfrm_state_alloc_security: 857 * @x contains the xfrm_state being added to the Security Association 858 * Database by the XFRM system. 859 * @sec_ctx contains the security context information being provided by 860 * the user-level SA generation program (e.g., setkey or racoon). 861 * @polsec contains the security context information associated with a xfrm 862 * policy rule from which to take the base context. polsec must be NULL 863 * when sec_ctx is specified. 864 * @secid contains the secid from which to take the mls portion of the context. 865 * Allocate a security structure to the x->security field; the security 866 * field is initialized to NULL when the xfrm_state is allocated. Set the 867 * context to correspond to either sec_ctx or polsec, with the mls portion 868 * taken from secid in the latter case. 869 * Return 0 if operation was successful (memory to allocate, legal context). 870 * @xfrm_state_free_security: 871 * @x contains the xfrm_state. 872 * Deallocate x->security. 873 * @xfrm_state_delete_security: 874 * @x contains the xfrm_state. 875 * Authorize deletion of x->security. 876 * @xfrm_policy_lookup: 877 * @xp contains the xfrm_policy for which the access control is being 878 * checked. 879 * @fl_secid contains the flow security label that is used to authorize 880 * access to the policy xp. 881 * @dir contains the direction of the flow (input or output). 882 * Check permission when a flow selects a xfrm_policy for processing 883 * XFRMs on a packet. The hook is called when selecting either a 884 * per-socket policy or a generic xfrm policy. 885 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 886 * on other errors. 887 * @xfrm_state_pol_flow_match: 888 * @x contains the state to match. 889 * @xp contains the policy to check for a match. 890 * @fl contains the flow to check for a match. 891 * Return 1 if there is a match. 892 * @xfrm_flow_state_match: 893 * @fl contains the flow key to match. 894 * @xfrm points to the xfrm_state to match. 895 * @xp points to the xfrm_policy to match. 896 * Return 1 if there is a match. 897 * @xfrm_decode_session: 898 * @skb points to skb to decode. 899 * @secid points to the flow key secid to set. 900 * @ckall says if all xfrms used should be checked for same secid. 901 * Return 0 if ckall is zero or all xfrms used have the same secid. 902 * 903 * Security hooks affecting all Key Management operations 904 * 905 * @key_alloc: 906 * Permit allocation of a key and assign security data. Note that key does 907 * not have a serial number assigned at this point. 908 * @key points to the key. 909 * @flags is the allocation flags 910 * Return 0 if permission is granted, -ve error otherwise. 911 * @key_free: 912 * Notification of destruction; free security data. 913 * @key points to the key. 914 * No return value. 915 * @key_permission: 916 * See whether a specific operational right is granted to a process on a 917 * key. 918 * @key_ref refers to the key (key pointer + possession attribute bit). 919 * @context points to the process to provide the context against which to 920 * evaluate the security data on the key. 921 * @perm describes the combination of permissions required of this key. 922 * Return 1 if permission granted, 0 if permission denied and -ve it the 923 * normal permissions model should be effected. 924 * 925 * Security hooks affecting all System V IPC operations. 926 * 927 * @ipc_permission: 928 * Check permissions for access to IPC 929 * @ipcp contains the kernel IPC permission structure 930 * @flag contains the desired (requested) permission set 931 * Return 0 if permission is granted. 932 * 933 * Security hooks for individual messages held in System V IPC message queues 934 * @msg_msg_alloc_security: 935 * Allocate and attach a security structure to the msg->security field. 936 * The security field is initialized to NULL when the structure is first 937 * created. 938 * @msg contains the message structure to be modified. 939 * Return 0 if operation was successful and permission is granted. 940 * @msg_msg_free_security: 941 * Deallocate the security structure for this message. 942 * @msg contains the message structure to be modified. 943 * 944 * Security hooks for System V IPC Message Queues 945 * 946 * @msg_queue_alloc_security: 947 * Allocate and attach a security structure to the 948 * msq->q_perm.security field. The security field is initialized to 949 * NULL when the structure is first created. 950 * @msq contains the message queue structure to be modified. 951 * Return 0 if operation was successful and permission is granted. 952 * @msg_queue_free_security: 953 * Deallocate security structure for this message queue. 954 * @msq contains the message queue structure to be modified. 955 * @msg_queue_associate: 956 * Check permission when a message queue is requested through the 957 * msgget system call. This hook is only called when returning the 958 * message queue identifier for an existing message queue, not when a 959 * new message queue is created. 960 * @msq contains the message queue to act upon. 961 * @msqflg contains the operation control flags. 962 * Return 0 if permission is granted. 963 * @msg_queue_msgctl: 964 * Check permission when a message control operation specified by @cmd 965 * is to be performed on the message queue @msq. 966 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 967 * @msq contains the message queue to act upon. May be NULL. 968 * @cmd contains the operation to be performed. 969 * Return 0 if permission is granted. 970 * @msg_queue_msgsnd: 971 * Check permission before a message, @msg, is enqueued on the message 972 * queue, @msq. 973 * @msq contains the message queue to send message to. 974 * @msg contains the message to be enqueued. 975 * @msqflg contains operational flags. 976 * Return 0 if permission is granted. 977 * @msg_queue_msgrcv: 978 * Check permission before a message, @msg, is removed from the message 979 * queue, @msq. The @target task structure contains a pointer to the 980 * process that will be receiving the message (not equal to the current 981 * process when inline receives are being performed). 982 * @msq contains the message queue to retrieve message from. 983 * @msg contains the message destination. 984 * @target contains the task structure for recipient process. 985 * @type contains the type of message requested. 986 * @mode contains the operational flags. 987 * Return 0 if permission is granted. 988 * 989 * Security hooks for System V Shared Memory Segments 990 * 991 * @shm_alloc_security: 992 * Allocate and attach a security structure to the shp->shm_perm.security 993 * field. The security field is initialized to NULL when the structure is 994 * first created. 995 * @shp contains the shared memory structure to be modified. 996 * Return 0 if operation was successful and permission is granted. 997 * @shm_free_security: 998 * Deallocate the security struct for this memory segment. 999 * @shp contains the shared memory structure to be modified. 1000 * @shm_associate: 1001 * Check permission when a shared memory region is requested through the 1002 * shmget system call. This hook is only called when returning the shared 1003 * memory region identifier for an existing region, not when a new shared 1004 * memory region is created. 1005 * @shp contains the shared memory structure to be modified. 1006 * @shmflg contains the operation control flags. 1007 * Return 0 if permission is granted. 1008 * @shm_shmctl: 1009 * Check permission when a shared memory control operation specified by 1010 * @cmd is to be performed on the shared memory region @shp. 1011 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1012 * @shp contains shared memory structure to be modified. 1013 * @cmd contains the operation to be performed. 1014 * Return 0 if permission is granted. 1015 * @shm_shmat: 1016 * Check permissions prior to allowing the shmat system call to attach the 1017 * shared memory segment @shp to the data segment of the calling process. 1018 * The attaching address is specified by @shmaddr. 1019 * @shp contains the shared memory structure to be modified. 1020 * @shmaddr contains the address to attach memory region to. 1021 * @shmflg contains the operational flags. 1022 * Return 0 if permission is granted. 1023 * 1024 * Security hooks for System V Semaphores 1025 * 1026 * @sem_alloc_security: 1027 * Allocate and attach a security structure to the sma->sem_perm.security 1028 * field. The security field is initialized to NULL when the structure is 1029 * first created. 1030 * @sma contains the semaphore structure 1031 * Return 0 if operation was successful and permission is granted. 1032 * @sem_free_security: 1033 * deallocate security struct for this semaphore 1034 * @sma contains the semaphore structure. 1035 * @sem_associate: 1036 * Check permission when a semaphore is requested through the semget 1037 * system call. This hook is only called when returning the semaphore 1038 * identifier for an existing semaphore, not when a new one must be 1039 * created. 1040 * @sma contains the semaphore structure. 1041 * @semflg contains the operation control flags. 1042 * Return 0 if permission is granted. 1043 * @sem_semctl: 1044 * Check permission when a semaphore operation specified by @cmd is to be 1045 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1046 * IPC_INFO or SEM_INFO. 1047 * @sma contains the semaphore structure. May be NULL. 1048 * @cmd contains the operation to be performed. 