at v2.6.19 829 lines 25 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16#include <asm-generic/4level-fixup.h> 17 18/* 19 * The Linux memory management assumes a three-level page table setup. For 20 * s390 31 bit we "fold" the mid level into the top-level page table, so 21 * that we physically have the same two-level page table as the s390 mmu 22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 23 * the hardware provides (region first and region second tables are not 24 * used). 25 * 26 * The "pgd_xxx()" functions are trivial for a folded two-level 27 * setup: the pgd is never bad, and a pmd always exists (as it's folded 28 * into the pgd entry) 29 * 30 * This file contains the functions and defines necessary to modify and use 31 * the S390 page table tree. 32 */ 33#ifndef __ASSEMBLY__ 34#include <linux/mm_types.h> 35#include <asm/bug.h> 36#include <asm/processor.h> 37 38struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ 39struct mm_struct; 40 41extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 42extern void paging_init(void); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, pte) do { } while (0) 49 50/* 51 * ZERO_PAGE is a global shared page that is always zero: used 52 * for zero-mapped memory areas etc.. 53 */ 54extern char empty_zero_page[PAGE_SIZE]; 55#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 56#endif /* !__ASSEMBLY__ */ 57 58/* 59 * PMD_SHIFT determines the size of the area a second-level page 60 * table can map 61 * PGDIR_SHIFT determines what a third-level page table entry can map 62 */ 63#ifndef __s390x__ 64# define PMD_SHIFT 22 65# define PGDIR_SHIFT 22 66#else /* __s390x__ */ 67# define PMD_SHIFT 21 68# define PGDIR_SHIFT 31 69#endif /* __s390x__ */ 70 71#define PMD_SIZE (1UL << PMD_SHIFT) 72#define PMD_MASK (~(PMD_SIZE-1)) 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76/* 77 * entries per page directory level: the S390 is two-level, so 78 * we don't really have any PMD directory physically. 79 * for S390 segment-table entries are combined to one PGD 80 * that leads to 1024 pte per pgd 81 */ 82#ifndef __s390x__ 83# define PTRS_PER_PTE 1024 84# define PTRS_PER_PMD 1 85# define PTRS_PER_PGD 512 86#else /* __s390x__ */ 87# define PTRS_PER_PTE 512 88# define PTRS_PER_PMD 1024 89# define PTRS_PER_PGD 2048 90#endif /* __s390x__ */ 91 92#define FIRST_USER_ADDRESS 0 93 94#define pte_ERROR(e) \ 95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 96#define pmd_ERROR(e) \ 97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 98#define pgd_ERROR(e) \ 99 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 100 101#ifndef __ASSEMBLY__ 102/* 103 * Just any arbitrary offset to the start of the vmalloc VM area: the 104 * current 8MB value just means that there will be a 8MB "hole" after the 105 * physical memory until the kernel virtual memory starts. That means that 106 * any out-of-bounds memory accesses will hopefully be caught. 107 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 108 * area for the same reason. ;) 109 */ 110#define VMALLOC_OFFSET (8*1024*1024) 111#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ 112 & ~(VMALLOC_OFFSET-1)) 113#ifndef __s390x__ 114# define VMALLOC_END (0x7fffffffL) 115#else /* __s390x__ */ 116# define VMALLOC_END (0x40000000000L) 117#endif /* __s390x__ */ 118 119 120/* 121 * A 31 bit pagetable entry of S390 has following format: 122 * | PFRA | | OS | 123 * 0 0IP0 124 * 00000000001111111111222222222233 125 * 01234567890123456789012345678901 126 * 127 * I Page-Invalid Bit: Page is not available for address-translation 128 * P Page-Protection Bit: Store access not possible for page 129 * 130 * A 31 bit segmenttable entry of S390 has following format: 131 * | P-table origin | |PTL 132 * 0 IC 133 * 00000000001111111111222222222233 134 * 01234567890123456789012345678901 135 * 136 * I Segment-Invalid Bit: Segment is not available for address-translation 137 * C Common-Segment Bit: Segment is not private (PoP 3-30) 138 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 139 * 140 * The 31 bit segmenttable origin of S390 has following format: 141 * 142 * |S-table origin | | STL | 143 * X **GPS 144 * 00000000001111111111222222222233 145 * 01234567890123456789012345678901 146 * 147 * X Space-Switch event: 148 * G Segment-Invalid Bit: * 149 * P Private-Space Bit: Segment is not private (PoP 3-30) 150 * S Storage-Alteration: 151 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 152 * 153 * A 64 bit pagetable entry of S390 has following format: 154 * | PFRA |0IP0| OS | 155 * 0000000000111111111122222222223333333333444444444455555555556666 156 * 