at v2.6.19 40 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6#include <linux/capability.h> 7 8#ifdef __KERNEL__ 9 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16#include <linux/mutex.h> 17#include <linux/debug_locks.h> 18#include <linux/backing-dev.h> 19#include <linux/mm_types.h> 20 21struct mempolicy; 22struct anon_vma; 23 24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25extern unsigned long max_mapnr; 26#endif 27 28extern unsigned long num_physpages; 29extern void * high_memory; 30extern unsigned long vmalloc_earlyreserve; 31extern int page_cluster; 32 33#ifdef CONFIG_SYSCTL 34extern int sysctl_legacy_va_layout; 35#else 36#define sysctl_legacy_va_layout 0 37#endif 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* 46 * Linux kernel virtual memory manager primitives. 47 * The idea being to have a "virtual" mm in the same way 48 * we have a virtual fs - giving a cleaner interface to the 49 * mm details, and allowing different kinds of memory mappings 50 * (from shared memory to executable loading to arbitrary 51 * mmap() functions). 52 */ 53 54/* 55 * This struct defines a memory VMM memory area. There is one of these 56 * per VM-area/task. A VM area is any part of the process virtual memory 57 * space that has a special rule for the page-fault handlers (ie a shared 58 * library, the executable area etc). 59 */ 60struct vm_area_struct { 61 struct mm_struct * vm_mm; /* The address space we belong to. */ 62 unsigned long vm_start; /* Our start address within vm_mm. */ 63 unsigned long vm_end; /* The first byte after our end address 64 within vm_mm. */ 65 66 /* linked list of VM areas per task, sorted by address */ 67 struct vm_area_struct *vm_next; 68 69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 70 unsigned long vm_flags; /* Flags, listed below. */ 71 72 struct rb_node vm_rb; 73 74 /* 75 * For areas with an address space and backing store, 76 * linkage into the address_space->i_mmap prio tree, or 77 * linkage to the list of like vmas hanging off its node, or 78 * linkage of vma in the address_space->i_mmap_nonlinear list. 79 */ 80 union { 81 struct { 82 struct list_head list; 83 void *parent; /* aligns with prio_tree_node parent */ 84 struct vm_area_struct *head; 85 } vm_set; 86 87 struct raw_prio_tree_node prio_tree_node; 88 } shared; 89 90 /* 91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 92 * list, after a COW of one of the file pages. A MAP_SHARED vma 93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 94 * or brk vma (with NULL file) can only be in an anon_vma list. 95 */ 96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 98 99 /* Function pointers to deal with this struct. */ 100 struct vm_operations_struct * vm_ops; 101 102 /* Information about our backing store: */ 103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 104 units, *not* PAGE_CACHE_SIZE */ 105 struct file * vm_file; /* File we map to (can be NULL). */ 106 void * vm_private_data; /* was vm_pte (shared mem) */ 107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 108 109#ifndef CONFIG_MMU 110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 111#endif 112#ifdef CONFIG_NUMA 113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 114#endif 115}; 116 117/* 118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 119 * disabled, then there's a single shared list of VMAs maintained by the 120 * system, and mm's subscribe to these individually 121 */ 122struct vm_list_struct { 123 struct vm_list_struct *next; 124 struct vm_area_struct *vma; 125}; 126 127#ifndef CONFIG_MMU 128extern struct rb_root nommu_vma_tree; 129extern struct rw_semaphore nommu_vma_sem; 130 131extern unsigned int kobjsize(const void *objp); 132#endif 133 134/* 135 * vm_flags.. 136 */ 137#define VM_READ 0x00000001 /* currently active flags */ 138#define VM_WRITE 0x00000002 139#define VM_EXEC 0x00000004 140#define VM_SHARED 0x00000008 141 142/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 143#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 144#define VM_MAYWRITE 0x00000020 145#define VM_MAYEXEC 0x00000040 146#define VM_MAYSHARE 0x00000080 147 148#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 149#define VM_GROWSUP 0x00000200 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 152 153#define VM_EXECUTABLE 0x00001000 154#define VM_LOCKED 0x00002000 155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 156 157 /* Used by sys_madvise() */ 158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 160 161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 169 170#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 171#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 172#endif 173 174#ifdef CONFIG_STACK_GROWSUP 175#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 176#else 177#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 178#endif 179 180#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 181#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 182#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 183#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 184#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 185 186/* 187 * mapping from the currently active vm_flags protection bits (the 188 * low four bits) to a page protection mask.. 189 */ 190extern pgprot_t protection_map[16]; 191 192 193/* 194 * These are the virtual MM functions - opening of an area, closing and 195 * unmapping it (needed to keep files on disk up-to-date etc), pointer 196 * to the functions called when a no-page or a wp-page exception occurs. 