1049 * Return 0 if permission is granted. 1050 * @sem_semop 1051 * Check permissions before performing operations on members of the 1052 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1053 * may be modified. 1054 * @sma contains the semaphore structure. 1055 * @sops contains the operations to perform. 1056 * @nsops contains the number of operations to perform. 1057 * @alter contains the flag indicating whether changes are to be made. 1058 * Return 0 if permission is granted. 1059 * 1060 * @ptrace: 1061 * Check permission before allowing the @parent process to trace the 1062 * @child process. 1063 * Security modules may also want to perform a process tracing check 1064 * during an execve in the set_security or apply_creds hooks of 1065 * binprm_security_ops if the process is being traced and its security 1066 * attributes would be changed by the execve. 1067 * @parent contains the task_struct structure for parent process. 1068 * @child contains the task_struct structure for child process. 1069 * Return 0 if permission is granted. 1070 * @capget: 1071 * Get the @effective, @inheritable, and @permitted capability sets for 1072 * the @target process. The hook may also perform permission checking to 1073 * determine if the current process is allowed to see the capability sets 1074 * of the @target process. 1075 * @target contains the task_struct structure for target process. 1076 * @effective contains the effective capability set. 1077 * @inheritable contains the inheritable capability set. 1078 * @permitted contains the permitted capability set. 1079 * Return 0 if the capability sets were successfully obtained. 1080 * @capset_check: 1081 * Check permission before setting the @effective, @inheritable, and 1082 * @permitted capability sets for the @target process. 1083 * Caveat: @target is also set to current if a set of processes is 1084 * specified (i.e. all processes other than current and init or a 1085 * particular process group). Hence, the capset_set hook may need to 1086 * revalidate permission to the actual target process. 1087 * @target contains the task_struct structure for target process. 1088 * @effective contains the effective capability set. 1089 * @inheritable contains the inheritable capability set. 1090 * @permitted contains the permitted capability set. 1091 * Return 0 if permission is granted. 1092 * @capset_set: 1093 * Set the @effective, @inheritable, and @permitted capability sets for 1094 * the @target process. Since capset_check cannot always check permission 1095 * to the real @target process, this hook may also perform permission 1096 * checking to determine if the current process is allowed to set the 1097 * capability sets of the @target process. However, this hook has no way 1098 * of returning an error due to the structure of the sys_capset code. 1099 * @target contains the task_struct structure for target process. 1100 * @effective contains the effective capability set. 1101 * @inheritable contains the inheritable capability set. 1102 * @permitted contains the permitted capability set. 1103 * @capable: 1104 * Check whether the @tsk process has the @cap capability. 1105 * @tsk contains the task_struct for the process. 1106 * @cap contains the capability <include/linux/capability.h>. 1107 * Return 0 if the capability is granted for @tsk. 1108 * @acct: 1109 * Check permission before enabling or disabling process accounting. If 1110 * accounting is being enabled, then @file refers to the open file used to 1111 * store accounting records. If accounting is being disabled, then @file 1112 * is NULL. 1113 * @file contains the file structure for the accounting file (may be NULL). 1114 * Return 0 if permission is granted. 1115 * @sysctl: 1116 * Check permission before accessing the @table sysctl variable in the 1117 * manner specified by @op. 1118 * @table contains the ctl_table structure for the sysctl variable. 1119 * @op contains the operation (001 = search, 002 = write, 004 = read). 1120 * Return 0 if permission is granted. 1121 * @syslog: 1122 * Check permission before accessing the kernel message ring or changing 1123 * logging to the console. 1124 * See the syslog(2) manual page for an explanation of the @type values. 1125 * @type contains the type of action. 1126 * Return 0 if permission is granted. 1127 * @settime: 1128 * Check permission to change the system time. 1129 * struct timespec and timezone are defined in include/linux/time.h 1130 * @ts contains new time 1131 * @tz contains new timezone 1132 * Return 0 if permission is granted. 1133 * @vm_enough_memory: 1134 * Check permissions for allocating a new virtual mapping. 1135 * @pages contains the number of pages. 1136 * Return 0 if permission is granted. 1137 * 1138 * @register_security: 1139 * allow module stacking. 1140 * @name contains the name of the security module being stacked. 1141 * @ops contains a pointer to the struct security_operations of the module to stack. 1142 * @unregister_security: 1143 * remove a stacked module. 1144 * @name contains the name of the security module being unstacked. 1145 * @ops contains a pointer to the struct security_operations of the module to unstack. 1146 * 1147 * @secid_to_secctx: 1148 * Convert secid to security context. 1149 * @secid contains the security ID. 1150 * @secdata contains the pointer that stores the converted security context. 1151 * 1152 * @release_secctx: 1153 * Release the security context. 1154 * @secdata contains the security context. 1155 * @seclen contains the length of the security context. 1156 * 1157 * This is the main security structure. 1158 */ 1159struct security_operations { 1160 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1161 int (*capget) (struct task_struct * target, 1162 kernel_cap_t * effective, 1163 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1164 int (*capset_check) (struct task_struct * target, 1165 kernel_cap_t * effective, 1166 kernel_cap_t * inheritable, 1167 kernel_cap_t * permitted); 1168 void (*capset_set) (struct task_struct * target, 1169 kernel_cap_t * effective, 1170 kernel_cap_t * inheritable, 1171 kernel_cap_t * permitted); 1172 int (*capable) (struct task_struct * tsk, int cap); 1173 int (*acct) (struct file * file); 1174 int (*sysctl) (struct ctl_table * table, int op); 1175 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1176 int (*quota_on) (struct dentry * dentry); 1177 int (*syslog) (int type); 1178 int (*settime) (struct timespec *ts, struct timezone *tz); 1179 int (*vm_enough_memory) (long pages); 1180 1181 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1182 void (*bprm_free_security) (struct linux_binprm * bprm); 1183 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1184 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1185 int (*bprm_set_security) (struct linux_binprm * bprm); 1186 int (*bprm_check_security) (struct linux_binprm * bprm); 1187 int (*bprm_secureexec) (struct linux_binprm * bprm); 1188 1189 int (*sb_alloc_security) (struct super_block * sb); 1190 void (*sb_free_security) (struct super_block * sb); 1191 int (*sb_copy_data)(struct file_system_type *type, 1192 void *orig, void *copy); 1193 int (*sb_kern_mount) (struct super_block *sb, void *data); 1194 int (*sb_statfs) (struct dentry *dentry); 1195 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1196 char *type, unsigned long flags, void *data); 1197 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1198 int (*sb_umount) (struct vfsmount * mnt, int flags); 1199 void (*sb_umount_close) (struct vfsmount * mnt); 1200 void (*sb_umount_busy) (struct vfsmount * mnt); 1201 void (*sb_post_remount) (struct vfsmount * mnt, 1202 unsigned long flags, void *data); 1203 void (*sb_post_mountroot) (void); 1204 void (*sb_post_addmount) (struct vfsmount * mnt, 1205 struct nameidata * mountpoint_nd); 1206 int (*sb_pivotroot) (struct nameidata * old_nd, 1207 struct nameidata * new_nd); 1208 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1209 struct nameidata * new_nd); 1210 1211 int (*inode_alloc_security) (struct inode *inode); 1212 void (*inode_free_security) (struct inode *inode); 1213 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1214 char **name, void **value, size_t *len); 1215 int (*inode_create) (struct inode *dir, 1216 struct dentry *dentry, int mode); 1217 int (*inode_link) (struct dentry *old_dentry, 1218 struct inode *dir, struct dentry *new_dentry); 1219 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1220 int (*inode_symlink) (struct inode *dir, 1221 struct dentry *dentry, const char *old_name); 1222 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1223 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1224 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1225 int mode, dev_t dev); 1226 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1227 struct inode *new_dir, struct dentry *new_dentry); 1228 int (*inode_readlink) (struct dentry *dentry); 1229 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1230 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1231 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1232 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1233 void (*inode_delete) (struct inode *inode); 1234 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1235 size_t size, int flags); 1236 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1237 