at v2.6.19 1696 lines 53 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6/* 7 * cloning flags: 8 */ 9#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17#define CLONE_THREAD 0x00010000 /* Same thread group? */ 18#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 28#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 29 30/* 31 * Scheduling policies 32 */ 33#define SCHED_NORMAL 0 34#define SCHED_FIFO 1 35#define SCHED_RR 2 36#define SCHED_BATCH 3 37 38#ifdef __KERNEL__ 39 40struct sched_param { 41 int sched_priority; 42}; 43 44#include <asm/param.h> /* for HZ */ 45 46#include <linux/capability.h> 47#include <linux/threads.h> 48#include <linux/kernel.h> 49#include <linux/types.h> 50#include <linux/timex.h> 51#include <linux/jiffies.h> 52#include <linux/rbtree.h> 53#include <linux/thread_info.h> 54#include <linux/cpumask.h> 55#include <linux/errno.h> 56#include <linux/nodemask.h> 57 58#include <asm/system.h> 59#include <asm/semaphore.h> 60#include <asm/page.h> 61#include <asm/ptrace.h> 62#include <asm/mmu.h> 63#include <asm/cputime.h> 64 65#include <linux/smp.h> 66#include <linux/sem.h> 67#include <linux/signal.h> 68#include <linux/securebits.h> 69#include <linux/fs_struct.h> 70#include <linux/compiler.h> 71#include <linux/completion.h> 72#include <linux/pid.h> 73#include <linux/percpu.h> 74#include <linux/topology.h> 75#include <linux/seccomp.h> 76#include <linux/rcupdate.h> 77#include <linux/futex.h> 78#include <linux/rtmutex.h> 79 80#include <linux/time.h> 81#include <linux/param.h> 82#include <linux/resource.h> 83#include <linux/timer.h> 84#include <linux/hrtimer.h> 85 86#include <asm/processor.h> 87 88struct exec_domain; 89struct futex_pi_state; 90 91/* 92 * List of flags we want to share for kernel threads, 93 * if only because they are not used by them anyway. 94 */ 95#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 96 97/* 98 * These are the constant used to fake the fixed-point load-average 99 * counting. Some notes: 100 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 101 * a load-average precision of 10 bits integer + 11 bits fractional 102 * - if you want to count load-averages more often, you need more 103 * precision, or rounding will get you. With 2-second counting freq, 104 * the EXP_n values would be 1981, 2034 and 2043 if still using only 105 * 11 bit fractions. 106 */ 107extern unsigned long avenrun[]; /* Load averages */ 108 109#define FSHIFT 11 /* nr of bits of precision */ 110#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 111#define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 112#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 113#define EXP_5 2014 /* 1/exp(5sec/5min) */ 114#define EXP_15 2037 /* 1/exp(5sec/15min) */ 115 116#define CALC_LOAD(load,exp,n) \ 117 load *= exp; \ 118 load += n*(FIXED_1-exp); \ 119 load >>= FSHIFT; 120 121extern unsigned long total_forks; 122extern int nr_threads; 123DECLARE_PER_CPU(unsigned long, process_counts); 124extern int nr_processes(void); 125extern unsigned long nr_running(void); 126extern unsigned long nr_uninterruptible(void); 127extern unsigned long nr_active(void); 128extern unsigned long nr_iowait(void); 129extern unsigned long weighted_cpuload(const int cpu); 130 131 132/* 133 * Task state bitmask. NOTE! These bits are also 134 * encoded in fs/proc/array.c: get_task_state(). 135 * 136 * We have two separate sets of flags: task->state 137 * is about runnability, while task->exit_state are 138 * about the task exiting. Confusing, but this way 139 * modifying one set can't modify the other one by 140 * mistake. 141 */ 142#define TASK_RUNNING 0 143#define TASK_INTERRUPTIBLE 1 144#define TASK_UNINTERRUPTIBLE 2 145#define TASK_STOPPED 4 146#define TASK_TRACED 8 147/* in tsk->exit_state */ 148#define EXIT_ZOMBIE 16 149#define EXIT_DEAD 32 150/* in tsk->state again */ 151#define TASK_NONINTERACTIVE 64 152#define TASK_DEAD 128 153 154#define __set_task_state(tsk, state_value) \ 155 do { (tsk)->state = (state_value); } while (0) 156#define set_task_state(tsk, state_value) \ 157 set_mb((tsk)->state, (state_value)) 158 159/* 160 * set_current_state() includes a barrier so that the write of current->state 161 * is correctly serialised wrt the caller's subsequent test of whether to 162 * actually sleep: 163 * 164 * set_current_state(TASK_UNINTERRUPTIBLE); 165 * if (do_i_need_to_sleep()) 166 * schedule(); 167 * 168 * If the caller does not need such serialisation then use __set_current_state() 169 */ 170#define __set_current_state(state_value) \ 171 do { current->state = (state_value); } while (0) 172#define set_current_state(state_value) \ 173 set_mb(current->state, (state_value)) 174 175/* Task command name length */ 176#define TASK_COMM_LEN 16 177 178#include <linux/spinlock.h> 179 180/* 181 * This serializes "schedule()" and also protects 182 * the run-queue from deletions/modifications (but 183 * _adding_ to the beginning of the run-queue has 184 * a separate lock). 185 */ 186extern rwlock_t tasklist_lock; 187extern spinlock_t mmlist_lock; 188 189struct task_struct; 190 191extern void sched_init(void); 192extern void sched_init_smp(void); 193extern void init_idle(struct task_struct *idle, int cpu); 194 195extern cpumask_t nohz_cpu_mask; 196 197extern void show_state(void); 198extern void show_regs(struct pt_regs *); 199 200/* 201 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 202 * task), SP is the stack pointer of the first frame that should be shown in the back 203 * trace (or NULL if the entire call-chain of the task should be shown). 204 */ 205extern void show_stack(struct task_struct *task, unsigned long *sp); 206 207void io_schedule(void); 208long io_schedule_timeout(long timeout); 209 210extern void cpu_init (void); 211extern void trap_init(void); 212extern void update_process_times(int user); 213extern void scheduler_tick(void); 214 215#ifdef CONFIG_DETECT_SOFTLOCKUP 216extern void softlockup_tick(void); 217extern void spawn_softlockup_task(void); 218extern void touch_softlockup_watchdog(void); 219#else 220static inline void softlockup_tick(void) 221{ 222} 223static inline void spawn_softlockup_task(void) 224{ 225} 226static inline void touch_softlockup_watchdog(void) 227{ 228} 229#endif 230 231 232/* Attach to any functions which should be ignored in wchan output. */ 233#define __sched __attribute__((__section__(".sched.text"))) 234/* Is this address in the __sched functions? */ 235extern int in_sched_functions(unsigned long addr); 236 237#define MAX_SCHEDULE_TIMEOUT LONG_MAX 238extern signed long FASTCALL(schedule_timeout(signed long timeout)); 239extern signed long schedule_timeout_interruptible(signed long timeout); 240extern signed long schedule_timeout_uninterruptible(signed long timeout); 241asmlinkage void schedule(void); 242 243struct nsproxy; 244 245/* Maximum number of active map areas.. This is a random (large) number */ 246#define DEFAULT_MAX_MAP_COUNT 65536 247 248extern int sysctl_max_map_count; 249 250#include <linux/aio.h> 251 252extern unsigned long 253arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 254 unsigned long, unsigned long); 255extern unsigned long 256arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 257 unsigned long len, unsigned long pgoff, 258 unsigned long flags); 259extern void arch_unmap_area(struct mm_struct *, unsigned long); 260extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 261 262#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 263/* 264 * The mm counters are not protected by its page_table_lock, 265 * so must be incremented atomically. 