0123456789012345678901234567890123456789012345678901234567890123 157 * 158 * I Page-Invalid Bit: Page is not available for address-translation 159 * P Page-Protection Bit: Store access not possible for page 160 * 161 * A 64 bit segmenttable entry of S390 has following format: 162 * | P-table origin | TT 163 * 0000000000111111111122222222223333333333444444444455555555556666 164 * 0123456789012345678901234567890123456789012345678901234567890123 165 * 166 * I Segment-Invalid Bit: Segment is not available for address-translation 167 * C Common-Segment Bit: Segment is not private (PoP 3-30) 168 * P Page-Protection Bit: Store access not possible for page 169 * TT Type 00 170 * 171 * A 64 bit region table entry of S390 has following format: 172 * | S-table origin | TF TTTL 173 * 0000000000111111111122222222223333333333444444444455555555556666 174 * 0123456789012345678901234567890123456789012345678901234567890123 175 * 176 * I Segment-Invalid Bit: Segment is not available for address-translation 177 * TT Type 01 178 * TF 179 * TL Table lenght 180 * 181 * The 64 bit regiontable origin of S390 has following format: 182 * | region table origon | DTTL 183 * 0000000000111111111122222222223333333333444444444455555555556666 184 * 0123456789012345678901234567890123456789012345678901234567890123 185 * 186 * X Space-Switch event: 187 * G Segment-Invalid Bit: 188 * P Private-Space Bit: 189 * S Storage-Alteration: 190 * R Real space 191 * TL Table-Length: 192 * 193 * A storage key has the following format: 194 * | ACC |F|R|C|0| 195 * 0 3 4 5 6 7 196 * ACC: access key 197 * F : fetch protection bit 198 * R : referenced bit 199 * C : changed bit 200 */ 201 202/* Hardware bits in the page table entry */ 203#define _PAGE_RO 0x200 /* HW read-only bit */ 204#define _PAGE_INVALID 0x400 /* HW invalid bit */ 205#define _PAGE_SWT 0x001 /* SW pte type bit t */ 206#define _PAGE_SWX 0x002 /* SW pte type bit x */ 207 208/* Six different types of pages. */ 209#define _PAGE_TYPE_EMPTY 0x400 210#define _PAGE_TYPE_NONE 0x401 211#define _PAGE_TYPE_SWAP 0x403 212#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 213#define _PAGE_TYPE_RO 0x200 214#define _PAGE_TYPE_RW 0x000 215 216/* 217 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 218 * pte_none and pte_file to find out the pte type WITHOUT holding the page 219 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 220 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 221 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 222 * This change is done while holding the lock, but the intermediate step 223 * of a previously valid pte with the hw invalid bit set can be observed by 224 * handle_pte_fault. That makes it necessary that all valid pte types with 225 * the hw invalid bit set must be distinguishable from the four pte types 226 * empty, none, swap and file. 227 * 228 * irxt ipte irxt 229 * _PAGE_TYPE_EMPTY 1000 -> 1000 230 * _PAGE_TYPE_NONE 1001 -> 1001 231 * _PAGE_TYPE_SWAP 1011 -> 1011 232 * _PAGE_TYPE_FILE 11?1 -> 11?1 233 * _PAGE_TYPE_RO 0100 -> 1100 234 * _PAGE_TYPE_RW 0000 -> 1000 235 * 236 * pte_none is true for bits combinations 1000, 1100 237 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 238 * pte_file is true for bits combinations 1101, 1111 239 * swap pte is 1011 and 0001, 0011, 0101, 0111, 1010 and 1110 are invalid. 240 */ 241 242#ifndef __s390x__ 243 244/* Bits in the segment table entry */ 245#define _PAGE_TABLE_LEN 0xf /* only full page-tables */ 246#define _PAGE_TABLE_COM 0x10 /* common page-table */ 247#define _PAGE_TABLE_INV 0x20 /* invalid page-table */ 248#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ 249 250/* Bits int the storage key */ 251#define _PAGE_CHANGED 0x02 /* HW changed bit */ 252#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 253 254#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ 255#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ 256 257/* 258 * User and Kernel pagetables are identical 259 */ 260#define _PAGE_TABLE _PAGE_TABLE_LEN 261#define _KERNPG_TABLE _PAGE_TABLE_LEN 262 263/* 264 * The Kernel segment-tables includes the User segment-table 265 */ 266 267#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) 268#define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN 269 270#define USER_STD_MASK 0x00000080UL 271 272#else /* __s390x__ */ 273 274/* Bits in the segment table entry */ 275#define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ 276#define _PMD_ENTRY 0x00 277 278/* Bits in the region third table entry */ 279#define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ 280#define _PGD_ENTRY 0x07 281 282/* 283 * User and kernel page directory 284 */ 285#define _REGION_THIRD 0x4 286#define _REGION_THIRD_LEN 0x3 287#define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) 288#define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) 289 290#define USER_STD_MASK 0x0000000000000080UL 291 292/* Bits in the storage key */ 293#define _PAGE_CHANGED 0x02 /* HW changed bit */ 294#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 295 296#endif /* __s390x__ */ 297 298/* 299 * Page protection definitions. 