size_t size, int flags); 1238 int (*inode_getxattr) (struct dentry *dentry, char *name); 1239 int (*inode_listxattr) (struct dentry *dentry); 1240 int (*inode_removexattr) (struct dentry *dentry, char *name); 1241 const char *(*inode_xattr_getsuffix) (void); 1242 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1243 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1244 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1245 1246 int (*file_permission) (struct file * file, int mask); 1247 int (*file_alloc_security) (struct file * file); 1248 void (*file_free_security) (struct file * file); 1249 int (*file_ioctl) (struct file * file, unsigned int cmd, 1250 unsigned long arg); 1251 int (*file_mmap) (struct file * file, 1252 unsigned long reqprot, 1253 unsigned long prot, unsigned long flags); 1254 int (*file_mprotect) (struct vm_area_struct * vma, 1255 unsigned long reqprot, 1256 unsigned long prot); 1257 int (*file_lock) (struct file * file, unsigned int cmd); 1258 int (*file_fcntl) (struct file * file, unsigned int cmd, 1259 unsigned long arg); 1260 int (*file_set_fowner) (struct file * file); 1261 int (*file_send_sigiotask) (struct task_struct * tsk, 1262 struct fown_struct * fown, int sig); 1263 int (*file_receive) (struct file * file); 1264 1265 int (*task_create) (unsigned long clone_flags); 1266 int (*task_alloc_security) (struct task_struct * p); 1267 void (*task_free_security) (struct task_struct * p); 1268 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1269 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1270 uid_t old_euid, uid_t old_suid, int flags); 1271 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1272 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1273 int (*task_getpgid) (struct task_struct * p); 1274 int (*task_getsid) (struct task_struct * p); 1275 void (*task_getsecid) (struct task_struct * p, u32 * secid); 1276 int (*task_setgroups) (struct group_info *group_info); 1277 int (*task_setnice) (struct task_struct * p, int nice); 1278 int (*task_setioprio) (struct task_struct * p, int ioprio); 1279 int (*task_getioprio) (struct task_struct * p); 1280 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1281 int (*task_setscheduler) (struct task_struct * p, int policy, 1282 struct sched_param * lp); 1283 int (*task_getscheduler) (struct task_struct * p); 1284 int (*task_movememory) (struct task_struct * p); 1285 int (*task_kill) (struct task_struct * p, 1286 struct siginfo * info, int sig, u32 secid); 1287 int (*task_wait) (struct task_struct * p); 1288 int (*task_prctl) (int option, unsigned long arg2, 1289 unsigned long arg3, unsigned long arg4, 1290 unsigned long arg5); 1291 void (*task_reparent_to_init) (struct task_struct * p); 1292 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1293 1294 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1295 1296 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1297 void (*msg_msg_free_security) (struct msg_msg * msg); 1298 1299 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1300 void (*msg_queue_free_security) (struct msg_queue * msq); 1301 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1302 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1303 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1304 struct msg_msg * msg, int msqflg); 1305 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1306 struct msg_msg * msg, 1307 struct task_struct * target, 1308 long type, int mode); 1309 1310 int (*shm_alloc_security) (struct shmid_kernel * shp); 1311 void (*shm_free_security) (struct shmid_kernel * shp); 1312 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1313 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1314 int (*shm_shmat) (struct shmid_kernel * shp, 1315 char __user *shmaddr, int shmflg); 1316 1317 int (*sem_alloc_security) (struct sem_array * sma); 1318 void (*sem_free_security) (struct sem_array * sma); 1319 int (*sem_associate) (struct sem_array * sma, int semflg); 1320 int (*sem_semctl) (struct sem_array * sma, int cmd); 1321 int (*sem_semop) (struct sem_array * sma, 1322 struct sembuf * sops, unsigned nsops, int alter); 1323 1324 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1325 int (*netlink_recv) (struct sk_buff * skb, int cap); 1326 1327 /* allow module stacking */ 1328 int (*register_security) (const char *name, 1329 struct security_operations *ops); 1330 int (*unregister_security) (const char *name, 1331 struct security_operations *ops); 1332 1333 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1334 1335 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1336 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1337 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); 1338 void (*release_secctx)(char *secdata, u32 seclen); 1339 1340#ifdef CONFIG_SECURITY_NETWORK 1341 int (*unix_stream_connect) (struct socket * sock, 1342 struct socket * other, struct sock * newsk); 1343 int (*unix_may_send) (struct socket * sock, struct socket * other); 1344 1345 int (*socket_create) (int family, int type, int protocol, int kern); 1346 int (*socket_post_create) (struct socket * sock, int family, 1347 int type, int protocol, int kern); 1348 int (*socket_bind) (struct socket * sock, 1349 struct sockaddr * address, int addrlen); 1350 int (*socket_connect) (struct socket * sock, 1351 struct sockaddr * address, int addrlen); 1352 int (*socket_listen) (struct socket * sock, int backlog); 1353 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1354 void (*socket_post_accept) (struct socket * sock, 1355 struct socket * newsock); 1356 int (*socket_sendmsg) (struct socket * sock, 1357 struct msghdr * msg, int size); 1358 int (*socket_recvmsg) (struct socket * sock, 1359 struct msghdr * msg, int size, int flags); 1360 int (*socket_getsockname) (struct socket * sock); 1361 int (*socket_getpeername) (struct socket * sock); 1362 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1363 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1364 int (*socket_shutdown) (struct socket * sock, int how); 1365 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1366 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1367 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1368 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1369 void (*sk_free_security) (struct sock *sk); 1370 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1371 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1372 void (*sock_graft)(struct sock* sk, struct socket *parent); 1373 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, 1374 struct request_sock *req); 1375 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req); 1376 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl); 1377#endif /* CONFIG_SECURITY_NETWORK */ 1378 1379#ifdef CONFIG_SECURITY_NETWORK_XFRM 1380 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, 1381 struct xfrm_user_sec_ctx *sec_ctx, struct sock *sk); 1382 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1383 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1384 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1385 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1386 struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec, 1387 u32 secid); 1388 void (*xfrm_state_free_security) (struct xfrm_state *x); 1389 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1390 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir); 1391 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, 1392 struct xfrm_policy *xp, struct flowi *fl); 1393 int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm, 1394 struct xfrm_policy *xp); 1395 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); 1396#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1397 1398 /* key management security hooks */ 1399#ifdef CONFIG_KEYS 1400 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1401 void (*key_free)(struct key *key); 1402 int (*key_permission)(key_ref_t key_ref, 1403 struct task_struct *context, 1404 key_perm_t perm); 1405 1406#endif /* CONFIG_KEYS */ 1407 1408}; 1409 1410/* global variables */ 1411extern struct security_operations *security_ops; 1412 1413/* inline stuff */ 1414static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1415{ 1416 return security_ops->ptrace (parent, child); 1417} 1418 1419static inline int security_capget (struct task_struct *target, 1420 kernel_cap_t *effective, 1421 kernel_cap_t *inheritable, 1422 kernel_cap_t *permitted) 1423{ 1424 return security_ops->capget (target, effective, inheritable, permitted); 1425} 1426 1427static inline int security_capset_check (struct task_struct *target, 1428 kernel_cap_t *effective, 1429 kernel_cap_t *inheritable, 1430 kernel_cap_t *permitted) 1431{ 1432 return security_ops->capset_check (target, effective, inheritable, permitted); 1433} 1434 1435static inline void security_capset_set (struct task_struct *target, 1436 kernel_cap_t *effective, 1437 kernel_cap_t *inheritable, 1438 kernel_cap_t *permitted) 1439{ 1440 security_ops->capset_set (target, effective, inheritable, permitted); 1441} 1442 1443static inline int security_capable(struct task_struct *tsk, int cap) 1444{ 1445 return security_ops->capable(tsk, cap); 1446} 1447 1448static inline int security_acct (struct file *file) 1449{ 1450 return security_ops->acct (file); 1451} 1452 1453static inline int security_sysctl(struct