197 */ 198struct vm_operations_struct { 199 void (*open)(struct vm_area_struct * area); 200 void (*close)(struct vm_area_struct * area); 201 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 202 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); 203 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 204 205 /* notification that a previously read-only page is about to become 206 * writable, if an error is returned it will cause a SIGBUS */ 207 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 208#ifdef CONFIG_NUMA 209 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 210 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 211 unsigned long addr); 212 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 213 const nodemask_t *to, unsigned long flags); 214#endif 215}; 216 217struct mmu_gather; 218struct inode; 219 220#define page_private(page) ((page)->private) 221#define set_page_private(page, v) ((page)->private = (v)) 222 223/* 224 * FIXME: take this include out, include page-flags.h in 225 * files which need it (119 of them) 226 */ 227#include <linux/page-flags.h> 228 229#ifdef CONFIG_DEBUG_VM 230#define VM_BUG_ON(cond) BUG_ON(cond) 231#else 232#define VM_BUG_ON(condition) do { } while(0) 233#endif 234 235/* 236 * Methods to modify the page usage count. 237 * 238 * What counts for a page usage: 239 * - cache mapping (page->mapping) 240 * - private data (page->private) 241 * - page mapped in a task's page tables, each mapping 242 * is counted separately 243 * 244 * Also, many kernel routines increase the page count before a critical 245 * routine so they can be sure the page doesn't go away from under them. 246 */ 247 248/* 249 * Drop a ref, return true if the refcount fell to zero (the page has no users) 250 */ 251static inline int put_page_testzero(struct page *page) 252{ 253 VM_BUG_ON(atomic_read(&page->_count) == 0); 254 return atomic_dec_and_test(&page->_count); 255} 256 257/* 258 * Try to grab a ref unless the page has a refcount of zero, return false if 259 * that is the case. 260 */ 261static inline int get_page_unless_zero(struct page *page) 262{ 263 VM_BUG_ON(PageCompound(page)); 264 return atomic_inc_not_zero(&page->_count); 265} 266 267static inline int page_count(struct page *page) 268{ 269 if (unlikely(PageCompound(page))) 270 page = (struct page *)page_private(page); 271 return atomic_read(&page->_count); 272} 273 274static inline void get_page(struct page *page) 275{ 276 if (unlikely(PageCompound(page))) 277 page = (struct page *)page_private(page); 278 VM_BUG_ON(atomic_read(&page->_count) == 0); 279 atomic_inc(&page->_count); 280} 281 282/* 283 * Setup the page count before being freed into the page allocator for 284 * the first time (boot or memory hotplug) 285 */ 286static inline void init_page_count(struct page *page) 287{ 288 atomic_set(&page->_count, 1); 289} 290 291void put_page(struct page *page); 292void put_pages_list(struct list_head *pages); 293 294void split_page(struct page *page, unsigned int order); 295 296/* 297 * Multiple processes may "see" the same page. E.g. for untouched 298 * mappings of /dev/null, all processes see the same page full of 299 * zeroes, and text pages of executables and shared libraries have 300 * only one copy in memory, at most, normally. 301 * 302 * For the non-reserved pages, page_count(page) denotes a reference count. 303 * page_count() == 0 means the page is free. page->lru is then used for 304 * freelist management in the buddy allocator. 305 * page_count() > 0 means the page has been allocated. 306 * 307 * Pages are allocated by the slab allocator in order to provide memory 308 * to kmalloc and kmem_cache_alloc. In this case, the management of the 309 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 310 * unless a particular usage is carefully commented. (the responsibility of 311 * freeing the kmalloc memory is the caller's, of course). 312 * 313 * A page may be used by anyone else who does a __get_free_page(). 