266 */ 267#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 268#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 269#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 270#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 271#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 272typedef atomic_long_t mm_counter_t; 273 274#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 275/* 276 * The mm counters are protected by its page_table_lock, 277 * so can be incremented directly. 278 */ 279#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 280#define get_mm_counter(mm, member) ((mm)->_##member) 281#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 282#define inc_mm_counter(mm, member) (mm)->_##member++ 283#define dec_mm_counter(mm, member) (mm)->_##member-- 284typedef unsigned long mm_counter_t; 285 286#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 287 288#define get_mm_rss(mm) \ 289 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 290#define update_hiwater_rss(mm) do { \ 291 unsigned long _rss = get_mm_rss(mm); \ 292 if ((mm)->hiwater_rss < _rss) \ 293 (mm)->hiwater_rss = _rss; \ 294} while (0) 295#define update_hiwater_vm(mm) do { \ 296 if ((mm)->hiwater_vm < (mm)->total_vm) \ 297 (mm)->hiwater_vm = (mm)->total_vm; \ 298} while (0) 299 300struct mm_struct { 301 struct vm_area_struct * mmap; /* list of VMAs */ 302 struct rb_root mm_rb; 303 struct vm_area_struct * mmap_cache; /* last find_vma result */ 304 unsigned long (*get_unmapped_area) (struct file *filp, 305 unsigned long addr, unsigned long len, 306 unsigned long pgoff, unsigned long flags); 307 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 308 unsigned long mmap_base; /* base of mmap area */ 309 unsigned long task_size; /* size of task vm space */ 310 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 311 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 312 pgd_t * pgd; 313 atomic_t mm_users; /* How many users with user space? */ 314 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 315 int map_count; /* number of VMAs */ 316 struct rw_semaphore mmap_sem; 317 spinlock_t page_table_lock; /* Protects page tables and some counters */ 318 319 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 320 * together off init_mm.mmlist, and are protected 321 * by mmlist_lock 322 */ 323 324 /* Special counters, in some configurations protected by the 325 * page_table_lock, in other configurations by being atomic. 326 */ 327 mm_counter_t _file_rss; 328 mm_counter_t _anon_rss; 329 330 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 331 unsigned long hiwater_vm; /* High-water virtual memory usage */ 332 333 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 334 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 335 unsigned long start_code, end_code, start_data, end_data; 336 unsigned long start_brk, brk, start_stack; 337 unsigned long arg_start, arg_end, env_start, env_end; 338 339 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 340 341 unsigned dumpable:2; 342 cpumask_t cpu_vm_mask; 343 344 /* Architecture-specific MM context */ 345 mm_context_t context; 346 347 /* Token based thrashing protection. */ 348 unsigned long swap_token_time; 349 char recent_pagein; 350 351 /* coredumping support */ 352 int core_waiters; 353 struct completion *core_startup_done, core_done; 354 355 /* aio bits */ 356 rwlock_t ioctx_list_lock; 357 struct kioctx *ioctx_list; 358}; 359 360struct sighand_struct { 361 atomic_t count; 362 struct k_sigaction action[_NSIG]; 363 spinlock_t siglock; 364}; 365 366struct pacct_struct { 367 int ac_flag; 368 long ac_exitcode; 369 unsigned long ac_mem; 370 cputime_t ac_utime, ac_stime; 371 unsigned long ac_minflt, ac_majflt; 372}; 373 374/* 375 * NOTE! "signal_struct" does not have it's own 376 * locking, because a shared signal_struct always 377 * implies a shared sighand_struct, so locking 378 * sighand_struct is always a proper superset of 379 * the locking of signal_struct. 380 */ 381struct signal_struct { 382 atomic_t count; 383 atomic_t live; 384 385 wait_queue_head_t wait_chldexit; /* for wait4() */ 386 387 /* current thread group signal load-balancing target: */ 388 struct task_struct *curr_target; 389 390 /* shared signal handling: */ 391 struct sigpending shared_pending; 392 393 /* thread group exit support */ 394 int group_exit_code; 395 /* overloaded: 396 * - notify group_exit_task when ->count is equal to notify_count 397 * - everyone except group_exit_task is stopped during signal delivery 398 * of fatal signals, group_exit_task processes the signal. 399 */ 400 struct task_struct *group_exit_task; 401 int notify_count; 402 403 /* thread group stop support, overloads group_exit_code too */ 404 int group_stop_count; 405 unsigned int flags; /* see SIGNAL_* flags below */ 406 407 /* POSIX.1b Interval Timers */ 408 struct list_head posix_timers; 409 410 /* ITIMER_REAL timer for the process */ 411 struct hrtimer real_timer; 412 struct task_struct *tsk; 413 ktime_t it_real_incr; 414 415 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 416 cputime_t it_prof_expires, it_virt_expires; 417 cputime_t it_prof_incr, it_virt_incr; 418 419 /* job control IDs */ 420 pid_t pgrp; 421 pid_t tty_old_pgrp; 422 pid_t session; 423 /* boolean value for session group leader */ 424 int leader; 425 426 struct tty_struct *tty; /* NULL if no tty */ 427 428 /* 429 * Cumulative resource counters for dead threads in the group, 430 * and for reaped dead child processes forked by this group. 431 * Live threads maintain their own counters and add to these 432 * in __exit_signal, except for the group leader. 433 */ 434 cputime_t utime, stime, cutime, cstime; 435 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 436 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 437 438 /* 439 * Cumulative ns of scheduled CPU time for dead threads in the 440 * group, not including a zombie group leader. (This only differs 441 * from jiffies_to_ns(utime + stime) if sched_clock uses something 442 * other than jiffies.) 