ctl_table *table, int op) 1454{ 1455 return security_ops->sysctl(table, op); 1456} 1457 1458static inline int security_quotactl (int cmds, int type, int id, 1459 struct super_block *sb) 1460{ 1461 return security_ops->quotactl (cmds, type, id, sb); 1462} 1463 1464static inline int security_quota_on (struct dentry * dentry) 1465{ 1466 return security_ops->quota_on (dentry); 1467} 1468 1469static inline int security_syslog(int type) 1470{ 1471 return security_ops->syslog(type); 1472} 1473 1474static inline int security_settime(struct timespec *ts, struct timezone *tz) 1475{ 1476 return security_ops->settime(ts, tz); 1477} 1478 1479 1480static inline int security_vm_enough_memory(long pages) 1481{ 1482 return security_ops->vm_enough_memory(pages); 1483} 1484 1485static inline int security_bprm_alloc (struct linux_binprm *bprm) 1486{ 1487 return security_ops->bprm_alloc_security (bprm); 1488} 1489static inline void security_bprm_free (struct linux_binprm *bprm) 1490{ 1491 security_ops->bprm_free_security (bprm); 1492} 1493static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1494{ 1495 security_ops->bprm_apply_creds (bprm, unsafe); 1496} 1497static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1498{ 1499 security_ops->bprm_post_apply_creds (bprm); 1500} 1501static inline int security_bprm_set (struct linux_binprm *bprm) 1502{ 1503 return security_ops->bprm_set_security (bprm); 1504} 1505 1506static inline int security_bprm_check (struct linux_binprm *bprm) 1507{ 1508 return security_ops->bprm_check_security (bprm); 1509} 1510 1511static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1512{ 1513 return security_ops->bprm_secureexec (bprm); 1514} 1515 1516static inline int security_sb_alloc (struct super_block *sb) 1517{ 1518 return security_ops->sb_alloc_security (sb); 1519} 1520 1521static inline void security_sb_free (struct super_block *sb) 1522{ 1523 security_ops->sb_free_security (sb); 1524} 1525 1526static inline int security_sb_copy_data (struct file_system_type *type, 1527 void *orig, void *copy) 1528{ 1529 return security_ops->sb_copy_data (type, orig, copy); 1530} 1531 1532static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1533{ 1534 return security_ops->sb_kern_mount (sb, data); 1535} 1536 1537static inline int security_sb_statfs (struct dentry *dentry) 1538{ 1539 return security_ops->sb_statfs (dentry); 1540} 1541 1542static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1543 char *type, unsigned long flags, 1544 void *data) 1545{ 1546 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1547} 1548 1549static inline int security_sb_check_sb (struct vfsmount *mnt, 1550 struct nameidata *nd) 1551{ 1552 return security_ops->sb_check_sb (mnt, nd); 1553} 1554 1555static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1556{ 1557 return security_ops->sb_umount (mnt, flags); 1558} 1559 1560static inline void security_sb_umount_close (struct vfsmount *mnt) 1561{ 1562 security_ops->sb_umount_close (mnt); 1563} 1564 1565static inline void security_sb_umount_busy (struct vfsmount *mnt) 1566{ 1567 security_ops->sb_umount_busy (mnt); 1568} 1569 1570static inline void security_sb_post_remount (struct vfsmount *mnt, 1571 unsigned long flags, void *data) 1572{ 1573 security_ops->sb_post_remount (mnt, flags, data); 1574} 1575 1576static inline void security_sb_post_mountroot (void) 1577{ 1578 security_ops->sb_post_mountroot (); 1579} 1580 1581static inline void security_sb_post_addmount (struct vfsmount *mnt, 1582 struct nameidata *mountpoint_nd) 1583{ 1584 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1585} 1586 1587static inline int security_sb_pivotroot (struct nameidata *old_nd, 1588 struct nameidata *new_nd) 1589{ 1590 return security_ops->sb_pivotroot (old_nd, new_nd); 1591} 1592 1593static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1594 struct nameidata *new_nd) 1595{ 1596 security_ops->sb_post_pivotroot (old_nd, new_nd); 1597} 1598 1599static inline int security_inode_alloc (struct inode *inode) 1600{ 1601 inode->i_security = NULL; 1602 return security_ops->inode_alloc_security (inode); 1603} 1604 1605static inline void security_inode_free (struct inode *inode) 1606{ 1607 security_ops->inode_free_security (inode); 1608} 1609 1610static inline int security_inode_init_security (struct inode *inode, 1611 struct inode *dir, 1612 char **name, 1613 void **value, 1614 size_t *len) 1615{ 1616 if (unlikely (IS_PRIVATE (inode))) 1617 return -EOPNOTSUPP; 1618 return security_ops->inode_init_security (inode, dir, name, value, len); 1619} 1620 1621static inline int security_inode_create (struct inode *dir, 1622 struct dentry *dentry, 1623 int mode) 1624{ 1625 if (unlikely (IS_PRIVATE (dir))) 1626 return 0; 1627 return security_ops->inode_create (dir, dentry, mode); 1628} 1629 1630static inline int security_inode_link (struct dentry *old_dentry, 1631 struct inode *dir, 1632 struct dentry *new_dentry) 1633{ 1634 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1635 return 0; 1636 return security_ops->inode_link (old_dentry, dir, new_dentry); 1637} 1638 1639static inline int security_inode_unlink (struct inode *dir, 1640 struct dentry *dentry) 1641{ 1642 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1643 return 0; 1644 return security_ops->inode_unlink (dir, dentry); 1645} 1646 1647static inline int security_inode_symlink (struct inode *dir, 1648 struct dentry *dentry, 1649 const char *old_name) 1650{ 1651 if (unlikely (IS_PRIVATE (dir))) 1652 return 0; 1653 return security_ops->inode_symlink (dir, dentry, old_name); 1654} 1655 1656static inline int security_inode_mkdir (struct inode *dir, 1657 struct dentry *dentry, 1658 int mode) 1659{ 1660 if (unlikely (IS_PRIVATE (dir))) 1661 return 0; 1662 return security_ops->inode_mkdir (dir, dentry, mode); 1663} 1664 1665static inline int security_inode_rmdir (struct inode *dir, 1666 struct dentry *dentry) 1667{ 1668 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1669 return 0; 1670 return security_ops->inode_rmdir (dir, dentry); 1671} 1672 1673static inline int security_inode_mknod (struct inode *dir, 1674 struct dentry *dentry, 1675 int mode, dev_t dev) 1676{ 1677 if (unlikely (IS_PRIVATE (dir))) 1678 return 0; 1679 return security_ops->inode_mknod (dir, dentry, mode, dev); 1680} 1681 1682static inline int security_inode_rename (struct inode *old_dir, 1683 struct dentry *old_dentry, 1684 struct inode *new_dir, 1685 struct dentry *new_dentry) 1686{ 1687 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1688 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1689 return 0; 1690 return security_ops->inode_rename (old_dir, old_dentry, 1691 new_dir, new_dentry); 1692} 1693 1694static inline int security_inode_readlink (struct dentry *dentry) 1695{ 1696 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1697 return 0; 1698 return security_ops->inode_readlink (dentry); 1699} 1700 1701static inline int security_inode_follow_link (struct dentry *dentry, 1702 struct nameidata *nd) 1703{ 1704 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1705 return 0; 1706 return security_ops->inode_follow_link (dentry, nd); 1707} 1708 1709static inline int security_inode_permission (struct inode *inode, int mask, 1710 struct nameidata *nd) 1711{ 1712 if (unlikely (IS_PRIVATE (inode))) 1713 return 0; 1714 return security_ops->inode_permission (inode, mask, nd); 1715} 1716 1717static inline int security_inode_setattr (struct dentry *dentry, 1718 struct iattr *attr) 1719{ 1720 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1721 return 0; 1722 return security_ops->inode_setattr (dentry, attr); 1723} 1724 1725static inline int security_inode_getattr (struct vfsmount *mnt, 1726 struct dentry *dentry) 1727{ 1728 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1729 return 0; 1730 return security_ops->inode_getattr (mnt, dentry); 1731} 1732 1733static inline void security_inode_delete (struct inode *inode) 1734{ 1735 if (unlikely (IS_PRIVATE (inode))) 1736 return; 1737 security_ops->inode_delete (inode); 1738} 1739 1740static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1741 void *value, size_t size, int flags) 1742{ 1743 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1744 return 0; 1745 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1746} 1747 1748static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1749 void *value, size_t size, int flags) 1750{ 1751 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1752 return; 1753 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1754} 1755 1756static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1757{ 1758 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1759 return 0; 1760 return security_ops->inode_getxattr (dentry, name); 1761} 1762 1763static inline int security_inode_listxattr (struct dentry *dentry) 1764{ 1765 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1766 return 0; 1767 return security_ops->inode_listxattr (dentry); 1768} 1769 1770static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1771{ 1772 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1773 return 0; 1774 return security_ops->inode_removexattr (dentry, name); 1775} 1776 1777static inline const char *security_inode_xattr_getsuffix(void) 1778{ 1779 return security_ops->inode_xattr_getsuffix(); 1780} 1781 1782static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1783{ 1784 if (unlikely (IS_PRIVATE (inode))) 1785 return 0; 1786 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1787} 1788 1789static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1790{ 1791 if (unlikely (IS_PRIVATE (inode))) 1792 return 0; 1793 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1794} 1795 1796static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1797{ 1798 if (unlikely (IS_PRIVATE (inode))) 1799 return 0; 1800 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1801} 1802 1803static inline int security_file_permission (struct file *file, int mask) 1804{ 1805 return security_ops->file_permission (file, mask); 1806} 1807 1808static inline int security_file_alloc (struct file *file) 1809{ 1810 return security_ops->file_alloc_security (file); 1811} 1812 1813static inline void security_file_free (struct file *file) 1814{ 1815 security_ops->file_free_security (file); 1816} 1817 1818static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1819 unsigned long arg) 1820{ 1821 return security_ops->file_ioctl (file, cmd, arg); 1822} 1823 1824static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1825 unsigned long prot, 1826 unsigned long flags) 1827{ 1828 return security_ops->file_mmap (file, reqprot, prot, flags); 1829} 1830 1831static inline int security_file_mprotect (struct vm_area_struct *vma, 1832 unsigned long reqprot, 1833 unsigned long prot) 1834{ 1835 return security_ops->file_mprotect (vma, reqprot, prot); 1836} 1837 1838static inline int security_file_lock (struct file *file, unsigned int cmd) 1839{ 1840 return security_ops->file_lock (file, cmd); 1841} 1842 1843static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1844 unsigned long arg) 1845{ 1846 return security_ops->file_fcntl (file, cmd, arg); 1847} 1848 1849static inline int security_file_set_fowner (struct file *file) 1850{ 1851 return security_ops->file_set_fowner (file); 1852} 1853 1854static inline int security_file_send_sigiotask (struct task_struct *tsk, 1855 struct fown_struct *fown, 1856 int sig) 1857{ 1858 return security_ops->file_send_sigiotask (tsk, fown, sig); 1859} 1860 1861static inline int security_file_receive (struct file *file) 1862{ 1863 return security_ops->file_receive (file); 1864} 1865 1866static inline int security_task_create (unsigned long clone_flags) 1867{ 1868 return security_ops->task_create (clone_flags); 1869} 1870 1871static inline int security_task_alloc (struct task_struct *p) 1872{ 1873 return security_ops->task_alloc_security (p); 1874} 1875 1876static inline void security_task_free (struct task_struct *p) 1877{ 1878 security_ops->task_free_security (p); 1879} 1880 1881static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1882 int flags) 1883{ 1884 return security_ops->task_setuid (id0, id1, id2, flags); 1885} 1886 1887static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1888 uid_t old_suid, int flags) 1889{ 1890 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1891} 1892 1893static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1894 int flags) 1895{ 1896 return security_ops->task_setgid (id0, id1, id2, flags); 1897} 1898 1899static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1900{ 1901 return security_ops->task_setpgid (p, pgid); 1902} 1903 1904static inline int security_task_getpgid (struct task_struct *p) 1905{ 1906 return security_ops->task_getpgid (p); 1907} 1908 1909static inline int security_task_getsid (struct task_struct *p) 1910{ 1911 return security_ops->task_getsid (p); 1912} 1913 1914static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 1915{ 1916 security_ops->task_getsecid (p, secid); 1917} 1918 1919static inline int security_task_setgroups (struct group_info *group_info) 1920{ 1921 return security_ops->task_setgroups (group_info); 1922} 1923 1924static inline int security_task_setnice (struct task_struct *p, int nice) 1925{ 1926 return security_ops->task_setnice (p, nice); 1927} 1928 1929static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1930{ 1931 return security_ops->task_setioprio (p, ioprio); 1932} 1933 1934static inline int security_task_getioprio (struct task_struct *p) 1935{ 1936 return security_ops->task_getioprio (p); 1937} 1938 1939static inline int security_task_setrlimit (unsigned int resource, 1940 struct rlimit *new_rlim) 1941{ 1942 return security_ops->task_setrlimit (resource, new_rlim); 1943} 1944 1945static inline int security_task_setscheduler (struct task_struct *p, 1946 int policy, 1947 struct sched_param *lp) 1948{ 1949 return security_ops->task_setscheduler (p, policy, lp); 1950} 1951 1952static inline int security_task_getscheduler (struct task_struct *p) 1953{ 1954 return security_ops->task_getscheduler (p); 1955} 1956 1957static inline int security_task_movememory (struct task_struct *p) 1958{ 1959 return security_ops->task_movememory (p); 1960} 1961 1962static inline int security_task_kill (struct task_struct *p, 1963 struct siginfo *info, int sig, 1964 u32 secid) 1965{ 1966 return security_ops->task_kill (p, info, sig, secid); 1967} 1968 1969static inline int security_task_wait (struct task_struct *p) 1970{ 1971 return security_ops->task_wait (p); 1972} 1973 1974static inline int security_task_prctl (int option, unsigned long arg2, 1975 unsigned long arg3, 1976 unsigned long arg4, 1977 unsigned long arg5) 1978{ 1979 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1980} 1981 1982static inline void security_task_reparent_to_init (struct task_struct *p) 1983{ 1984 security_ops->task_reparent_to_init (p); 1985} 1986 1987static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1988{ 1989 security_ops->task_to_inode(p, inode); 1990} 1991 1992static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1993 short flag) 1994{ 1995 return security_ops->ipc_permission (ipcp, flag); 1996} 1997 1998static inline int security_msg_msg_alloc (struct msg_msg * msg) 1999{ 2000 return security_ops->msg_msg_alloc_security (msg); 2001} 2002 2003static inline void security_msg_msg_free (struct msg_msg * msg) 2004{ 2005 security_ops->msg_msg_free_security(msg); 2006} 2007 2008static inline int security_msg_queue_alloc (struct msg_queue *msq) 2009{ 2010 return security_ops->msg_queue_alloc_security (msq); 2011} 2012 2013static inline void security_msg_queue_free (struct msg_queue *msq) 2014{ 2015 security_ops->msg_queue_free_security (msq); 2016} 2017 2018static inline int security_msg_queue_associate (struct msg_queue * msq, 2019 int msqflg) 2020{ 2021 return security_ops->msg_queue_associate (msq, msqflg); 2022} 2023 2024static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2025{ 2026 return security_ops->msg_queue_msgctl (msq, cmd); 2027} 2028 2029static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2030 struct msg_msg * msg, int msqflg) 2031{ 2032 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 2033} 2034 2035static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2036 struct msg_msg * msg, 2037 struct task_struct * target, 2038 long type, int mode) 2039{ 2040 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 2041} 2042 2043static inline int security_shm_alloc (struct shmid_kernel *shp) 2044{ 2045 return security_ops->shm_alloc_security (shp); 2046} 2047 2048static inline void security_shm_free (struct shmid_kernel *shp) 2049{ 2050 security_ops->shm_free_security (shp); 2051} 2052 2053static inline int security_shm_associate (struct shmid_kernel * shp, 2054 int shmflg) 2055{ 2056 return security_ops->shm_associate(shp, shmflg); 2057} 2058 2059static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2060{ 2061 return security_ops->shm_shmctl (shp, cmd); 2062} 2063 2064static inline int security_shm_shmat (struct shmid_kernel * shp, 2065 char __user *shmaddr, int shmflg) 2066{ 2067 return security_ops->shm_shmat(shp, shmaddr, shmflg); 2068} 2069 2070static inline int security_sem_alloc (struct sem_array *sma) 2071{ 2072 return security_ops->sem_alloc_security (sma); 2073} 2074 2075static inline void security_sem_free (struct sem_array *sma) 2076{ 2077 security_ops->sem_free_security (sma); 2078} 2079 2080static inline int security_sem_associate (struct sem_array * sma, int semflg) 2081{ 2082 return security_ops->sem_associate (sma, semflg); 2083} 2084 2085static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2086{ 2087 return security_ops->sem_semctl(sma, cmd); 2088} 2089 2090static inline int security_sem_semop (struct sem_array * sma, 2091 struct sembuf * sops, unsigned nsops, 2092 int alter) 2093{ 2094 return security_ops->sem_semop(sma, sops, nsops, alter); 2095} 2096 2097static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2098{ 2099 if (unlikely (inode && IS_PRIVATE (inode))) 2100 return; 2101 security_ops->d_instantiate (dentry, inode); 2102} 2103 2104static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2105{ 2106 return security_ops->getprocattr(p, name, value, size); 2107} 2108 2109static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2110{ 2111 return security_ops->setprocattr(p, name, value, size); 2112} 2113 2114static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2115{ 2116 return security_ops->netlink_send(sk, skb); 2117} 2118 2119static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2120{ 2121 return security_ops->netlink_recv(skb, cap); 2122} 2123 2124static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2125{ 2126 return security_ops->secid_to_secctx(secid, secdata, seclen); 