Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
14#include <linux/seqlock.h>
15#include <linux/nodemask.h>
16#include <asm/atomic.h>
17#include <asm/page.h>
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
43} ____cacheline_internodealigned_in_smp;
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
49enum zone_stat_item {
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
52 only modified from process context */
53 NR_FILE_PAGES,
54 NR_SLAB_RECLAIMABLE,
55 NR_SLAB_UNRECLAIMABLE,
56 NR_PAGETABLE, /* used for pagetables */
57 NR_FILE_DIRTY,
58 NR_WRITEBACK,
59 NR_UNSTABLE_NFS, /* NFS unstable pages */
60 NR_BOUNCE,
61 NR_VMSCAN_WRITE,
62#ifdef CONFIG_NUMA
63 NUMA_HIT, /* allocated in intended node */
64 NUMA_MISS, /* allocated in non intended node */
65 NUMA_FOREIGN, /* was intended here, hit elsewhere */
66 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
67 NUMA_LOCAL, /* allocation from local node */
68 NUMA_OTHER, /* allocation from other node */
69#endif
70 NR_VM_ZONE_STAT_ITEMS };
71
72struct per_cpu_pages {
73 int count; /* number of pages in the list */
74 int high; /* high watermark, emptying needed */
75 int batch; /* chunk size for buddy add/remove */
76 struct list_head list; /* the list of pages */
77};
78
79struct per_cpu_pageset {
80 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
81#ifdef CONFIG_SMP
82 s8 stat_threshold;
83 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
84#endif
85} ____cacheline_aligned_in_smp;
86
87#ifdef CONFIG_NUMA
88#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
89#else
90#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
91#endif
92
93enum zone_type {
94 /*
95 * ZONE_DMA is used when there are devices that are not able
96 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
97 * carve out the portion of memory that is needed for these devices.
98 * The range is arch specific.
99 *
100 * Some examples
101 *
102 * Architecture Limit
103 * ---------------------------
104 * parisc, ia64, sparc <4G
105 * s390 <2G
106 * arm26 <48M
107 * arm Various
108 * alpha Unlimited or 0-16MB.
109 *
110 * i386, x86_64 and multiple other arches
111 * <16M.
112 */
113 ZONE_DMA,
114#ifdef CONFIG_ZONE_DMA32
115 /*
116 * x86_64 needs two ZONE_DMAs because it supports devices that are
117 * only able to do DMA to the lower 16M but also 32 bit devices that
118 * can only do DMA areas below 4G.
119 */
120 ZONE_DMA32,
121#endif
122 /*
123 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
124 * performed on pages in ZONE_NORMAL if the DMA devices support
125 * transfers to all addressable memory.
126 */
127 ZONE_NORMAL,
128#ifdef CONFIG_HIGHMEM
129 /*
130 * A memory area that is only addressable by the kernel through
131 * mapping portions into its own address space. This is for example
132 * used by i386 to allow the kernel to address the memory beyond
133 * 900MB. The kernel will set up special mappings (page
134 * table entries on i386) for each page that the kernel needs to
135 * access.
136 */
137 ZONE_HIGHMEM,
138#endif
139 MAX_NR_ZONES
140};
141
142/*
143 * When a memory allocation must conform to specific limitations (such
144 * as being suitable for DMA) the caller will pass in hints to the
145 * allocator in the gfp_mask, in the zone modifier bits. These bits
146 * are used to select a priority ordered list of memory zones which
147 * match the requested limits. See gfp_zone() in include/linux/gfp.h
148 */
149
150#if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
151#define ZONES_SHIFT 1
152#else
153#define ZONES_SHIFT 2
154#endif
155
156struct zone {
157 /* Fields commonly accessed by the page allocator */
158 unsigned long free_pages;
159 unsigned long pages_min, pages_low, pages_high;
160 /*
161 * We don't know if the memory that we're going to allocate will be freeable
162 * or/and it will be released eventually, so to avoid totally wasting several
163 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
164 * to run OOM on the lower zones despite there's tons of freeable ram
165 * on the higher zones). This array is recalculated at runtime if the
166 * sysctl_lowmem_reserve_ratio sysctl changes.
167 */
168 unsigned long lowmem_reserve[MAX_NR_ZONES];
169
170#ifdef CONFIG_NUMA
171 int node;
172 /*
173 * zone reclaim becomes active if more unmapped pages exist.