314 * In this case, page_count still tracks the references, and should only 315 * be used through the normal accessor functions. The top bits of page->flags 316 * and page->virtual store page management information, but all other fields 317 * are unused and could be used privately, carefully. The management of this 318 * page is the responsibility of the one who allocated it, and those who have 319 * subsequently been given references to it. 320 * 321 * The other pages (we may call them "pagecache pages") are completely 322 * managed by the Linux memory manager: I/O, buffers, swapping etc. 323 * The following discussion applies only to them. 324 * 325 * A pagecache page contains an opaque `private' member, which belongs to the 326 * page's address_space. Usually, this is the address of a circular list of 327 * the page's disk buffers. PG_private must be set to tell the VM to call 328 * into the filesystem to release these pages. 329 * 330 * A page may belong to an inode's memory mapping. In this case, page->mapping 331 * is the pointer to the inode, and page->index is the file offset of the page, 332 * in units of PAGE_CACHE_SIZE. 333 * 334 * If pagecache pages are not associated with an inode, they are said to be 335 * anonymous pages. These may become associated with the swapcache, and in that 336 * case PG_swapcache is set, and page->private is an offset into the swapcache. 337 * 338 * In either case (swapcache or inode backed), the pagecache itself holds one 339 * reference to the page. Setting PG_private should also increment the 340 * refcount. The each user mapping also has a reference to the page. 341 * 342 * The pagecache pages are stored in a per-mapping radix tree, which is 343 * rooted at mapping->page_tree, and indexed by offset. 344 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 345 * lists, we instead now tag pages as dirty/writeback in the radix tree. 346 * 347 * All pagecache pages may be subject to I/O: 348 * - inode pages may need to be read from disk, 349 * - inode pages which have been modified and are MAP_SHARED may need 350 * to be written back to the inode on disk, 351 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 352 * modified may need to be swapped out to swap space and (later) to be read 353 * back into memory. 354 */ 355 356/* 357 * The zone field is never updated after free_area_init_core() 358 * sets it, so none of the operations on it need to be atomic. 359 */ 360 361 362/* 363 * page->flags layout: 364 * 365 * There are three possibilities for how page->flags get 366 * laid out. The first is for the normal case, without 367 * sparsemem. The second is for sparsemem when there is 368 * plenty of space for node and section. The last is when 369 * we have run out of space and have to fall back to an 370 * alternate (slower) way of determining the node. 371 * 372 * No sparsemem: | NODE | ZONE | ... | FLAGS | 373 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 374 * no space for node: | SECTION | ZONE | ... | FLAGS | 375 */ 376#ifdef CONFIG_SPARSEMEM 377#define SECTIONS_WIDTH SECTIONS_SHIFT 378#else 379#define SECTIONS_WIDTH 0 380#endif 381 382#define ZONES_WIDTH ZONES_SHIFT 383 384#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 385#define NODES_WIDTH NODES_SHIFT 386#else 387#define NODES_WIDTH 0 388#endif 389 390/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 391#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 392#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 393#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 394 395/* 396 * We are going to use the flags for the page to node mapping if its in 397 * there. This includes the case where there is no node, so it is implicit. 398 */ 399#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 400 401#ifndef PFN_SECTION_SHIFT 402#define PFN_SECTION_SHIFT 0 403#endif 404 405/* 406 * Define the bit shifts to access each section. For non-existant 407 * sections we define the shift as 0; that plus a 0 mask ensures 408 * the compiler will optimise away reference to them. 409 */ 410#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 411#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 412#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 413 414/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 415#if FLAGS_HAS_NODE 416#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 417#else 418#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 419#endif 420#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 421 422#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 423#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 424#endif 425 426#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 427#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 428#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 429#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 430 431static inline enum zone_type page_zonenum(struct page *page) 432{ 433 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 434} 435 436struct zone; 437extern struct zone *zone_table[]; 438 439static inline int page_zone_id(struct page *page) 440{ 441 return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK; 442} 443static inline struct zone *page_zone(struct page *page) 444{ 445 return