2127} 2128 2129static inline void security_release_secctx(char *secdata, u32 seclen) 2130{ 2131 return security_ops->release_secctx(secdata, seclen); 2132} 2133 2134/* prototypes */ 2135extern int security_init (void); 2136extern int register_security (struct security_operations *ops); 2137extern int unregister_security (struct security_operations *ops); 2138extern int mod_reg_security (const char *name, struct security_operations *ops); 2139extern int mod_unreg_security (const char *name, struct security_operations *ops); 2140extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2141 struct dentry *parent, void *data, 2142 struct file_operations *fops); 2143extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2144extern void securityfs_remove(struct dentry *dentry); 2145 2146 2147#else /* CONFIG_SECURITY */ 2148 2149/* 2150 * This is the default capabilities functionality. Most of these functions 2151 * are just stubbed out, but a few must call the proper capable code. 2152 */ 2153 2154static inline int security_init(void) 2155{ 2156 return 0; 2157} 2158 2159static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2160{ 2161 return cap_ptrace (parent, child); 2162} 2163 2164static inline int security_capget (struct task_struct *target, 2165 kernel_cap_t *effective, 2166 kernel_cap_t *inheritable, 2167 kernel_cap_t *permitted) 2168{ 2169 return cap_capget (target, effective, inheritable, permitted); 2170} 2171 2172static inline int security_capset_check (struct task_struct *target, 2173 kernel_cap_t *effective, 2174 kernel_cap_t *inheritable, 2175 kernel_cap_t *permitted) 2176{ 2177 return cap_capset_check (target, effective, inheritable, permitted); 2178} 2179 2180static inline void security_capset_set (struct task_struct *target, 2181 kernel_cap_t *effective, 2182 kernel_cap_t *inheritable, 2183 kernel_cap_t *permitted) 2184{ 2185 cap_capset_set (target, effective, inheritable, permitted); 2186} 2187 2188static inline int security_capable(struct task_struct *tsk, int cap) 2189{ 2190 return cap_capable(tsk, cap); 2191} 2192 2193static inline int security_acct (struct file *file) 2194{ 2195 return 0; 2196} 2197 2198static inline int security_sysctl(struct ctl_table *table, int op) 2199{ 2200 return 0; 2201} 2202 2203static inline int security_quotactl (int cmds, int type, int id, 2204 struct super_block * sb) 2205{ 2206 return 0; 2207} 2208 2209static inline int security_quota_on (struct dentry * dentry) 2210{ 2211 return 0; 2212} 2213 2214static inline int security_syslog(int type) 2215{ 2216 return cap_syslog(type); 2217} 2218 2219static inline int security_settime(struct timespec *ts, struct timezone *tz) 2220{ 2221 return cap_settime(ts, tz); 2222} 2223 2224static inline int security_vm_enough_memory(long pages) 2225{ 2226 return cap_vm_enough_memory(pages); 2227} 2228 2229static inline int security_bprm_alloc (struct linux_binprm *bprm) 2230{ 2231 return 0; 2232} 2233 2234static inline void security_bprm_free (struct linux_binprm *bprm) 2235{ } 2236 2237static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2238{ 2239 cap_bprm_apply_creds (bprm, unsafe); 2240} 2241 2242static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2243{ 2244 return; 2245} 2246 2247static inline int security_bprm_set (struct linux_binprm *bprm) 2248{ 2249 return cap_bprm_set_security (bprm); 2250} 2251 2252static inline int security_bprm_check (struct linux_binprm *bprm) 2253{ 2254 return 0; 2255} 2256 2257static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2258{ 2259 return cap_bprm_secureexec(bprm); 2260} 2261 2262static inline int security_sb_alloc (struct super_block *sb) 2263{ 2264 return 0; 2265} 2266 2267static inline void security_sb_free (struct super_block *sb) 2268{ } 2269 2270static inline int security_sb_copy_data (struct file_system_type *type, 2271 void *orig, void *copy) 2272{ 2273 return 0; 2274} 2275 2276static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2277{ 2278 return 0; 2279} 2280 2281static inline int security_sb_statfs (struct dentry *dentry) 2282{ 2283 return 0; 2284} 2285 2286static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2287 char *type, unsigned long flags, 2288 void *data) 2289{ 2290 return 0; 2291} 2292 2293static inline int security_sb_check_sb (struct vfsmount *mnt, 2294 struct nameidata *nd) 2295{ 2296 return 0; 2297} 2298 2299static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2300{ 2301 return 0; 2302} 2303 2304static inline void security_sb_umount_close (struct vfsmount *mnt) 2305{ } 2306 2307static inline void security_sb_umount_busy (struct vfsmount *mnt) 2308{ } 2309 2310static inline void security_sb_post_remount (struct vfsmount *mnt, 2311 unsigned long flags, void *data) 2312{ } 2313 2314static inline void security_sb_post_mountroot (void) 2315{ } 2316 2317static inline void security_sb_post_addmount (struct vfsmount *mnt, 2318 struct nameidata *mountpoint_nd) 2319{ } 2320 2321static inline int security_sb_pivotroot (struct nameidata *old_nd, 2322 struct nameidata *new_nd) 2323{ 2324 return 0; 2325} 2326 2327static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2328 struct nameidata *new_nd) 2329{ } 2330 2331static inline int security_inode_alloc (struct inode *inode) 2332{ 2333 return 0; 2334} 2335 2336static inline void security_inode_free (struct inode *inode) 2337{ } 2338 2339static inline int security_inode_init_security (struct inode *inode, 2340 struct inode *dir, 2341 char **name, 2342 void **value, 2343 size_t *len) 2344{ 2345 return -EOPNOTSUPP; 2346} 2347 2348static inline int security_inode_create (struct inode *dir, 2349 struct dentry *dentry, 2350 int mode) 2351{ 2352 return 0; 2353} 2354 2355static inline int security_inode_link (struct dentry *old_dentry, 2356 struct inode *dir, 2357 struct dentry *new_dentry) 2358{ 2359 return 0; 2360} 2361 2362static inline int security_inode_unlink (struct inode *dir, 2363 struct dentry *dentry) 2364{ 2365 return 0; 2366} 2367 2368static inline int security_inode_symlink (struct inode *dir, 2369 struct dentry *dentry, 2370 const char *old_name) 2371{ 2372 return 0; 2373} 2374 2375static inline int security_inode_mkdir (struct inode *dir, 2376 struct dentry *dentry, 2377 int mode) 2378{ 2379 return 0; 2380} 2381 2382static inline int security_inode_rmdir (struct inode *dir, 2383 struct dentry *dentry) 2384{ 2385 return 0; 2386} 2387 2388static inline int security_inode_mknod (struct inode *dir, 2389 struct dentry *dentry, 2390 int mode, dev_t dev) 2391{ 2392 return 0; 2393} 2394 2395static inline int security_inode_rename (struct inode *old_dir, 2396 struct dentry *old_dentry, 2397 struct inode *new_dir, 2398 struct dentry *new_dentry) 2399{ 2400 return 0; 2401} 2402 2403static inline int security_inode_readlink (struct dentry *dentry) 2404{ 2405 return 0; 2406} 2407 2408static inline int security_inode_follow_link (struct dentry *dentry, 2409 struct nameidata *nd) 2410{ 2411 return 0; 2412} 2413 2414static inline int security_inode_permission (struct inode *inode, int mask, 2415 struct nameidata *nd) 2416{ 2417 return 0; 2418} 2419 2420static inline int security_inode_setattr (struct dentry *dentry, 2421 struct iattr *attr) 2422{ 2423 return 0; 2424} 2425 2426static inline int security_inode_getattr (struct vfsmount *mnt, 2427 struct dentry *dentry) 2428{ 2429 return 0; 2430} 2431 2432static inline void security_inode_delete (struct inode *inode) 2433{ } 2434 2435static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2436 void *value, size_t size, int flags) 2437{ 2438 return cap_inode_setxattr(dentry, name, value, size, flags); 2439} 2440 2441static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2442 void *value, size_t size, int flags) 2443{ } 2444 2445static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2446{ 2447 return 0; 2448} 2449 2450static inline int security_inode_listxattr (struct dentry *dentry) 2451{ 2452 return 0; 2453} 2454 2455static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2456{ 2457 return cap_inode_removexattr(dentry, name); 2458} 2459 2460static inline const char *security_inode_xattr_getsuffix (void) 2461{ 2462 return NULL ; 2463} 2464 2465static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2466{ 2467 return -EOPNOTSUPP; 2468} 2469 2470static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2471{ 2472 return -EOPNOTSUPP; 2473} 2474 2475static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2476{ 2477 return 0; 2478} 2479 2480static inline int security_file_permission (struct file *file, int mask) 2481{ 2482 return 0; 2483} 2484 2485static inline int security_file_alloc (struct file *file) 2486{ 2487 return 0; 2488} 2489 2490static inline void security_file_free (struct file *file) 2491{ } 2492 2493static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2494 unsigned long arg) 2495{ 2496 return 0; 2497} 2498 2499static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2500 unsigned long prot, 2501 unsigned long flags) 2502{ 2503 return 0; 2504} 2505 2506static inline int security_file_mprotect (struct vm_area_struct *vma, 2507 unsigned long reqprot, 2508 unsigned long prot) 2509{ 2510 return 0; 2511} 2512 2513static inline int security_file_lock (struct file *file, unsigned int cmd) 2514{ 2515 return 0; 2516} 2517 2518static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2519 unsigned long arg) 2520{ 