174 */
175 unsigned long min_unmapped_pages;
176 unsigned long min_slab_pages;
177 struct per_cpu_pageset *pageset[NR_CPUS];
178#else
179 struct per_cpu_pageset pageset[NR_CPUS];
180#endif
181 /*
182 * free areas of different sizes
183 */
184 spinlock_t lock;
185#ifdef CONFIG_MEMORY_HOTPLUG
186 /* see spanned/present_pages for more description */
187 seqlock_t span_seqlock;
188#endif
189 struct free_area free_area[MAX_ORDER];
190
191
192 ZONE_PADDING(_pad1_)
193
194 /* Fields commonly accessed by the page reclaim scanner */
195 spinlock_t lru_lock;
196 struct list_head active_list;
197 struct list_head inactive_list;
198 unsigned long nr_scan_active;
199 unsigned long nr_scan_inactive;
200 unsigned long nr_active;
201 unsigned long nr_inactive;
202 unsigned long pages_scanned; /* since last reclaim */
203 int all_unreclaimable; /* All pages pinned */
204
205 /* A count of how many reclaimers are scanning this zone */
206 atomic_t reclaim_in_progress;
207
208 /* Zone statistics */
209 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
210
211 /*
212 * prev_priority holds the scanning priority for this zone. It is
213 * defined as the scanning priority at which we achieved our reclaim
214 * target at the previous try_to_free_pages() or balance_pgdat()
215 * invokation.
216 *
217 * We use prev_priority as a measure of how much stress page reclaim is
218 * under - it drives the swappiness decision: whether to unmap mapped
219 * pages.
220 *
221 * Access to both this field is quite racy even on uniprocessor. But
222 * it is expected to average out OK.
223 */
224 int prev_priority;
225
226
227 ZONE_PADDING(_pad2_)
228 /* Rarely used or read-mostly fields */
229
230 /*
231 * wait_table -- the array holding the hash table
232 * wait_table_hash_nr_entries -- the size of the hash table array
233 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
234 *
235 * The purpose of all these is to keep track of the people
236 * waiting for a page to become available and make them
237 * runnable again when possible. The trouble is that this
238 * consumes a lot of space, especially when so few things
239 * wait on pages at a given time. So instead of using
240 * per-page waitqueues, we use a waitqueue hash table.
241 *
242 * The bucket discipline is to sleep on the same queue when
243 * colliding and wake all in that wait queue when removing.
244 * When something wakes, it must check to be sure its page is
245 * truly available, a la thundering herd. The cost of a
246 * collision is great, but given the expected load of the
247 * table, they should be so rare as to be outweighed by the
248 * benefits from the saved space.
249 *
250 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
251 * primary users of these fields, and in mm/page_alloc.c
252 * free_area_init_core() performs the initialization of them.
253 */
254 wait_queue_head_t * wait_table;
255 unsigned long wait_table_hash_nr_entries;
256 unsigned long wait_table_bits;
257
258 /*
259 * Discontig memory support fields.
260 */
261 struct pglist_data *zone_pgdat;
262 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
263 unsigned long zone_start_pfn;
264
265 /*
266 * zone_start_pfn, spanned_pages and present_pages are all
267 * protected by span_seqlock. It is a seqlock because it has
268 * to be read outside of zone->lock, and it is done in the main
269 * allocator path. But, it is written quite infrequently.
270 *
271 * The lock is declared along with zone->lock because it is
272 * frequently read in proximity to zone->lock. It's good to
273 * give them a chance of being in the same cacheline.
274 */
275 unsigned long spanned_pages; /* total size, including holes */
276 unsigned long present_pages; /* amount of memory (excluding holes) */
277
278 /*
279 * rarely used fields:
280 */
281 char *name;
282} ____cacheline_internodealigned_in_smp;
283
284/*
285 * The "priority" of VM scanning is how much of the queues we will scan in one
286 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
287 * queues ("queue_length >> 12") during an aging round.
288 */
289#define DEF_PRIORITY 12
290
291/*
292 * One allocation request operates on a zonelist. A zonelist
293 * is a list of zones, the first one is the 'goal' of the
294 * allocation, the other zones are fallback zones, in decreasing
295 * priority.
296 *
297 * Right now a zonelist takes up less than a cacheline. We never
298 * modify it apart from boot-up, and only a few indices are used,
299 * so despite the zonelist table being relatively big, the cache
300 * footprint of this construct is very small.
301 */
302struct zonelist {
303 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
304};
305
306#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
307struct node_active_region {
308 unsigned long start_pfn;
309 unsigned long end_pfn;
310 int nid;
311};
312#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
313
314#ifndef CONFIG_DISCONTIGMEM
315/* The array of struct pages - for discontigmem use pgdat->lmem_map */
316extern struct page *mem_map;
317#endif
318
319/*
320 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
321 * (mostly NUMA machines?) to denote a higher-level memory zone than the
322 * zone denotes.
323 *
324 * On NUMA machines, each NUMA node would have a pg_data_t to describe
325 * it's memory layout.
326 *
327 * Memory statistics and page replacement data structures are maintained on a
328 * per-zone basis.