443 */ 444 unsigned long long sched_time; 445 446 /* 447 * We don't bother to synchronize most readers of this at all, 448 * because there is no reader checking a limit that actually needs 449 * to get both rlim_cur and rlim_max atomically, and either one 450 * alone is a single word that can safely be read normally. 451 * getrlimit/setrlimit use task_lock(current->group_leader) to 452 * protect this instead of the siglock, because they really 453 * have no need to disable irqs. 454 */ 455 struct rlimit rlim[RLIM_NLIMITS]; 456 457 struct list_head cpu_timers[3]; 458 459 /* keep the process-shared keyrings here so that they do the right 460 * thing in threads created with CLONE_THREAD */ 461#ifdef CONFIG_KEYS 462 struct key *session_keyring; /* keyring inherited over fork */ 463 struct key *process_keyring; /* keyring private to this process */ 464#endif 465#ifdef CONFIG_BSD_PROCESS_ACCT 466 struct pacct_struct pacct; /* per-process accounting information */ 467#endif 468#ifdef CONFIG_TASKSTATS 469 struct taskstats *stats; 470#endif 471}; 472 473/* Context switch must be unlocked if interrupts are to be enabled */ 474#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 475# define __ARCH_WANT_UNLOCKED_CTXSW 476#endif 477 478/* 479 * Bits in flags field of signal_struct. 480 */ 481#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 482#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 483#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 484#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 485 486 487/* 488 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 489 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 490 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 491 * values are inverted: lower p->prio value means higher priority. 492 * 493 * The MAX_USER_RT_PRIO value allows the actual maximum 494 * RT priority to be separate from the value exported to 495 * user-space. This allows kernel threads to set their 496 * priority to a value higher than any user task. Note: 497 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 498 */ 499 500#define MAX_USER_RT_PRIO 100 501#define MAX_RT_PRIO MAX_USER_RT_PRIO 502 503#define MAX_PRIO (MAX_RT_PRIO + 40) 504 505#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) 506#define rt_task(p) rt_prio((p)->prio) 507#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 508#define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH) 509#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) 510 511/* 512 * Some day this will be a full-fledged user tracking system.. 513 */ 514struct user_struct { 515 atomic_t __count; /* reference count */ 516 atomic_t processes; /* How many processes does this user have? */ 517 atomic_t files; /* How many open files does this user have? */ 518 atomic_t sigpending; /* How many pending signals does this user have? */ 519#ifdef CONFIG_INOTIFY_USER 520 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 521 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 522#endif 523 /* protected by mq_lock */ 524 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 525 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 526 527#ifdef CONFIG_KEYS 528 struct key *uid_keyring; /* UID specific keyring */ 529 struct key *session_keyring; /* UID's default session keyring */ 530#endif 531 532 /* Hash table maintenance information */ 533 struct list_head uidhash_list; 534 uid_t uid; 535}; 536 537extern struct user_struct *find_user(uid_t); 538 539extern struct user_struct root_user; 540#define INIT_USER (&root_user) 541 542struct backing_dev_info; 543struct reclaim_state; 544 545#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 546struct sched_info { 547 /* cumulative counters */ 548 unsigned long cpu_time, /* time spent on the cpu */ 549 run_delay, /* time spent waiting on a runqueue */ 550 pcnt; /* # of timeslices run on this cpu */ 551 552 /* timestamps */ 553 unsigned long last_arrival, /* when we last ran on a cpu */ 554 last_queued; /* when we were last queued to run */ 555}; 556#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 557 558#ifdef CONFIG_SCHEDSTATS 559extern struct file_operations proc_schedstat_operations; 560#endif /* CONFIG_SCHEDSTATS */ 561 562#ifdef CONFIG_TASK_DELAY_ACCT 563struct task_delay_info { 564 spinlock_t lock; 565 unsigned int flags; /* Private per-task flags */ 566 567 /* For each stat XXX, add following, aligned appropriately 568 * 569 * struct timespec XXX_start, XXX_end; 570 * u64 XXX_delay; 571 * u32 XXX_count; 572 * 573 * Atomicity of updates to XXX_delay, XXX_count protected by 574 * single lock above (split into XXX_lock if contention is an issue). 575 */ 576 577 /* 578 * XXX_count is incremented on every XXX operation, the delay 579 * associated with the operation is added to XXX_delay. 580 * XXX_delay contains the accumulated delay time in nanoseconds. 581 */ 582 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 583 u64 blkio_delay; /* wait for sync block io completion */ 584 u64 swapin_delay; /* wait for swapin block io completion */ 585 u32 blkio_count; /* total count of the number of sync block */ 586 /* io operations performed */ 587 u32 swapin_count; /* total count of the number of swapin block */ 588 /* io operations performed */ 589}; 590#endif /* CONFIG_TASK_DELAY_ACCT */ 591 592static inline int sched_info_on(void) 593{ 594#ifdef CONFIG_SCHEDSTATS 595 return 1; 596#elif defined(CONFIG_TASK_DELAY_ACCT) 597 extern int delayacct_on; 598 return delayacct_on; 599#else 600 return 0; 601#endif 602} 603 604enum idle_type 605{ 606 SCHED_IDLE, 607 NOT_IDLE, 608 NEWLY_IDLE, 609 MAX_IDLE_TYPES 610}; 611 612/* 613 * sched-domains (multiprocessor balancing) declarations: 614 */ 615#define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 616 617#ifdef CONFIG_SMP 618#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 619#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 620#define SD_BALANCE_EXEC 4 /* Balance on exec */ 621#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 622#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 623#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 624#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 625#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 626#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 627#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 628 629#define BALANCE_FOR_MC_POWER \ 630 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 631 632#define BALANCE_FOR_PKG_POWER \ 633 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 634 SD_POWERSAVINGS_BALANCE : 0) 635 636#define test_sd_parent(sd, flag) ((sd->parent && \ 637 (sd->parent->flags & flag)) ? 1 : 0) 638 639 640struct sched_group { 641 struct sched_group *next; /* Must be a circular list */ 642 cpumask_t cpumask; 643 644 /* 645 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 646 * single CPU. This is read only (except for setup, hotplug CPU). 