300 */ 301#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 302#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 303#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 304 305#define PAGE_KERNEL PAGE_RW 306#define PAGE_COPY PAGE_RO 307 308/* 309 * The S390 can't do page protection for execute, and considers that the 310 * same are read. Also, write permissions imply read permissions. This is 311 * the closest we can get.. 312 */ 313 /*xwr*/ 314#define __P000 PAGE_NONE 315#define __P001 PAGE_RO 316#define __P010 PAGE_RO 317#define __P011 PAGE_RO 318#define __P100 PAGE_RO 319#define __P101 PAGE_RO 320#define __P110 PAGE_RO 321#define __P111 PAGE_RO 322 323#define __S000 PAGE_NONE 324#define __S001 PAGE_RO 325#define __S010 PAGE_RW 326#define __S011 PAGE_RW 327#define __S100 PAGE_RO 328#define __S101 PAGE_RO 329#define __S110 PAGE_RW 330#define __S111 PAGE_RW 331 332/* 333 * Certain architectures need to do special things when PTEs 334 * within a page table are directly modified. Thus, the following 335 * hook is made available. 336 */ 337static inline void set_pte(pte_t *pteptr, pte_t pteval) 338{ 339 *pteptr = pteval; 340} 341#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 342 343/* 344 * pgd/pmd/pte query functions 345 */ 346#ifndef __s390x__ 347 348static inline int pgd_present(pgd_t pgd) { return 1; } 349static inline int pgd_none(pgd_t pgd) { return 0; } 350static inline int pgd_bad(pgd_t pgd) { return 0; } 351 352static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } 353static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } 354static inline int pmd_bad(pmd_t pmd) 355{ 356 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; 357} 358 359#else /* __s390x__ */ 360 361static inline int pgd_present(pgd_t pgd) 362{ 363 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; 364} 365 366static inline int pgd_none(pgd_t pgd) 367{ 368 return pgd_val(pgd) & _PGD_ENTRY_INV; 369} 370 371static inline int pgd_bad(pgd_t pgd) 372{ 373 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; 374} 375 376static inline int pmd_present(pmd_t pmd) 377{ 378 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; 379} 380 381static inline int pmd_none(pmd_t pmd) 382{ 383 return pmd_val(pmd) & _PMD_ENTRY_INV; 384} 385 386static inline int pmd_bad(pmd_t pmd) 387{ 388 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; 389} 390 391#endif /* __s390x__ */ 392 393static inline int pte_none(pte_t pte) 394{ 395 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 396} 397 398static inline int pte_present(pte_t pte) 399{ 400 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 401 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 402 (!(pte_val(pte) & _PAGE_INVALID) && 403 !(pte_val(pte) & _PAGE_SWT)); 404} 405 406static inline int pte_file(pte_t pte) 407{ 408 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 409 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 410} 411 412#define pte_same(a,b) (pte_val(a) == pte_val(b)) 413 414/* 415 * query functions pte_write/pte_dirty/pte_young only work if 416 * pte_present() is true. Undefined behaviour if not.. 417 */ 418static inline int pte_write(pte_t pte) 419{ 420 return (pte_val(pte) & _PAGE_RO) == 0; 421} 422 423static inline int pte_dirty(pte_t pte) 424{ 425 /* A pte is neither clean nor dirty on s/390. The dirty bit 426 * is in the storage key. See page_test_and_clear_dirty for 427 * details. 428 */ 429 return 0; 430} 431 432static inline int pte_young(pte_t pte) 433{ 434 /* A pte is neither young nor old on s/390. The young bit 435 * is in the storage key. See page_test_and_clear_young for 436 * details. 