329 */
330struct bootmem_data;
331typedef struct pglist_data {
332 struct zone node_zones[MAX_NR_ZONES];
333 struct zonelist node_zonelists[MAX_NR_ZONES];
334 int nr_zones;
335#ifdef CONFIG_FLAT_NODE_MEM_MAP
336 struct page *node_mem_map;
337#endif
338 struct bootmem_data *bdata;
339#ifdef CONFIG_MEMORY_HOTPLUG
340 /*
341 * Must be held any time you expect node_start_pfn, node_present_pages
342 * or node_spanned_pages stay constant. Holding this will also
343 * guarantee that any pfn_valid() stays that way.
344 *
345 * Nests above zone->lock and zone->size_seqlock.
346 */
347 spinlock_t node_size_lock;
348#endif
349 unsigned long node_start_pfn;
350 unsigned long node_present_pages; /* total number of physical pages */
351 unsigned long node_spanned_pages; /* total size of physical page
352 range, including holes */
353 int node_id;
354 wait_queue_head_t kswapd_wait;
355 struct task_struct *kswapd;
356 int kswapd_max_order;
357} pg_data_t;
358
359#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
360#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
361#ifdef CONFIG_FLAT_NODE_MEM_MAP
362#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
363#else
364#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
365#endif
366#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
367
368#include <linux/memory_hotplug.h>
369
370void __get_zone_counts(unsigned long *active, unsigned long *inactive,
371 unsigned long *free, struct pglist_data *pgdat);
372void get_zone_counts(unsigned long *active, unsigned long *inactive,
373 unsigned long *free);
374void build_all_zonelists(void);
375void wakeup_kswapd(struct zone *zone, int order);
376int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
377 int classzone_idx, int alloc_flags);
378
379extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
380 unsigned long size);
381
382#ifdef CONFIG_HAVE_MEMORY_PRESENT
383void memory_present(int nid, unsigned long start, unsigned long end);
384#else
385static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
386#endif
387
388#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
389unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
390#endif
391
392/*
393 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
394 */
395#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
396
397static inline int populated_zone(struct zone *zone)
398{
399 return (!!zone->present_pages);
400}
401
402static inline int is_highmem_idx(enum zone_type idx)
403{
404#ifdef CONFIG_HIGHMEM
405 return (idx == ZONE_HIGHMEM);
406#else
407 return 0;
408#endif
409}
410
411static inline int is_normal_idx(enum zone_type idx)
412{
413 return (idx == ZONE_NORMAL);
414}
415
416/**
417 * is_highmem - helper function to quickly check if a struct zone is a
418 * highmem zone or not. This is an attempt to keep references
419 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
420 * @zone - pointer to struct zone variable
421 */
422static inline int is_highmem(struct zone *zone)
423{
424#ifdef CONFIG_HIGHMEM
425 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
426#else
427 return 0;
428#endif
429}
430
431static inline int is_normal(struct zone *zone)
432{
433 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
434}
435
436static inline int is_dma32(struct zone *zone)
437{
438#ifdef CONFIG_ZONE_DMA32
439 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
440#else
441 return 0;
442#endif
443}
444
445static inline int is_dma(struct zone *zone)
446{
447 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
448}
449
450/* These two functions are used to setup the per zone pages min values */
451struct ctl_table;
452struct file;
453int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
454 void __user *, size_t *, loff_t *);
455extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
456int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
457 void __user *, size_t *, loff_t *);
458int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
459 void __user *, size_t *, loff_t *);
460int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
461 struct file *, void __user *, size_t *, loff_t *);
462int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
463 struct file *, void __user *, size_t *, loff_t *);
464
465#include <linux/topology.h>
466/* Returns the number of the current Node. */
467#ifndef numa_node_id
468#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
469#endif
470
471#ifndef CONFIG_NEED_MULTIPLE_NODES
472
473extern struct pglist_data contig_page_data;
474#define NODE_DATA(nid) (&contig_page_data)
475#define NODE_MEM_MAP(nid) mem_map
476#define MAX_NODES_SHIFT 1
477
478#else /* CONFIG_NEED_MULTIPLE_NODES */
479
480#include <asm/mmzone.h>
481
482#endif /* !CONFIG_NEED_MULTIPLE_NODES */
483
484extern struct pglist_data *first_online_pgdat(void);
485extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
486extern struct zone *next_zone(struct zone *zone);
487
488/**
489 * for_each_pgdat - helper macro to iterate over all nodes
490 * @pgdat - pointer to a pg_data_t variable
491 */
492#define for_each_online_pgdat(pgdat) \
493 for (pgdat = first_online_pgdat(); \
494 pgdat; \
495 pgdat = next_online_pgdat(pgdat))
496/**
497 * for_each_zone - helper macro to iterate over all memory zones
498 * @zone - pointer to struct zone variable
499 *
500 * The user only needs to declare the zone variable, for_each_zone
501 * fills it in.