647 */ 648 unsigned long cpu_power; 649}; 650 651struct sched_domain { 652 /* These fields must be setup */ 653 struct sched_domain *parent; /* top domain must be null terminated */ 654 struct sched_domain *child; /* bottom domain must be null terminated */ 655 struct sched_group *groups; /* the balancing groups of the domain */ 656 cpumask_t span; /* span of all CPUs in this domain */ 657 unsigned long min_interval; /* Minimum balance interval ms */ 658 unsigned long max_interval; /* Maximum balance interval ms */ 659 unsigned int busy_factor; /* less balancing by factor if busy */ 660 unsigned int imbalance_pct; /* No balance until over watermark */ 661 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 662 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 663 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 664 unsigned int busy_idx; 665 unsigned int idle_idx; 666 unsigned int newidle_idx; 667 unsigned int wake_idx; 668 unsigned int forkexec_idx; 669 int flags; /* See SD_* */ 670 671 /* Runtime fields. */ 672 unsigned long last_balance; /* init to jiffies. units in jiffies */ 673 unsigned int balance_interval; /* initialise to 1. units in ms. */ 674 unsigned int nr_balance_failed; /* initialise to 0 */ 675 676#ifdef CONFIG_SCHEDSTATS 677 /* load_balance() stats */ 678 unsigned long lb_cnt[MAX_IDLE_TYPES]; 679 unsigned long lb_failed[MAX_IDLE_TYPES]; 680 unsigned long lb_balanced[MAX_IDLE_TYPES]; 681 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 682 unsigned long lb_gained[MAX_IDLE_TYPES]; 683 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 684 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 685 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 686 687 /* Active load balancing */ 688 unsigned long alb_cnt; 689 unsigned long alb_failed; 690 unsigned long alb_pushed; 691 692 /* SD_BALANCE_EXEC stats */ 693 unsigned long sbe_cnt; 694 unsigned long sbe_balanced; 695 unsigned long sbe_pushed; 696 697 /* SD_BALANCE_FORK stats */ 698 unsigned long sbf_cnt; 699 unsigned long sbf_balanced; 700 unsigned long sbf_pushed; 701 702 /* try_to_wake_up() stats */ 703 unsigned long ttwu_wake_remote; 704 unsigned long ttwu_move_affine; 705 unsigned long ttwu_move_balance; 706#endif 707}; 708 709extern int partition_sched_domains(cpumask_t *partition1, 710 cpumask_t *partition2); 711 712/* 713 * Maximum cache size the migration-costs auto-tuning code will 714 * search from: 715 */ 716extern unsigned int max_cache_size; 717 718#endif /* CONFIG_SMP */ 719 720 721struct io_context; /* See blkdev.h */ 722struct cpuset; 723 724#define NGROUPS_SMALL 32 725#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 726struct group_info { 727 int ngroups; 728 atomic_t usage; 729 gid_t small_block[NGROUPS_SMALL]; 730 int nblocks; 731 gid_t *blocks[0]; 732}; 733 734/* 735 * get_group_info() must be called with the owning task locked (via task_lock()) 736 * when task != current. The reason being that the vast majority of callers are 737 * looking at current->group_info, which can not be changed except by the 738 * current task. Changing current->group_info requires the task lock, too. 739 */ 740#define get_group_info(group_info) do { \ 741 atomic_inc(&(group_info)->usage); \ 742} while (0) 743 744#define put_group_info(group_info) do { \ 745 if (atomic_dec_and_test(&(group_info)->usage)) \ 746 groups_free(group_info); \ 747} while (0) 748 749extern struct group_info *groups_alloc(int gidsetsize); 750extern void groups_free(struct group_info *group_info); 751extern int set_current_groups(struct group_info *group_info); 752extern int groups_search(struct group_info *group_info, gid_t grp); 753/* access the groups "array" with this macro */ 754#define GROUP_AT(gi, i) \ 755 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 756 757#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 758extern void prefetch_stack(struct task_struct *t); 759#else 760static inline void prefetch_stack(struct task_struct *t) { } 761#endif 762 763struct audit_context; /* See audit.c */ 764struct mempolicy; 765struct pipe_inode_info; 766struct uts_namespace; 767 768enum sleep_type { 769 SLEEP_NORMAL, 770 SLEEP_NONINTERACTIVE, 771 SLEEP_INTERACTIVE, 772 SLEEP_INTERRUPTED, 773}; 774 775struct prio_array; 776 777struct task_struct { 778 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 779 struct thread_info *thread_info; 780 atomic_t usage; 781 unsigned long flags; /* per process flags, defined below */ 782 unsigned long ptrace; 783 784 int lock_depth; /* BKL lock depth */ 785 786#ifdef CONFIG_SMP 787#ifdef __ARCH_WANT_UNLOCKED_CTXSW 788 int oncpu; 789#endif 790#endif 791 int load_weight; /* for niceness load balancing purposes */ 792 int prio, static_prio, normal_prio; 793 struct list_head run_list; 794 struct prio_array *array; 795 796 unsigned short ioprio; 797#ifdef CONFIG_BLK_DEV_IO_TRACE 798 unsigned int btrace_seq; 799#endif 800 unsigned long sleep_avg; 801 unsigned long long timestamp, last_ran; 802 unsigned long long sched_time; /* sched_clock time spent running */ 803 enum sleep_type sleep_type; 804 805 unsigned long policy; 806 cpumask_t cpus_allowed; 807 unsigned int time_slice, first_time_slice; 808 809#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 810 struct sched_info sched_info; 811#endif 812 813 struct list_head tasks; 814 /* 815 * ptrace_list/ptrace_children forms the list of my children 816 * that were stolen by a ptracer. 817 */ 818 struct list_head ptrace_children; 819 struct list_head ptrace_list; 820 821 struct mm_struct *mm, *active_mm; 822 823/* task state */ 824 struct linux_binfmt *binfmt; 825 long exit_state; 826 int exit_code, exit_signal; 827 int pdeath_signal; /* The signal sent when the parent dies */ 828 /* ??? */ 829 unsigned long personality; 830 unsigned did_exec:1; 831 pid_t pid; 832 pid_t tgid; 833 834#ifdef CONFIG_CC_STACKPROTECTOR 835 /* Canary value for the -fstack-protector gcc feature */ 836 unsigned long stack_canary; 837#endif 838 /* 839 * pointers to (original) parent process, youngest child, younger sibling, 840 * older sibling, respectively. (p->father can be replaced with 841 * p->parent->pid) 842 */ 843 struct task_struct *real_parent; /* real parent process (when being debugged) */ 844 struct task_struct *parent; /* parent process */ 845 /* 846 * children/sibling forms the list of my children plus the 847 * tasks I'm ptracing. 