zone_table[page_zone_id(page)]; 446} 447 448static inline unsigned long zone_to_nid(struct zone *zone) 449{ 450#ifdef CONFIG_NUMA 451 return zone->node; 452#else 453 return 0; 454#endif 455} 456 457static inline unsigned long page_to_nid(struct page *page) 458{ 459 if (FLAGS_HAS_NODE) 460 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 461 else 462 return zone_to_nid(page_zone(page)); 463} 464static inline unsigned long page_to_section(struct page *page) 465{ 466 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 467} 468 469static inline void set_page_zone(struct page *page, enum zone_type zone) 470{ 471 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 472 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 473} 474 475static inline void set_page_node(struct page *page, unsigned long node) 476{ 477 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 478 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 479} 480static inline void set_page_section(struct page *page, unsigned long section) 481{ 482 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 483 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 484} 485 486static inline void set_page_links(struct page *page, enum zone_type zone, 487 unsigned long node, unsigned long pfn) 488{ 489 set_page_zone(page, zone); 490 set_page_node(page, node); 491 set_page_section(page, pfn_to_section_nr(pfn)); 492} 493 494/* 495 * Some inline functions in vmstat.h depend on page_zone() 496 */ 497#include <linux/vmstat.h> 498 499static __always_inline void *lowmem_page_address(struct page *page) 500{ 501 return __va(page_to_pfn(page) << PAGE_SHIFT); 502} 503 504#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 505#define HASHED_PAGE_VIRTUAL 506#endif 507 508#if defined(WANT_PAGE_VIRTUAL) 509#define page_address(page) ((page)->virtual) 510#define set_page_address(page, address) \ 511 do { \ 512 (page)->virtual = (address); \ 513 } while(0) 514#define page_address_init() do { } while(0) 515#endif 516 517#if defined(HASHED_PAGE_VIRTUAL) 518void *page_address(struct page *page); 519void set_page_address(struct page *page, void *virtual); 520void page_address_init(void); 521#endif 522 523#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 524#define page_address(page) lowmem_page_address(page) 525#define set_page_address(page, address) do { } while(0) 526#define page_address_init() do { } while(0) 527#endif 528 529/* 530 * On an anonymous page mapped into a user virtual memory area, 531 * page->mapping points to its anon_vma, not to a struct address_space; 532 * with the PAGE_MAPPING_ANON bit set to distinguish it. 533 * 534 * Please note that, confusingly, "page_mapping" refers to the inode 535 * address_space which maps the page from disk; whereas "page_mapped" 536 * refers to user virtual address space into which the page is mapped. 537 */ 538#define PAGE_MAPPING_ANON 1 539 540extern struct address_space swapper_space; 541static inline struct address_space *page_mapping(struct page *page) 542{ 543 struct address_space *mapping = page->mapping; 544 545 if (unlikely(PageSwapCache(page))) 546 mapping = &swapper_space; 547 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 548 mapping = NULL; 549 return mapping; 550} 551 552static inline int PageAnon(struct page *page) 553{ 554 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 555} 556 557/* 558 * Return the pagecache index of the passed page. Regular pagecache pages 559 * use ->index whereas swapcache pages use ->private 560 */ 561static inline pgoff_t page_index(struct page *page) 562{ 563 if (unlikely(PageSwapCache(page))) 564 return page_private(page); 565 return page->index; 566} 567 568/* 569 * The atomic page->_mapcount, like _count, starts from -1: 570 * so that transitions both from it and to it can be tracked, 571 * using atomic_inc_and_test and atomic_add_negative(-1). 572 */ 573static inline void reset_page_mapcount(struct page *page) 574{ 575 atomic_set(&(page)->_mapcount, -1); 576} 577 578static inline int page_mapcount(struct page *page) 579{ 580 return atomic_read(&(page)->_mapcount) + 1; 581} 582 583/* 584 * Return true if this page is mapped into pagetables. 585 */ 586static inline int page_mapped(struct page *page) 587{ 588 return atomic_read(&(page)->_mapcount) >= 0; 589} 590 591/* 592 * Error return values for the *_nopage functions 593 */ 594#define NOPAGE_SIGBUS (NULL) 595#define NOPAGE_OOM ((struct page *) (-1)) 596#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */ 597 598/* 599 * Error return values for the *_nopfn functions 600 */ 601#define NOPFN_SIGBUS ((unsigned long) -1) 602#define NOPFN_OOM ((unsigned long) -2) 603 604/* 605 * Different kinds of faults, as returned by handle_mm_fault(). 606 * Used to decide whether a process gets delivered SIGBUS or 607 * just gets major/minor fault counters bumped up. 608 */ 609#define VM_FAULT_OOM 0x00 610#define VM_FAULT_SIGBUS 0x01 611#define VM_FAULT_MINOR 0x02 612#define VM_FAULT_MAJOR 0x03 613 614/* 615 * Special case for get_user_pages. 