at v2.6.19 3.7 kB view raw
1#ifndef _LINUX_PID_H 2#define _LINUX_PID_H 3 4#include <linux/rcupdate.h> 5 6enum pid_type 7{ 8 PIDTYPE_PID, 9 PIDTYPE_PGID, 10 PIDTYPE_SID, 11 PIDTYPE_MAX 12}; 13 14/* 15 * What is struct pid? 16 * 17 * A struct pid is the kernel's internal notion of a process identifier. 18 * It refers to individual tasks, process groups, and sessions. While 19 * there are processes attached to it the struct pid lives in a hash 20 * table, so it and then the processes that it refers to can be found 21 * quickly from the numeric pid value. The attached processes may be 22 * quickly accessed by following pointers from struct pid. 23 * 24 * Storing pid_t values in the kernel and refering to them later has a 25 * problem. The process originally with that pid may have exited and the 26 * pid allocator wrapped, and another process could have come along 27 * and been assigned that pid. 28 * 29 * Referring to user space processes by holding a reference to struct 30 * task_struct has a problem. When the user space process exits 31 * the now useless task_struct is still kept. A task_struct plus a 32 * stack consumes around 10K of low kernel memory. More precisely 33 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison 34 * a struct pid is about 64 bytes. 35 * 36 * Holding a reference to struct pid solves both of these problems. 37 * It is small so holding a reference does not consume a lot of 38 * resources, and since a new struct pid is allocated when the numeric 39 * pid value is reused we don't mistakenly refer to new processes. 40 */ 41 42struct pid 43{ 44 atomic_t count; 45 /* Try to keep pid_chain in the same cacheline as nr for find_pid */ 46 int nr; 47 struct hlist_node pid_chain; 48 /* lists of tasks that use this pid */ 49 struct hlist_head tasks[PIDTYPE_MAX]; 50 struct rcu_head rcu; 51}; 52 53struct pid_link 54{ 55 struct hlist_node node; 56 struct pid *pid; 57}; 58 59static inline struct pid *get_pid(struct pid *pid) 60{ 61 if (pid) 62 atomic_inc(&pid->count); 63 return pid; 64} 65 66extern void FASTCALL(put_pid(struct pid *pid)); 67extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type)); 68extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid, 69 enum pid_type)); 70 71extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); 72 73/* 74 * attach_pid() and detach_pid() must be called with the tasklist_lock 75 * write-held. 76 */ 77extern int FASTCALL(attach_pid(struct task_struct *task, 78 enum pid_type type, int nr)); 79 80extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type)); 81extern void FASTCALL(transfer_pid(struct task_struct *old, 82 struct task_struct *new, enum pid_type)); 83 84/* 85 * look up a PID in the hash table. Must be called with the tasklist_lock 86 * or rcu_read_lock() held. 87 */ 88extern struct pid *FASTCALL(find_pid(int nr)); 89 90/* 91 * Lookup a PID in the hash table, and return with it's count elevated. 92 */ 93extern struct pid *find_get_pid(int nr); 94extern struct pid *find_ge_pid(int nr); 95 96extern struct pid *alloc_pid(void); 97extern void FASTCALL(free_pid(struct pid *pid)); 98 99static inline pid_t pid_nr(struct pid *pid) 100{ 101 pid_t nr = 0; 102 if (pid) 103 nr = pid->nr; 104 return nr; 105} 106 107 108#define do_each_task_pid(who, type, task) \ 109 do { \ 110 struct hlist_node *pos___; \ 111 struct pid *pid___ = find_pid(who); \ 112 if (pid___ != NULL) \ 113 hlist_for_each_entry_rcu((task), pos___, \ 114 &pid___->tasks[type], pids[type].node) { 115 116#define while_each_task_pid(who, type, task) \ 117 } \ 118 } while (0) 119 120 121#define do_each_pid_task(pid, type, task) \ 122 do { \ 123 struct hlist_node *pos___; \ 124 if (pid != NULL) \ 125 hlist_for_each_entry_rcu((task), pos___, \ 126 &pid->tasks[type], pids[type].node) { 127 128#define while_each_pid_task(pid, type, task) \ 129 } \ 130 } while (0) 131 132#endif /* _LINUX_PID_H */