848 */ 849 struct list_head children; /* list of my children */ 850 struct list_head sibling; /* linkage in my parent's children list */ 851 struct task_struct *group_leader; /* threadgroup leader */ 852 853 /* PID/PID hash table linkage. */ 854 struct pid_link pids[PIDTYPE_MAX]; 855 struct list_head thread_group; 856 857 struct completion *vfork_done; /* for vfork() */ 858 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 859 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 860 861 unsigned long rt_priority; 862 cputime_t utime, stime; 863 unsigned long nvcsw, nivcsw; /* context switch counts */ 864 struct timespec start_time; 865/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 866 unsigned long min_flt, maj_flt; 867 868 cputime_t it_prof_expires, it_virt_expires; 869 unsigned long long it_sched_expires; 870 struct list_head cpu_timers[3]; 871 872/* process credentials */ 873 uid_t uid,euid,suid,fsuid; 874 gid_t gid,egid,sgid,fsgid; 875 struct group_info *group_info; 876 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 877 unsigned keep_capabilities:1; 878 struct user_struct *user; 879#ifdef CONFIG_KEYS 880 struct key *request_key_auth; /* assumed request_key authority */ 881 struct key *thread_keyring; /* keyring private to this thread */ 882 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 883#endif 884 /* 885 * fpu_counter contains the number of consecutive context switches 886 * that the FPU is used. If this is over a threshold, the lazy fpu 887 * saving becomes unlazy to save the trap. This is an unsigned char 888 * so that after 256 times the counter wraps and the behavior turns 889 * lazy again; this to deal with bursty apps that only use FPU for 890 * a short time 891 */ 892 unsigned char fpu_counter; 893 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 894 char comm[TASK_COMM_LEN]; /* executable name excluding path 895 - access with [gs]et_task_comm (which lock 896 it with task_lock()) 897 - initialized normally by flush_old_exec */ 898/* file system info */ 899 int link_count, total_link_count; 900#ifdef CONFIG_SYSVIPC 901/* ipc stuff */ 902 struct sysv_sem sysvsem; 903#endif 904/* CPU-specific state of this task */ 905 struct thread_struct thread; 906/* filesystem information */ 907 struct fs_struct *fs; 908/* open file information */ 909 struct files_struct *files; 910/* namespaces */ 911 struct nsproxy *nsproxy; 912/* signal handlers */ 913 struct signal_struct *signal; 914 struct sighand_struct *sighand; 915 916 sigset_t blocked, real_blocked; 917 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 918 struct sigpending pending; 919 920 unsigned long sas_ss_sp; 921 size_t sas_ss_size; 922 int (*notifier)(void *priv); 923 void *notifier_data; 924 sigset_t *notifier_mask; 925 926 void *security; 927 struct audit_context *audit_context; 928 seccomp_t seccomp; 929 930/* Thread group tracking */ 931 u32 parent_exec_id; 932 u32 self_exec_id; 933/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 934 spinlock_t alloc_lock; 935 936 /* Protection of the PI data structures: */ 937 spinlock_t pi_lock; 938 939#ifdef CONFIG_RT_MUTEXES 940 /* PI waiters blocked on a rt_mutex held by this task */ 941 struct plist_head pi_waiters; 942 /* Deadlock detection and priority inheritance handling */ 943 struct rt_mutex_waiter *pi_blocked_on; 944#endif 945 946#ifdef CONFIG_DEBUG_MUTEXES 947 /* mutex deadlock detection */ 948 struct mutex_waiter *blocked_on; 949#endif 950#ifdef CONFIG_TRACE_IRQFLAGS 951 unsigned int irq_events; 952 int hardirqs_enabled; 953 unsigned long hardirq_enable_ip; 954 unsigned int hardirq_enable_event; 955 unsigned long hardirq_disable_ip; 956 unsigned int hardirq_disable_event; 957 int softirqs_enabled; 958 unsigned long softirq_disable_ip; 959 unsigned int softirq_disable_event; 960 unsigned long softirq_enable_ip; 961 unsigned int softirq_enable_event; 962 int hardirq_context; 963 int softirq_context; 964#endif 965#ifdef CONFIG_LOCKDEP 966# define MAX_LOCK_DEPTH 30UL 967 u64 curr_chain_key; 968 int lockdep_depth; 969 struct held_lock held_locks[MAX_LOCK_DEPTH]; 970 unsigned int lockdep_recursion; 971#endif 972 973/* journalling filesystem info */ 974 void *journal_info; 975 976/* VM state */ 977 struct reclaim_state *reclaim_state; 978 979 struct backing_dev_info *backing_dev_info; 980 981 struct io_context *io_context; 982 983 unsigned long ptrace_message; 984 siginfo_t *last_siginfo; /* For ptrace use. */ 985/* 986 * current io wait handle: wait queue entry to use for io waits 987 * If this thread is processing aio, this points at the waitqueue 988 * inside the currently handled kiocb. It may be NULL (i.e. default 989 * to a stack based synchronous wait) if its doing sync IO. 990 */ 991 wait_queue_t *io_wait; 992/* i/o counters(bytes read/written, #syscalls */ 993 u64 rchar, wchar, syscr, syscw; 994#if defined(CONFIG_TASK_XACCT) 995 u64 acct_rss_mem1; /* accumulated rss usage */ 996 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 997 cputime_t acct_stimexpd;/* stime since last update */ 998#endif 999#ifdef CONFIG_NUMA 1000 struct mempolicy *mempolicy; 1001 short il_next; 1002#endif 1003#ifdef CONFIG_CPUSETS 1004 struct cpuset *cpuset; 1005 nodemask_t mems_allowed; 1006 int cpuset_mems_generation; 1007 int cpuset_mem_spread_rotor; 1008#endif 1009 struct robust_list_head __user *robust_list; 1010#ifdef CONFIG_COMPAT 1011 struct compat_robust_list_head __user *compat_robust_list; 1012#endif 1013 struct list_head pi_state_list; 1014 struct futex_pi_state *pi_state_cache; 1015 1016 atomic_t fs_excl; /* holding fs exclusive resources */ 1017 struct rcu_head rcu; 1018 1019 /* 1020 * cache last used pipe for splice 1021 */ 1022 struct pipe_inode_info *splice_pipe; 1023#ifdef CONFIG_TASK_DELAY_ACCT 1024 struct task_delay_info *delays; 1025#endif 1026}; 1027 1028static inline pid_t process_group(struct task_struct *tsk) 1029{ 1030 return tsk->signal->pgrp; 1031} 1032 1033static inline struct pid *task_pid(struct task_struct *task) 1034{ 1035 return task->pids[PIDTYPE_PID].pid; 1036} 1037 1038static inline struct pid *task_tgid(struct task_struct *task) 1039{ 1040 return task->group_leader->pids[PIDTYPE_PID].pid; 1041} 1042 1043static inline struct pid *task_pgrp(struct task_struct *task) 1044{ 1045 return task->group_leader->pids[PIDTYPE_PGID].pid; 1046} 1047 1048static inline struct pid *task_session(struct task_struct *task) 1049{ 1050 return task->group_leader->pids[PIDTYPE_SID].pid; 1051} 1052 1053/** 1054 * pid_alive - check that a task structure is not stale 1055 * @p: Task structure to be checked. 1056 * 1057 * Test if a process is not yet dead (at most zombie state) 1058 * If pid_alive fails, then pointers within the task structure 1059 * can be stale and must not be dereferenced. 1060 */ 1061static inline int pid_alive(struct task_struct *p) 1062{ 1063 return p->pids[PIDTYPE_PID].pid != NULL; 1064} 1065 1066/** 1067 * is_init - check if a task structure is init 1068 * @tsk: Task structure to be checked. 1069 * 1070 * Check if a task structure is the first user space task the kernel created. 