616 * Must be in a distinct bit from the above VM_FAULT_ flags. 617 */ 618#define VM_FAULT_WRITE 0x10 619 620#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 621 622extern void show_free_areas(void); 623 624#ifdef CONFIG_SHMEM 625struct page *shmem_nopage(struct vm_area_struct *vma, 626 unsigned long address, int *type); 627int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 628struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 629 unsigned long addr); 630int shmem_lock(struct file *file, int lock, struct user_struct *user); 631#else 632#define shmem_nopage filemap_nopage 633 634static inline int shmem_lock(struct file *file, int lock, 635 struct user_struct *user) 636{ 637 return 0; 638} 639 640static inline int shmem_set_policy(struct vm_area_struct *vma, 641 struct mempolicy *new) 642{ 643 return 0; 644} 645 646static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 647 unsigned long addr) 648{ 649 return NULL; 650} 651#endif 652struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 653extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); 654 655int shmem_zero_setup(struct vm_area_struct *); 656 657#ifndef CONFIG_MMU 658extern unsigned long shmem_get_unmapped_area(struct file *file, 659 unsigned long addr, 660 unsigned long len, 661 unsigned long pgoff, 662 unsigned long flags); 663#endif 664 665static inline int can_do_mlock(void) 666{ 667 if (capable(CAP_IPC_LOCK)) 668 return 1; 669 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 670 return 1; 671 return 0; 672} 673extern int user_shm_lock(size_t, struct user_struct *); 674extern void user_shm_unlock(size_t, struct user_struct *); 675 676/* 677 * Parameter block passed down to zap_pte_range in exceptional cases. 678 */ 679struct zap_details { 680 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 681 struct address_space *check_mapping; /* Check page->mapping if set */ 682 pgoff_t first_index; /* Lowest page->index to unmap */ 683 pgoff_t last_index; /* Highest page->index to unmap */ 684 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 685 unsigned long truncate_count; /* Compare vm_truncate_count */ 686}; 687 688struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 689unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 690 unsigned long size, struct zap_details *); 691unsigned long unmap_vmas(struct mmu_gather **tlb, 692 struct vm_area_struct *start_vma, unsigned long start_addr, 693 unsigned long end_addr, unsigned long *nr_accounted, 694 struct zap_details *); 695void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 696 unsigned long end, unsigned long floor, unsigned long ceiling); 697void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 698 unsigned long floor, unsigned long ceiling); 699int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 700 struct vm_area_struct *vma); 701int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 702 unsigned long size, pgprot_t prot); 703void unmap_mapping_range(struct address_space *mapping, 704 loff_t const holebegin, loff_t const holelen, int even_cows); 705 706static inline void unmap_shared_mapping_range(struct address_space *mapping, 707 loff_t const holebegin, loff_t const holelen) 708{ 709 unmap_mapping_range(mapping, holebegin, holelen, 0); 710} 711 712extern int vmtruncate(struct inode * inode, loff_t offset); 713extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 714extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 715extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 716 717#ifdef CONFIG_MMU 718extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 719 unsigned long address, int write_access); 720 721static inline int handle_mm_fault(struct mm_struct *mm, 722 struct vm_area_struct *vma, unsigned long address, 723 int write_access) 724{ 725 return __handle_mm_fault(mm, vma, address, write_access) & 726 (~VM_FAULT_WRITE); 727} 728#else 729static inline int handle_mm_fault(struct mm_struct *mm, 730 struct vm_area_struct *vma, unsigned long address, 731 int write_access) 732{ 733 /* should never happen if there's no MMU */ 734 BUG(); 735 return VM_FAULT_SIGBUS; 736} 737#endif 738 739extern int make_pages_present(unsigned long addr, unsigned long end); 740extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 741void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 742 743int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 744 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 745void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 746 747extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 748extern void do_invalidatepage(struct page *page, unsigned long offset); 749 750int __set_page_dirty_nobuffers(struct page *page); 751int redirty_page_for_writepage(struct writeback_control *wbc, 752 struct page *page); 753int FASTCALL(set_page_dirty(struct page *page)); 754int set_page_dirty_lock(struct page *page); 755int clear_page_dirty_for_io(struct page *page); 756 757extern unsigned long do_mremap(unsigned long addr, 758 unsigned long old_len, unsigned long new_len, 759 unsigned long flags, unsigned long new_addr); 760 761/* 762 * Prototype to add a shrinker callback for ageable caches. 