2521 return 0; 2522} 2523 2524static inline int security_file_set_fowner (struct file *file) 2525{ 2526 return 0; 2527} 2528 2529static inline int security_file_send_sigiotask (struct task_struct *tsk, 2530 struct fown_struct *fown, 2531 int sig) 2532{ 2533 return 0; 2534} 2535 2536static inline int security_file_receive (struct file *file) 2537{ 2538 return 0; 2539} 2540 2541static inline int security_task_create (unsigned long clone_flags) 2542{ 2543 return 0; 2544} 2545 2546static inline int security_task_alloc (struct task_struct *p) 2547{ 2548 return 0; 2549} 2550 2551static inline void security_task_free (struct task_struct *p) 2552{ } 2553 2554static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2555 int flags) 2556{ 2557 return 0; 2558} 2559 2560static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2561 uid_t old_suid, int flags) 2562{ 2563 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2564} 2565 2566static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2567 int flags) 2568{ 2569 return 0; 2570} 2571 2572static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2573{ 2574 return 0; 2575} 2576 2577static inline int security_task_getpgid (struct task_struct *p) 2578{ 2579 return 0; 2580} 2581 2582static inline int security_task_getsid (struct task_struct *p) 2583{ 2584 return 0; 2585} 2586 2587static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 2588{ } 2589 2590static inline int security_task_setgroups (struct group_info *group_info) 2591{ 2592 return 0; 2593} 2594 2595static inline int security_task_setnice (struct task_struct *p, int nice) 2596{ 2597 return 0; 2598} 2599 2600static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2601{ 2602 return 0; 2603} 2604 2605static inline int security_task_getioprio (struct task_struct *p) 2606{ 2607 return 0; 2608} 2609 2610static inline int security_task_setrlimit (unsigned int resource, 2611 struct rlimit *new_rlim) 2612{ 2613 return 0; 2614} 2615 2616static inline int security_task_setscheduler (struct task_struct *p, 2617 int policy, 2618 struct sched_param *lp) 2619{ 2620 return 0; 2621} 2622 2623static inline int security_task_getscheduler (struct task_struct *p) 2624{ 2625 return 0; 2626} 2627 2628static inline int security_task_movememory (struct task_struct *p) 2629{ 2630 return 0; 2631} 2632 2633static inline int security_task_kill (struct task_struct *p, 2634 struct siginfo *info, int sig, 2635 u32 secid) 2636{ 2637 return 0; 2638} 2639 2640static inline int security_task_wait (struct task_struct *p) 2641{ 2642 return 0; 2643} 2644 2645static inline int security_task_prctl (int option, unsigned long arg2, 2646 unsigned long arg3, 2647 unsigned long arg4, 2648 unsigned long arg5) 2649{ 2650 return 0; 2651} 2652 2653static inline void security_task_reparent_to_init (struct task_struct *p) 2654{ 2655 cap_task_reparent_to_init (p); 2656} 2657 2658static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2659{ } 2660 2661static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2662 short flag) 2663{ 2664 return 0; 2665} 2666 2667static inline int security_msg_msg_alloc (struct msg_msg * msg) 2668{ 2669 return 0; 2670} 2671 2672static inline void security_msg_msg_free (struct msg_msg * msg) 2673{ } 2674 2675static inline int security_msg_queue_alloc (struct msg_queue *msq) 2676{ 2677 return 0; 2678} 2679 2680static inline void security_msg_queue_free (struct msg_queue *msq) 2681{ } 2682 2683static inline int security_msg_queue_associate (struct msg_queue * msq, 2684 int msqflg) 2685{ 2686 return 0; 2687} 2688 2689static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2690{ 2691 return 0; 2692} 2693 2694static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2695 struct msg_msg * msg, int msqflg) 2696{ 2697 return 0; 2698} 2699 2700static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2701 struct msg_msg * msg, 2702 struct task_struct * target, 2703 long type, int mode) 2704{ 2705 return 0; 2706} 2707 2708static inline int security_shm_alloc (struct shmid_kernel *shp) 2709{ 2710 return 0; 2711} 2712 2713static inline void security_shm_free (struct shmid_kernel *shp) 2714{ } 2715 2716static inline int security_shm_associate (struct shmid_kernel * shp, 2717 int shmflg) 2718{ 2719 return 0; 2720} 2721 2722static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2723{ 2724 return 0; 2725} 2726 2727static inline int security_shm_shmat (struct shmid_kernel * shp, 2728 char __user *shmaddr, int shmflg) 2729{ 2730 return 0; 2731} 2732 2733static inline int security_sem_alloc (struct sem_array *sma) 2734{ 2735 return 0; 2736} 2737 2738static inline void security_sem_free (struct sem_array *sma) 2739{ } 2740 2741static inline int security_sem_associate (struct sem_array * sma, int semflg) 2742{ 2743 return 0; 2744} 2745 2746static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2747{ 2748 return 0; 2749} 2750 2751static inline int security_sem_semop (struct sem_array * sma, 2752 struct sembuf * sops, unsigned nsops, 2753 int alter) 2754{ 2755 return 0; 2756} 2757 2758static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2759{ } 2760 2761static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2762{ 2763 return -EINVAL; 2764} 2765 2766static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2767{ 2768 return -EINVAL; 2769} 2770 2771static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2772{ 2773 return cap_netlink_send (sk, skb); 2774} 2775 2776static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2777{ 2778 return cap_netlink_recv (skb, cap); 2779} 2780 2781static inline struct dentry *securityfs_create_dir(const char *name, 2782 struct dentry *parent) 2783{ 2784 return ERR_PTR(-ENODEV); 2785} 2786 2787static inline struct dentry *securityfs_create_file(const char *name, 2788 mode_t mode, 2789 struct dentry *parent, 2790 void *data, 2791 struct file_operations *fops) 2792{ 2793 return ERR_PTR(-ENODEV); 2794} 2795 2796static inline void securityfs_remove(struct dentry *dentry) 2797{ 2798} 2799 2800static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2801{ 2802 return -EOPNOTSUPP; 2803} 2804 2805static inline void security_release_secctx(char *secdata, u32 seclen) 2806{ 2807} 2808#endif /* CONFIG_SECURITY */ 2809 2810#ifdef CONFIG_SECURITY_NETWORK 2811static inline int security_unix_stream_connect(struct socket * sock, 2812 struct socket * other, 2813 struct sock * newsk) 2814{ 2815 return security_ops->unix_stream_connect(sock, other, newsk); 2816} 2817 2818 2819static inline int security_unix_may_send(struct socket * sock, 2820 struct socket * other) 2821{ 2822 return security_ops->unix_may_send(sock, other); 2823} 2824 2825static inline int security_socket_create (int family, int type, 2826 int protocol, int kern) 2827{ 2828 return security_ops->socket_create(family, type, protocol, kern); 2829} 2830 2831static inline int security_socket_post_create(struct socket * sock, 2832 int family, 2833 int type, 2834 int protocol, int kern) 2835{ 2836 return security_ops->socket_post_create(sock, family, type, 2837 protocol, kern); 2838} 2839 2840static inline int security_socket_bind(struct socket * sock, 2841 struct sockaddr * address, 2842 int addrlen) 2843{ 2844 return security_ops->socket_bind(sock, address, addrlen); 2845} 2846 2847static inline int security_socket_connect(struct socket * sock, 2848 struct sockaddr * address, 2849 int addrlen) 2850{ 2851 return security_ops->socket_connect(sock, address, addrlen); 2852} 2853 2854static inline int security_socket_listen(struct socket * sock, int backlog) 2855{ 2856 return security_ops->socket_listen(sock, backlog); 2857} 2858 2859static inline int security_socket_accept(struct socket * sock, 2860 struct socket * newsock) 2861{ 2862 return security_ops->socket_accept(sock, newsock); 2863} 2864 2865static inline void security_socket_post_accept(struct socket * sock, 2866 struct socket * newsock) 2867{ 2868 security_ops->socket_post_accept(sock, newsock); 2869} 2870 2871static inline int security_socket_sendmsg(struct socket * sock, 2872 struct msghdr * msg, int size) 2873{ 2874 return security_ops->socket_sendmsg(sock, msg, size); 2875} 2876 2877static inline int security_socket_recvmsg(struct socket * sock, 2878 struct msghdr * msg, int size, 2879 int flags) 2880{ 2881 return security_ops->socket_recvmsg(sock, msg, size, flags); 2882} 2883 2884static inline int security_socket_getsockname(struct socket * sock) 2885{ 2886 return security_ops->socket_getsockname(sock); 2887} 2888 2889static inline int security_socket_getpeername(struct socket * sock) 2890{ 2891 return security_ops->socket_getpeername(sock); 2892} 2893 2894static inline int security_socket_getsockopt(struct socket * sock, 2895 int level, int optname) 2896{ 2897 return security_ops->socket_getsockopt(sock, level, optname); 2898} 2899 2900static inline int security_socket_setsockopt(struct socket * sock, 2901 int level, int optname) 2902{ 2903 return security_ops->socket_setsockopt(sock, level, optname); 2904} 2905 2906static inline int security_socket_shutdown(struct socket * sock, int how) 2907{ 2908 return security_ops->socket_shutdown(sock, how); 2909} 2910 2911static inline int security_sock_rcv_skb (struct sock * sk, 2912 struct sk_buff * skb) 2913{ 2914 return security_ops->socket_sock_rcv_skb (sk, skb); 2915} 2916 2917static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2918 int __user *optlen, unsigned len) 2919{ 2920 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2921} 2922 2923static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2924{ 2925 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 2926} 2927 2928static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2929{ 2930 return security_ops->sk_alloc_security(sk, family, priority); 2931} 2932 2933static inline void security_sk_free(struct sock *sk) 2934{ 2935 return security_ops->sk_free_security(sk); 2936} 2937 2938static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2939{ 2940 return security_ops->sk_clone_security(sk, newsk); 2941} 2942 2943static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2944{ 2945 security_ops->sk_getsecid(sk, &fl->secid); 2946} 2947 2948static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2949{ 2950 security_ops->req_classify_flow(req, fl); 2951} 2952 2953static inline void security_sock_graft(struct sock* sk, struct socket *parent) 2954{ 2955 security_ops->sock_graft(sk, parent); 2956} 2957 2958static inline int security_inet_conn_request(struct sock *sk, 2959 struct sk_buff *skb, struct request_sock *req) 2960{ 2961 return security_ops->inet_conn_request(sk, skb, req); 2962} 2963 2964static inline void security_inet_csk_clone(struct sock *newsk, 2965 const struct request_sock *req) 2966{ 2967 security_ops->inet_csk_clone(newsk, req); 2968} 2969#else /* CONFIG_SECURITY_NETWORK */ 2970static inline int security_unix_stream_connect(struct socket * sock, 2971 struct socket * other, 2972 struct sock * newsk) 2973{ 2974 return 0; 2975} 2976 2977static inline int security_unix_may_send(struct socket * sock, 2978 struct socket * other) 2979{ 2980 return 0; 2981} 2982 2983static inline int security_socket_create (int family, int type, 2984 int protocol, int kern) 2985{ 2986 return 0; 2987} 2988 2989static inline int security_socket_post_create(struct socket * sock, 2990 int family, 2991 int type, 2992 int protocol, int kern) 2993{ 2994 return 0; 2995} 2996 2997static inline int security_socket_bind(struct socket * sock, 2998 struct sockaddr * address, 2999 int addrlen) 3000{ 3001 return 0; 3002} 3003 3004static inline int security_socket_connect(struct socket * sock, 3005 struct sockaddr * address, 3006 int addrlen) 3007{ 3008 return 0; 3009} 3010 3011static inline int security_socket_listen(struct socket * sock, int backlog) 3012{ 3013 return 0; 3014} 3015 3016static inline int security_socket_accept(struct socket * sock, 3017 struct socket * newsock) 3018{ 3019 return 0; 3020} 3021 3022static inline void security_socket_post_accept(struct socket * sock, 3023 struct socket * newsock) 3024{ 3025} 3026 3027static inline int security_socket_sendmsg(struct socket * sock, 3028 struct msghdr * msg, int size) 3029{ 3030 return 0; 3031} 3032 3033static inline int security_socket_recvmsg(struct socket * sock, 3034 struct msghdr * msg, int size, 3035 int flags) 3036{ 3037 return 0; 3038} 3039 3040static inline int security_socket_getsockname(struct socket * sock) 3041{ 3042 return 0; 3043} 3044 3045static inline int security_socket_getpeername(struct socket * sock) 3046{ 3047 return 0; 3048} 3049 3050static inline int security_socket_getsockopt(struct socket * sock, 3051 int level, int optname) 3052{ 3053 return 0; 3054} 3055 3056static inline int security_socket_setsockopt(struct socket * sock, 3057 int level, int optname) 3058{ 3059 return 0; 3060} 3061 3062static inline int security_socket_shutdown(struct socket * sock, int how) 3063{ 3064 return 0; 3065} 3066static inline int security_sock_rcv_skb (struct sock * sk, 3067 struct sk_buff * skb) 3068{ 3069 return 0; 3070} 3071 3072static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3073 int __user *optlen, unsigned len) 3074{ 3075 return -ENOPROTOOPT; 3076} 3077 3078static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3079{ 3080 return -ENOPROTOOPT; 3081} 3082 3083static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 3084{ 3085 return 0; 3086} 3087 3088static inline void security_sk_free(struct sock *sk) 3089{ 3090} 3091 3092static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 3093{ 3094} 3095 3096static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 3097{ 3098} 3099 3100static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 3101{ 3102} 3103 3104static inline void security_sock_graft(struct sock* sk, struct socket *parent) 3105{ 3106} 3107 3108static inline int security_inet_conn_request(struct sock *sk, 3109 struct sk_buff *skb, struct request_sock *req) 3110{ 3111 return 0; 3112} 3113 3114static inline void security_inet_csk_clone(struct sock *newsk, 3115 const struct request_sock *req) 3116{ 3117} 3118#endif /* CONFIG_SECURITY_NETWORK */ 3119 3120#ifdef CONFIG_SECURITY_NETWORK_XFRM 3121static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3122{ 3123 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx, NULL); 3124} 3125 3126static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3127{ 3128 return security_ops->xfrm_policy_clone_security(old, new); 3129} 3130 3131static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3132{ 3133 security_ops->xfrm_policy_free_security(xp); 3134} 3135 3136static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3137{ 3138 return security_ops->xfrm_policy_delete_security(xp); 3139} 3140 3141static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3142 struct xfrm_user_sec_ctx *sec_ctx) 3143{ 3144 return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0); 3145} 3146 3147static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3148 struct xfrm_sec_ctx *polsec, u32 secid) 3149{ 3150 if (!polsec) 3151 return 0; 3152 return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid); 3153} 3154 3155static inline int security_xfrm_state_delete(struct xfrm_state *x) 3156{ 3157 return security_ops->xfrm_state_delete_security(x); 3158} 3159 3160static inline void security_xfrm_state_free(struct xfrm_state *x) 3161{ 3162 security_ops->xfrm_state_free_security(x); 3163} 3164 3165static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3166{ 3167 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 3168} 3169 3170static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3171 struct xfrm_policy *xp, struct flowi *fl) 3172{ 3173 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 3174} 3175 3176static inline int security_xfrm_flow_state_match(struct flowi *fl, 3177 struct xfrm_state *xfrm, struct xfrm_policy *xp) 3178{ 3179 return security_ops->xfrm_flow_state_match(fl, xfrm, xp); 3180} 3181 3182static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3183{ 3184 return security_ops->xfrm_decode_session(skb, secid, 1); 3185} 3186 3187static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3188{ 3189 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 3190 3191 BUG_ON(rc); 3192} 3193#else /* CONFIG_SECURITY_NETWORK_XFRM */ 3194static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3195{ 3196 return 0; 3197} 3198 3199static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3200{ 3201 return 0; 3202} 3203 3204static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3205{ 3206} 3207 3208static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3209{ 3210 return 0; 3211} 3212 3213static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3214 struct xfrm_user_sec_ctx *sec_ctx) 3215{ 3216 return 0; 3217} 3218 3219static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3220 struct xfrm_sec_ctx *polsec, u32 secid) 3221{ 3222 return 0; 3223} 3224 3225static inline void security_xfrm_state_free(struct xfrm_state *x) 3226{ 3227} 3228 3229static inline int security_xfrm_state_delete(struct xfrm_state *x) 3230{ 3231 return 0; 3232} 3233 3234static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3235{ 3236 return 0; 3237} 3238 3239static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3240 struct xfrm_policy *xp, struct flowi *fl) 3241{ 3242 return 1; 3243} 3244 3245static inline int security_xfrm_flow_state_match(struct flowi *fl, 3246 struct xfrm_state *xfrm, struct xfrm_policy *xp) 3247{ 3248 return 1; 3249} 3250 3251static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3252{ 3253 return 0; 3254} 3255 3256static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3257{ 3258} 3259 3260#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3261 3262#ifdef CONFIG_KEYS 3263#ifdef CONFIG_SECURITY 3264static inline int security_key_alloc(struct key *key, 3265 struct task_struct *tsk, 3266 unsigned long flags) 3267{ 3268 return security_ops->key_alloc(key, tsk, flags); 3269} 3270 3271static inline void security_key_free(struct key *key) 3272{ 3273 security_ops->key_free(key); 3274} 3275 3276static inline int security_key_permission(key_ref_t key_ref, 3277 struct task_struct *context, 3278 key_perm_t perm) 3279{ 3280 return security_ops->key_permission(key_ref, context, perm); 3281} 3282 3283#else 3284 3285static inline int security_key_alloc(struct key *key, 3286 struct task_struct *tsk, 3287 unsigned long flags) 3288{ 3289 return 0; 3290} 3291 3292static inline void security_key_free(struct key *key) 3293{ 3294} 3295 3296static inline int security_key_permission(key_ref_t key_ref, 3297 struct task_struct *context, 3298 key_perm_t perm) 3299{ 3300 return 0; 3301} 3302 3303#endif 3304#endif /* CONFIG_KEYS */ 3305 3306#endif /* ! __LINUX_SECURITY_H */ 3307