1071 */ 1072static inline int is_init(struct task_struct *tsk) 1073{ 1074 return tsk->pid == 1; 1075} 1076 1077extern struct pid *cad_pid; 1078 1079extern void free_task(struct task_struct *tsk); 1080#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1081 1082extern void __put_task_struct(struct task_struct *t); 1083 1084static inline void put_task_struct(struct task_struct *t) 1085{ 1086 if (atomic_dec_and_test(&t->usage)) 1087 __put_task_struct(t); 1088} 1089 1090/* 1091 * Per process flags 1092 */ 1093#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1094 /* Not implemented yet, only for 486*/ 1095#define PF_STARTING 0x00000002 /* being created */ 1096#define PF_EXITING 0x00000004 /* getting shut down */ 1097#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1098#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1099#define PF_DUMPCORE 0x00000200 /* dumped core */ 1100#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1101#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1102#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1103#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1104#define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 1105#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1106#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1107#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1108#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1109#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1110#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1111#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1112#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1113#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1114#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1115#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1116#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1117#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1118 1119/* 1120 * Only the _current_ task can read/write to tsk->flags, but other 1121 * tasks can access tsk->flags in readonly mode for example 1122 * with tsk_used_math (like during threaded core dumping). 1123 * There is however an exception to this rule during ptrace 1124 * or during fork: the ptracer task is allowed to write to the 1125 * child->flags of its traced child (same goes for fork, the parent 1126 * can write to the child->flags), because we're guaranteed the 1127 * child is not running and in turn not changing child->flags 1128 * at the same time the parent does it. 1129 */ 1130#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1131#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1132#define clear_used_math() clear_stopped_child_used_math(current) 1133#define set_used_math() set_stopped_child_used_math(current) 1134#define conditional_stopped_child_used_math(condition, child) \ 1135 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1136#define conditional_used_math(condition) \ 1137 conditional_stopped_child_used_math(condition, current) 1138#define copy_to_stopped_child_used_math(child) \ 1139 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1140/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1141#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1142#define used_math() tsk_used_math(current) 1143 1144#ifdef CONFIG_SMP 1145extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1146#else 1147static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1148{ 1149 if (!cpu_isset(0, new_mask)) 1150 return -EINVAL; 1151 return 0; 1152} 1153#endif 1154 1155extern unsigned long long sched_clock(void); 1156extern unsigned long long 1157current_sched_time(const struct task_struct *current_task); 1158 1159/* sched_exec is called by processes performing an exec */ 1160#ifdef CONFIG_SMP 1161extern void sched_exec(void); 1162#else 1163#define sched_exec() {} 1164#endif 1165 1166#ifdef CONFIG_HOTPLUG_CPU 1167extern void idle_task_exit(void); 1168#else 1169static inline void idle_task_exit(void) {} 1170#endif 1171 1172extern void sched_idle_next(void); 1173 1174#ifdef CONFIG_RT_MUTEXES 1175extern int rt_mutex_getprio(struct task_struct *p); 1176extern void rt_mutex_setprio(struct task_struct *p, int prio); 1177extern void rt_mutex_adjust_pi(struct task_struct *p); 1178#else 1179static inline int rt_mutex_getprio(struct task_struct *p) 1180{ 1181 return p->normal_prio; 1182} 1183# define rt_mutex_adjust_pi(p) do { } while (0) 1184#endif 1185 1186extern void set_user_nice(struct task_struct *p, long nice); 1187extern int task_prio(const struct task_struct *p); 1188extern int task_nice(const struct task_struct *p); 1189extern int can_nice(const struct task_struct *p, const int nice); 1190extern int task_curr(const struct task_struct *p); 1191extern int idle_cpu(int cpu); 1192extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1193extern struct task_struct *idle_task(int cpu); 1194extern struct task_struct *curr_task(int cpu); 1195extern void set_curr_task(int cpu, struct task_struct *p); 1196 1197void yield(void); 1198 1199/* 1200 * The default (Linux) execution domain. 1201 */ 1202extern struct exec_domain default_exec_domain; 1203 1204union thread_union { 1205 struct thread_info thread_info; 1206 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1207}; 1208 1209#ifndef __HAVE_ARCH_KSTACK_END 1210static inline int kstack_end(void *addr) 1211{ 1212 /* Reliable end of stack detection: 1213 * Some APM bios versions misalign the stack 1214 */ 1215 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1216} 1217#endif 1218 1219extern union thread_union init_thread_union; 1220extern struct task_struct init_task; 1221 1222extern struct mm_struct init_mm; 1223 1224#define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1225extern struct task_struct *find_task_by_pid_type(int type, int pid); 1226extern void set_special_pids(pid_t session, pid_t pgrp); 1227extern void __set_special_pids(pid_t session, pid_t pgrp); 1228 1229/* per-UID process charging. */ 1230extern struct user_struct * alloc_uid(uid_t); 1231static inline struct user_struct *get_uid(struct user_struct *u) 1232{ 1233 atomic_inc(&u->__count); 1234 return u; 1235} 1236extern void free_uid(struct user_struct *); 1237extern void switch_uid(struct user_struct *); 1238 1239#include <asm/current.h> 1240 1241extern void do_timer(unsigned long ticks); 1242 1243extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1244extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1245extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1246 unsigned long clone_flags)); 1247#ifdef CONFIG_SMP 1248 extern void kick_process(struct task_struct *tsk); 1249#else 1250 static inline void kick_process(struct task_struct *tsk) { } 1251#endif 1252extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags)); 1253extern void FASTCALL(sched_exit(struct task_struct * p)); 1254 1255extern int in_group_p(gid_t); 1256extern int in_egroup_p(gid_t); 1257 1258extern void proc_caches_init(void); 1259extern void flush_signals(struct task_struct *); 1260extern void flush_signal_handlers(struct task_struct *, int force_default); 1261extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1262 