763 * 764 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 765 * scan `nr_to_scan' objects, attempting to free them. 766 * 767 * The callback must return the number of objects which remain in the cache. 768 * 769 * The callback will be passed nr_to_scan == 0 when the VM is querying the 770 * cache size, so a fastpath for that case is appropriate. 771 */ 772typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 773 774/* 775 * Add an aging callback. The int is the number of 'seeks' it takes 776 * to recreate one of the objects that these functions age. 777 */ 778 779#define DEFAULT_SEEKS 2 780struct shrinker; 781extern struct shrinker *set_shrinker(int, shrinker_t); 782extern void remove_shrinker(struct shrinker *shrinker); 783 784/* 785 * Some shared mappigns will want the pages marked read-only 786 * to track write events. If so, we'll downgrade vm_page_prot 787 * to the private version (using protection_map[] without the 788 * VM_SHARED bit). 789 */ 790static inline int vma_wants_writenotify(struct vm_area_struct *vma) 791{ 792 unsigned int vm_flags = vma->vm_flags; 793 794 /* If it was private or non-writable, the write bit is already clear */ 795 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 796 return 0; 797 798 /* The backer wishes to know when pages are first written to? */ 799 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 800 return 1; 801 802 /* The open routine did something to the protections already? */ 803 if (pgprot_val(vma->vm_page_prot) != 804 pgprot_val(protection_map[vm_flags & 805 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) 806 return 0; 807 808 /* Specialty mapping? */ 809 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 810 return 0; 811 812 /* Can the mapping track the dirty pages? */ 813 return vma->vm_file && vma->vm_file->f_mapping && 814 mapping_cap_account_dirty(vma->vm_file->f_mapping); 815} 816 817extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 818 819int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 820int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 821int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 822int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 823 824/* 825 * The following ifdef needed to get the 4level-fixup.h header to work. 826 * Remove it when 4level-fixup.h has been removed. 827 */ 828#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 829static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 830{ 831 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 832 NULL: pud_offset(pgd, address); 833} 834 835static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 836{ 837 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 838 NULL: pmd_offset(pud, address); 839} 840#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 841 842#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 843/* 844 * We tuck a spinlock to guard each pagetable page into its struct page, 845 * at page->private, with BUILD_BUG_ON to make sure that this will not 846 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 847 * When freeing, reset page->mapping so free_pages_check won't complain. 848 */ 849#define __pte_lockptr(page) &((page)->ptl) 850#define pte_lock_init(_page) do { \ 851 spin_lock_init(__pte_lockptr(_page)); \ 852} while (0) 853#define pte_lock_deinit(page) ((page)->mapping = NULL) 854#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 855#else 856/* 857 * We use mm->page_table_lock to guard all pagetable pages of the mm. 858 */ 859#define pte_lock_init(page) do {} while (0) 860#define pte_lock_deinit(page) do {} while (0) 861#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 862#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 863 864#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 865({ \ 866 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 867 pte_t *__pte = pte_offset_map(pmd, address); \ 868 *(ptlp) = __ptl; \ 869 spin_lock(__ptl); \ 870 __pte; \ 871}) 872 873#define pte_unmap_unlock(pte, ptl) do { \ 874 spin_unlock(ptl); \ 875 pte_unmap(pte); \ 876} while (0) 877 878#define pte_alloc_map(mm, pmd, address) \ 879 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 880 NULL: pte_offset_map(pmd, address)) 881 882#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 883 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 884 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 885 886#define pte_alloc_kernel(pmd, address) \ 887 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 888 NULL: pte_offset_kernel(pmd, address)) 889 890extern void free_area_init(unsigned long * zones_size); 