502 */
503#define for_each_zone(zone) \
504 for (zone = (first_online_pgdat())->node_zones; \
505 zone; \
506 zone = next_zone(zone))
507
508#ifdef CONFIG_SPARSEMEM
509#include <asm/sparsemem.h>
510#endif
511
512#if BITS_PER_LONG == 32
513/*
514 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
515 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
516 */
517#define FLAGS_RESERVED 9
518
519#elif BITS_PER_LONG == 64
520/*
521 * with 64 bit flags field, there's plenty of room.
522 */
523#define FLAGS_RESERVED 32
524
525#else
526
527#error BITS_PER_LONG not defined
528
529#endif
530
531#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
532 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
533#define early_pfn_to_nid(nid) (0UL)
534#endif
535
536#ifdef CONFIG_FLATMEM
537#define pfn_to_nid(pfn) (0)
538#endif
539
540#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
541#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
542
543#ifdef CONFIG_SPARSEMEM
544
545/*
546 * SECTION_SHIFT #bits space required to store a section #
547 *
548 * PA_SECTION_SHIFT physical address to/from section number
549 * PFN_SECTION_SHIFT pfn to/from section number
550 */
551#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
552
553#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
554#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
555
556#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
557
558#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
559#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
560
561#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
562#error Allocator MAX_ORDER exceeds SECTION_SIZE
563#endif
564
565struct page;
566struct mem_section {
567 /*
568 * This is, logically, a pointer to an array of struct
569 * pages. However, it is stored with some other magic.
570 * (see sparse.c::sparse_init_one_section())
571 *
572 * Additionally during early boot we encode node id of
573 * the location of the section here to guide allocation.
574 * (see sparse.c::memory_present())
575 *
576 * Making it a UL at least makes someone do a cast
577 * before using it wrong.
578 */
579 unsigned long section_mem_map;
580};
581
582#ifdef CONFIG_SPARSEMEM_EXTREME
583#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
584#else
585#define SECTIONS_PER_ROOT 1
586#endif
587
588#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
589#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
590#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
591
592#ifdef CONFIG_SPARSEMEM_EXTREME
593extern struct mem_section *mem_section[NR_SECTION_ROOTS];
594#else
595extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
596#endif
597
598static inline struct mem_section *__nr_to_section(unsigned long nr)
599{
600 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
601 return NULL;
602 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
603}
604extern int __section_nr(struct mem_section* ms);
605
606/*
607 * We use the lower bits of the mem_map pointer to store
608 * a little bit of information. There should be at least
609 * 3 bits here due to 32-bit alignment.
610 */
611#define SECTION_MARKED_PRESENT (1UL<<0)
612#define SECTION_HAS_MEM_MAP (1UL<<1)
613#define SECTION_MAP_LAST_BIT (1UL<<2)
614#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
615#define SECTION_NID_SHIFT 2
616
617static inline struct page *__section_mem_map_addr(struct mem_section *section)
618{
619 unsigned long map = section->section_mem_map;
620 map &= SECTION_MAP_MASK;
621 return (struct page *)map;
622}
623
624static inline int valid_section(struct mem_section *section)
625{
626 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
627}
628
629static inline int section_has_mem_map(struct mem_section *section)
630{
631 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
632}
633
634static inline int valid_section_nr(unsigned long nr)
635{
636 return valid_section(__nr_to_section(nr));
637}
638
639static inline struct mem_section *__pfn_to_section(unsigned long pfn)
640{
641 return __nr_to_section(pfn_to_section_nr(pfn));
642}
643
644static inline int pfn_valid(unsigned long pfn)
645{
646 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
647 return 0;
648 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
649}
650
651/*
652 * These are _only_ used during initialisation, therefore they
653 * can use __initdata ... They could have names to indicate
654 * this restriction.
655 */
656#ifdef CONFIG_NUMA
657#define pfn_to_nid(pfn) \
658({ \
659 unsigned long __pfn_to_nid_pfn = (pfn); \
660 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
661})
662#else
663#define pfn_to_nid(pfn) (0)
664#endif
665
666#define early_pfn_valid(pfn) pfn_valid(pfn)
667void sparse_init(void);
668#else
669#define sparse_init() do {} while (0)
670#define sparse_index_init(_sec, _nid) do {} while (0)
671#endif /* CONFIG_SPARSEMEM */
672
673#ifdef CONFIG_NODES_SPAN_OTHER_NODES
674#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
675#else
676#define early_pfn_in_nid(pfn, nid) (1)
677#endif
678
679#ifndef early_pfn_valid
680#define early_pfn_valid(pfn) (1)
681#endif
682
683void memory_present(int nid, unsigned long start, unsigned long end);
684unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
685
686#endif /* !__ASSEMBLY__ */
687#endif /* __KERNEL__ */
688#endif /* _LINUX_MMZONE_H */