1263static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1264{ 1265 unsigned long flags; 1266 int ret; 1267 1268 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1269 ret = dequeue_signal(tsk, mask, info); 1270 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1271 1272 return ret; 1273} 1274 1275extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1276 sigset_t *mask); 1277extern void unblock_all_signals(void); 1278extern void release_task(struct task_struct * p); 1279extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1280extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1281extern int force_sigsegv(int, struct task_struct *); 1282extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1283extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1284extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1285extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1286extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1287extern int kill_pgrp(struct pid *pid, int sig, int priv); 1288extern int kill_pid(struct pid *pid, int sig, int priv); 1289extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1290extern int kill_pg_info(int, struct siginfo *, pid_t); 1291extern int kill_proc_info(int, struct siginfo *, pid_t); 1292extern void do_notify_parent(struct task_struct *, int); 1293extern void force_sig(int, struct task_struct *); 1294extern void force_sig_specific(int, struct task_struct *); 1295extern int send_sig(int, struct task_struct *, int); 1296extern void zap_other_threads(struct task_struct *p); 1297extern int kill_pg(pid_t, int, int); 1298extern int kill_proc(pid_t, int, int); 1299extern struct sigqueue *sigqueue_alloc(void); 1300extern void sigqueue_free(struct sigqueue *); 1301extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1302extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1303extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1304extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1305 1306static inline int kill_cad_pid(int sig, int priv) 1307{ 1308 return kill_pid(cad_pid, sig, priv); 1309} 1310 1311/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1312#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1313#define SEND_SIG_PRIV ((struct siginfo *) 1) 1314#define SEND_SIG_FORCED ((struct siginfo *) 2) 1315 1316static inline int is_si_special(const struct siginfo *info) 1317{ 1318 return info <= SEND_SIG_FORCED; 1319} 1320 1321/* True if we are on the alternate signal stack. */ 1322 1323static inline int on_sig_stack(unsigned long sp) 1324{ 1325 return (sp - current->sas_ss_sp < current->sas_ss_size); 1326} 1327 1328static inline int sas_ss_flags(unsigned long sp) 1329{ 1330 return (current->sas_ss_size == 0 ? SS_DISABLE 1331 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1332} 1333 1334/* 1335 * Routines for handling mm_structs 1336 */ 1337extern struct mm_struct * mm_alloc(void); 1338 1339/* mmdrop drops the mm and the page tables */ 1340extern void FASTCALL(__mmdrop(struct mm_struct *)); 1341static inline void mmdrop(struct mm_struct * mm) 1342{ 1343 if (atomic_dec_and_test(&mm->mm_count)) 1344 __mmdrop(mm); 1345} 1346 1347/* mmput gets rid of the mappings and all user-space */ 1348extern void mmput(struct mm_struct *); 1349/* Grab a reference to a task's mm, if it is not already going away */ 1350extern struct mm_struct *get_task_mm(struct task_struct *task); 1351/* Remove the current tasks stale references to the old mm_struct */ 1352extern void mm_release(struct task_struct *, struct mm_struct *); 1353 1354extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1355extern void flush_thread(void); 1356extern void exit_thread(void); 1357 1358extern void exit_files(struct task_struct *); 1359extern void __cleanup_signal(struct signal_struct *); 1360extern void __cleanup_sighand(struct sighand_struct *); 1361extern void exit_itimers(struct signal_struct *); 1362 1363extern NORET_TYPE void do_group_exit(int); 1364 1365extern void daemonize(const char *, ...); 1366extern int allow_signal(int); 1367extern int disallow_signal(int); 1368extern struct task_struct *child_reaper; 1369 1370extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1371extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1372struct task_struct *fork_idle(int); 1373 1374extern void set_task_comm(struct task_struct *tsk, char *from); 1375extern void get_task_comm(char *to, struct task_struct *tsk); 1376 1377#ifdef CONFIG_SMP 1378extern void wait_task_inactive(struct task_struct * p); 1379#else 1380#define wait_task_inactive(p) do { } while (0) 1381#endif 1382 1383#define remove_parent(p) list_del_init(&(p)->sibling) 1384#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1385 1386#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1387 1388#define for_each_process(p) \ 1389 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1390 1391/* 1392 * Careful: do_each_thread/while_each_thread is a double loop so 1393 * 'break' will not work as expected - use goto instead. 1394 */ 1395#define do_each_thread(g, t) \ 1396 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1397 1398#define while_each_thread(g, t) \ 1399 while ((t = next_thread(t)) != g) 1400 1401/* de_thread depends on thread_group_leader not being a pid based check */ 1402#define thread_group_leader(p) (p == p->group_leader) 1403 1404/* Do to the insanities of de_thread it is possible for a process 1405 * to have the pid of the thread group leader without actually being 1406 * the thread group leader. For iteration through the pids in proc 1407 * all we care about is that we have a task with the appropriate 1408 * pid, we don't actually care if we have the right task. 1409 */ 1410static inline int has_group_leader_pid(struct task_struct *p) 1411{ 1412 return p->pid == p->tgid; 1413} 1414 1415static inline struct task_struct *next_thread(const struct task_struct *p) 1416{ 1417 return list_entry(rcu_dereference(p->thread_group.next), 1418 struct task_struct, thread_group); 1419} 1420 1421static inline int thread_group_empty(struct task_struct *p) 1422{ 1423 return list_empty(&p->thread_group); 1424} 1425 1426#define delay_group_leader(p) \ 1427 (thread_group_leader(p) && !thread_group_empty(p)) 1428 1429/* 1430 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1431 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1432 * pins the final release of task.io_context. Also protects ->cpuset. 1433 * 1434 * Nests both inside and outside of read_lock(&tasklist_lock). 1435 * It must not be nested with write_lock_irq(&tasklist_lock), 1436 * neither inside nor outside. 