891extern void free_area_init_node(int nid, pg_data_t *pgdat, 892 unsigned long * zones_size, unsigned long zone_start_pfn, 893 unsigned long *zholes_size); 894#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 895/* 896 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 897 * zones, allocate the backing mem_map and account for memory holes in a more 898 * architecture independent manner. This is a substitute for creating the 899 * zone_sizes[] and zholes_size[] arrays and passing them to 900 * free_area_init_node() 901 * 902 * An architecture is expected to register range of page frames backed by 903 * physical memory with add_active_range() before calling 904 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 905 * usage, an architecture is expected to do something like 906 * 907 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 908 * max_highmem_pfn}; 909 * for_each_valid_physical_page_range() 910 * add_active_range(node_id, start_pfn, end_pfn) 911 * free_area_init_nodes(max_zone_pfns); 912 * 913 * If the architecture guarantees that there are no holes in the ranges 914 * registered with add_active_range(), free_bootmem_active_regions() 915 * will call free_bootmem_node() for each registered physical page range. 916 * Similarly sparse_memory_present_with_active_regions() calls 917 * memory_present() for each range when SPARSEMEM is enabled. 918 * 919 * See mm/page_alloc.c for more information on each function exposed by 920 * CONFIG_ARCH_POPULATES_NODE_MAP 921 */ 922extern void free_area_init_nodes(unsigned long *max_zone_pfn); 923extern void add_active_range(unsigned int nid, unsigned long start_pfn, 924 unsigned long end_pfn); 925extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 926 unsigned long new_end_pfn); 927extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 928 unsigned long end_pfn); 929extern void remove_all_active_ranges(void); 930extern unsigned long absent_pages_in_range(unsigned long start_pfn, 931 unsigned long end_pfn); 932extern void get_pfn_range_for_nid(unsigned int nid, 933 unsigned long *start_pfn, unsigned long *end_pfn); 934extern unsigned long find_min_pfn_with_active_regions(void); 935extern unsigned long find_max_pfn_with_active_regions(void); 936extern void free_bootmem_with_active_regions(int nid, 937 unsigned long max_low_pfn); 938extern void sparse_memory_present_with_active_regions(int nid); 939#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 940extern int early_pfn_to_nid(unsigned long pfn); 941#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 942#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 943extern void set_dma_reserve(unsigned long new_dma_reserve); 944extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 945extern void setup_per_zone_pages_min(void); 946extern void mem_init(void); 947extern void show_mem(void); 948extern void si_meminfo(struct sysinfo * val); 949extern void si_meminfo_node(struct sysinfo *val, int nid); 950extern void zonetable_add(struct zone *zone, int nid, enum zone_type zid, 951 unsigned long pfn, unsigned long size); 952 953#ifdef CONFIG_NUMA 954extern void setup_per_cpu_pageset(void); 955#else 956static inline void setup_per_cpu_pageset(void) {} 957#endif 958 959/* prio_tree.c */ 960void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 961void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 962void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 963struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 964 struct prio_tree_iter *iter); 965 966#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 967 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 968 (vma = vma_prio_tree_next(vma, iter)); ) 969 970static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 971 struct list_head *list) 972{ 973 vma->shared.vm_set.parent = NULL; 974 list_add_tail(&vma->shared.vm_set.list, list); 975} 976 977/* mmap.c */ 978extern int __vm_enough_memory(long pages, int cap_sys_admin); 979extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 980 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 981extern struct vm_area_struct *vma_merge(struct mm_struct *, 982 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 983 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 984 struct mempolicy *); 985extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 986extern int split_vma(struct mm_struct *, 987 struct vm_area_struct *, unsigned long addr, int new_below); 988extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 989extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 990 struct rb_node **, struct rb_node *); 991extern void unlink_file_vma(struct vm_area_struct *); 992extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 993 unsigned long addr, unsigned long len, pgoff_t pgoff); 994extern void exit_mmap(struct mm_struct *); 995extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 996 997extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 998 999extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1000 unsigned long len, unsigned long prot, 1001 unsigned long flag, unsigned long pgoff); 1002 1003static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1004 unsigned long len, unsigned long prot, 1005 unsigned long flag, unsigned long offset) 1006{ 1007 unsigned long ret = -EINVAL; 1008 if ((offset + PAGE_ALIGN(len)) < offset) 1009 goto out; 1010 if (!