1437 */ 1438static inline void task_lock(struct task_struct *p) 1439{ 1440 spin_lock(&p->alloc_lock); 1441} 1442 1443static inline void task_unlock(struct task_struct *p) 1444{ 1445 spin_unlock(&p->alloc_lock); 1446} 1447 1448extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1449 unsigned long *flags); 1450 1451static inline void unlock_task_sighand(struct task_struct *tsk, 1452 unsigned long *flags) 1453{ 1454 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1455} 1456 1457#ifndef __HAVE_THREAD_FUNCTIONS 1458 1459#define task_thread_info(task) (task)->thread_info 1460#define task_stack_page(task) ((void*)((task)->thread_info)) 1461 1462static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1463{ 1464 *task_thread_info(p) = *task_thread_info(org); 1465 task_thread_info(p)->task = p; 1466} 1467 1468static inline unsigned long *end_of_stack(struct task_struct *p) 1469{ 1470 return (unsigned long *)(p->thread_info + 1); 1471} 1472 1473#endif 1474 1475/* set thread flags in other task's structures 1476 * - see asm/thread_info.h for TIF_xxxx flags available 1477 */ 1478static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1479{ 1480 set_ti_thread_flag(task_thread_info(tsk), flag); 1481} 1482 1483static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1484{ 1485 clear_ti_thread_flag(task_thread_info(tsk), flag); 1486} 1487 1488static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1489{ 1490 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1491} 1492 1493static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1494{ 1495 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1496} 1497 1498static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1499{ 1500 return test_ti_thread_flag(task_thread_info(tsk), flag); 1501} 1502 1503static inline void set_tsk_need_resched(struct task_struct *tsk) 1504{ 1505 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1506} 1507 1508static inline void clear_tsk_need_resched(struct task_struct *tsk) 1509{ 1510 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1511} 1512 1513static inline int signal_pending(struct task_struct *p) 1514{ 1515 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1516} 1517 1518static inline int need_resched(void) 1519{ 1520 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1521} 1522 1523/* 1524 * cond_resched() and cond_resched_lock(): latency reduction via 1525 * explicit rescheduling in places that are safe. The return 1526 * value indicates whether a reschedule was done in fact. 1527 * cond_resched_lock() will drop the spinlock before scheduling, 1528 * cond_resched_softirq() will enable bhs before scheduling. 1529 */ 1530extern int cond_resched(void); 1531extern int cond_resched_lock(spinlock_t * lock); 1532extern int cond_resched_softirq(void); 1533 1534/* 1535 * Does a critical section need to be broken due to another 1536 * task waiting?: 1537 */ 1538#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1539# define need_lockbreak(lock) ((lock)->break_lock) 1540#else 1541# define need_lockbreak(lock) 0 1542#endif 1543 1544/* 1545 * Does a critical section need to be broken due to another 1546 * task waiting or preemption being signalled: 1547 */ 1548static inline int lock_need_resched(spinlock_t *lock) 1549{ 1550 if (need_lockbreak(lock) || need_resched()) 1551 return 1; 1552 return 0; 1553} 1554 1555/* Reevaluate whether the task has signals pending delivery. 1556 This is required every time the blocked sigset_t changes. 1557 callers must hold sighand->siglock. */ 1558 1559extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1560extern void recalc_sigpending(void); 1561 1562extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1563 1564/* 1565 * Wrappers for p->thread_info->cpu access. No-op on UP. 1566 */ 1567#ifdef CONFIG_SMP 1568 1569static inline unsigned int task_cpu(const struct task_struct *p) 1570{ 1571 return task_thread_info(p)->cpu; 1572} 1573 1574static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1575{ 1576 task_thread_info(p)->cpu = cpu; 1577} 1578 1579#else 1580 1581static inline unsigned int task_cpu(const struct task_struct *p) 1582{ 1583 return 0; 1584} 1585 1586static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1587{ 1588} 1589 1590#endif /* CONFIG_SMP */ 1591 1592#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1593extern void arch_pick_mmap_layout(struct mm_struct *mm); 1594#else 1595static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1596{ 1597 mm->mmap_base = TASK_UNMAPPED_BASE; 1598 mm->get_unmapped_area = arch_get_unmapped_area; 1599 mm->unmap_area = arch_unmap_area; 1600} 1601#endif 1602 1603extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1604extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1605 1606#include <linux/sysdev.h> 1607extern int sched_mc_power_savings, sched_smt_power_savings; 1608extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings; 1609extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls); 1610 1611extern void normalize_rt_tasks(void); 1612 1613#ifdef CONFIG_PM 1614/* 1615 * Check if a process has been frozen 1616 */ 1617static inline int frozen(struct task_struct *p) 1618{ 1619 return p->flags & PF_FROZEN; 1620} 1621 1622/* 1623 * Check if there is a request to freeze a process 1624 */ 1625static inline int freezing(struct task_struct *p) 1626{ 1627 return p->flags & PF_FREEZE; 1628} 1629 1630/* 1631 * Request that a process be frozen 1632 * FIXME: SMP problem. We may not modify other process' flags! 1633 */ 1634static inline void freeze(struct task_struct *p) 1635{ 1636 p->flags |= PF_FREEZE; 1637} 1638 1639/* 1640 * Sometimes we may need to cancel the previous 'freeze' request 1641 */ 1642static inline void do_not_freeze(struct task_struct *p) 1643{ 1644 p->flags &= ~PF_FREEZE; 1645} 1646 1647/* 1648 * Wake up a frozen process 1649 */ 1650static inline int thaw_process(struct task_struct *p) 1651{ 1652 if (frozen(p)) { 1653 p->flags &= ~PF_FROZEN; 1654 wake_up_process(p); 1655 return 1; 1656 } 1657 return 0; 1658} 1659 1660/* 1661 * freezing is complete, mark process as frozen 1662 */ 1663static inline void frozen_process(struct task_struct *p) 1664{ 1665 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1666} 1667 1668extern void refrigerator(void); 1669extern int freeze_processes(void); 1670extern void thaw_processes(void); 1671 1672static inline int try_to_freeze(void) 1673{ 1674 if (freezing(current)) { 1675 refrigerator(); 1676 return 1; 1677 } else 1678 return 0; 1679} 1680#else 1681static inline int frozen(struct task_struct *p) { return 0; } 1682static inline int freezing(struct task_struct *p) { return 0; } 1683static inline void freeze(struct task_struct *p) { BUG(); } 1684static inline int thaw_process(struct task_struct *p) { return 1; } 1685static inline void frozen_process(struct task_struct *p) { BUG(); } 1686 1687static inline void refrigerator(void) {} 1688static inline int freeze_processes(void) { BUG(); return 0; } 1689static inline void thaw_processes(void) {} 1690 1691static inline int try_to_freeze(void) { return 0; } 1692 1693#endif /* CONFIG_PM */ 1694#endif /* __KERNEL__ */ 1695 1696#endif