(offset & ~PAGE_MASK)) 1011 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1012out: 1013 return ret; 1014} 1015 1016extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1017 1018extern unsigned long do_brk(unsigned long, unsigned long); 1019 1020/* filemap.c */ 1021extern unsigned long page_unuse(struct page *); 1022extern void truncate_inode_pages(struct address_space *, loff_t); 1023extern void truncate_inode_pages_range(struct address_space *, 1024 loff_t lstart, loff_t lend); 1025 1026/* generic vm_area_ops exported for stackable file systems */ 1027extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 1028extern int filemap_populate(struct vm_area_struct *, unsigned long, 1029 unsigned long, pgprot_t, unsigned long, int); 1030 1031/* mm/page-writeback.c */ 1032int write_one_page(struct page *page, int wait); 1033 1034/* readahead.c */ 1035#define VM_MAX_READAHEAD 128 /* kbytes */ 1036#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1037#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 1038 * turning readahead off */ 1039 1040int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1041 pgoff_t offset, unsigned long nr_to_read); 1042int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1043 pgoff_t offset, unsigned long nr_to_read); 1044unsigned long page_cache_readahead(struct address_space *mapping, 1045 struct file_ra_state *ra, 1046 struct file *filp, 1047 pgoff_t offset, 1048 unsigned long size); 1049void handle_ra_miss(struct address_space *mapping, 1050 struct file_ra_state *ra, pgoff_t offset); 1051unsigned long max_sane_readahead(unsigned long nr); 1052 1053/* Do stack extension */ 1054extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1055#ifdef CONFIG_IA64 1056extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1057#endif 1058 1059/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1060extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1061extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1062 struct vm_area_struct **pprev); 1063 1064/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1065 NULL if none. Assume start_addr < end_addr. */ 1066static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1067{ 1068 struct vm_area_struct * vma = find_vma(mm,start_addr); 1069 1070 if (vma && end_addr <= vma->vm_start) 1071 vma = NULL; 1072 return vma; 1073} 1074 1075static inline unsigned long vma_pages(struct vm_area_struct *vma) 1076{ 1077 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1078} 1079 1080pgprot_t vm_get_page_prot(unsigned long vm_flags); 1081struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1082struct page *vmalloc_to_page(void *addr); 1083unsigned long vmalloc_to_pfn(void *addr); 1084int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1085 unsigned long pfn, unsigned long size, pgprot_t); 1086int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1087 1088struct page *follow_page(struct vm_area_struct *, unsigned long address, 1089 unsigned int foll_flags); 1090#define FOLL_WRITE 0x01 /* check pte is writable */ 1091#define FOLL_TOUCH 0x02 /* mark page accessed */ 1092#define FOLL_GET 0x04 /* do get_page on page */ 1093#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1094 1095#ifdef CONFIG_PROC_FS 1096void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1097#else 1098static inline void vm_stat_account(struct mm_struct *mm, 1099 unsigned long flags, struct file *file, long pages) 1100{ 1101} 1102#endif /* CONFIG_PROC_FS */ 1103 1104#ifndef CONFIG_DEBUG_PAGEALLOC 1105static inline void 1106kernel_map_pages(struct page *page, int numpages, int enable) {} 1107#endif 1108 1109extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1110#ifdef __HAVE_ARCH_GATE_AREA 1111int in_gate_area_no_task(unsigned long addr); 1112int in_gate_area(struct task_struct *task, unsigned long addr); 1113#else 1114int in_gate_area_no_task(unsigned long addr); 1115#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1116#endif /* __HAVE_ARCH_GATE_AREA */ 1117 1118int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1119 void __user *, size_t *, loff_t *); 1120unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1121 unsigned long lru_pages); 1122void drop_pagecache(void); 1123void drop_slab(void); 1124 1125#ifndef CONFIG_MMU 1126#define randomize_va_space 0 1127#else 1128extern int randomize_va_space; 1129#endif 1130 1131__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); 1132 1133#endif /* __KERNEL__ */ 1134#endif /* _LINUX_MM_H */