437 */ 438 return 0; 439} 440 441static inline int pte_read(pte_t pte) 442{ 443 /* All pages are readable since we don't use the fetch 444 * protection bit in the storage key. 445 */ 446 return 1; 447} 448 449/* 450 * pgd/pmd/pte modification functions 451 */ 452 453#ifndef __s390x__ 454 455static inline void pgd_clear(pgd_t * pgdp) { } 456 457static inline void pmd_clear(pmd_t * pmdp) 458{ 459 pmd_val(pmdp[0]) = _PAGE_TABLE_INV; 460 pmd_val(pmdp[1]) = _PAGE_TABLE_INV; 461 pmd_val(pmdp[2]) = _PAGE_TABLE_INV; 462 pmd_val(pmdp[3]) = _PAGE_TABLE_INV; 463} 464 465#else /* __s390x__ */ 466 467static inline void pgd_clear(pgd_t * pgdp) 468{ 469 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; 470} 471 472static inline void pmd_clear(pmd_t * pmdp) 473{ 474 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 475 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 476} 477 478#endif /* __s390x__ */ 479 480static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 481{ 482 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 483} 484 485/* 486 * The following pte modification functions only work if 487 * pte_present() is true. Undefined behaviour if not.. 488 */ 489static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 490{ 491 pte_val(pte) &= PAGE_MASK; 492 pte_val(pte) |= pgprot_val(newprot); 493 return pte; 494} 495 496static inline pte_t pte_wrprotect(pte_t pte) 497{ 498 /* Do not clobber _PAGE_TYPE_NONE pages! */ 499 if (!(pte_val(pte) & _PAGE_INVALID)) 500 pte_val(pte) |= _PAGE_RO; 501 return pte; 502} 503 504static inline pte_t pte_mkwrite(pte_t pte) 505{ 506 pte_val(pte) &= ~_PAGE_RO; 507 return pte; 508} 509 510static inline pte_t pte_mkclean(pte_t pte) 511{ 512 /* The only user of pte_mkclean is the fork() code. 513 We must *not* clear the *physical* page dirty bit 514 just because fork() wants to clear the dirty bit in 515 *one* of the page's mappings. So we just do nothing. */ 516 return pte; 517} 518 519static inline pte_t pte_mkdirty(pte_t pte) 520{ 521 /* We do not explicitly set the dirty bit because the 522 * sske instruction is slow. It is faster to let the 523 * next instruction set the dirty bit. 524 */ 525 return pte; 526} 527 528static inline pte_t pte_mkold(pte_t pte) 529{ 530 /* S/390 doesn't keep its dirty/referenced bit in the pte. 531 * There is no point in clearing the real referenced bit. 532 */ 533 return pte; 534} 535 536static inline pte_t pte_mkyoung(pte_t pte) 537{ 538 /* S/390 doesn't keep its dirty/referenced bit in the pte. 539 * There is no point in setting the real referenced bit. 540 */ 541 return pte; 542} 543 544static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 545{ 546 return 0; 547} 548 549static inline int 550ptep_clear_flush_young(struct vm_area_struct *vma, 551 unsigned long address, pte_t *ptep) 552{ 553 /* No need to flush TLB; bits are in storage key */ 554 return ptep_test_and_clear_young(vma, address, ptep); 555} 556 557static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 558{ 559 return 0; 560} 561 562static inline int 563ptep_clear_flush_dirty(struct vm_area_struct *vma, 564 unsigned long address, pte_t *ptep) 565{ 566 /* No need to flush TLB; bits are in storage key */ 567 return ptep_test_and_clear_dirty(vma, address, ptep); 568} 569 570static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 571{ 572 pte_t pte = *ptep; 573 pte_clear(mm, addr, ptep); 574 return pte; 575} 576 577static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 578{ 579 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 580#ifndef __s390x__ 581 /* S390 has 1mb segments, we are emulating 4MB segments */ 582 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 583#else 584 /* ipte in zarch mode can do the math */ 585 pte_t *pto = ptep; 586#endif 587 asm volatile( 588 " ipte %2,%3" 589 : "=m" (*ptep) : "m" (*ptep), 590 "a" (pto), "a" (address)); 591 } 592 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 593} 594 595static inline pte_t 596ptep_clear_flush(struct vm_area_struct *vma, 597 unsigned long address, pte_t *ptep) 598{ 599 pte_t pte = *ptep; 600 601 __ptep_ipte(address, ptep); 602 return pte; 603} 604 605static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 606{ 607 pte_t old_pte = *ptep; 608 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 609} 610 611static inline void 612ptep_establish(struct vm_area_struct *vma, 613 unsigned long address, pte_t *ptep, 614 pte_t entry) 615{ 616 ptep_clear_flush(vma, address, ptep); 617 set_pte(ptep, entry); 618} 619 620#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 621 ptep_establish(__vma, __address, __ptep, __entry) 622 623/* 624 * Test and clear dirty bit in storage key. 625 * We can't clear the changed bit atomically. This is a potential 626 * race against modification of the referenced bit. This function 627 * should therefore only be called if it is not mapped in any 628 * address space. 629 */ 630static inline int page_test_and_clear_dirty(struct page *page) 631{ 632 unsigned long physpage = page_to_phys(page); 633 int skey = page_get_storage_key(physpage); 634 635 if (skey & _PAGE_CHANGED) 636 page_set_storage_key(physpage, skey & ~_PAGE_CHANGED); 637 return skey & _PAGE_CHANGED; 638} 639 640/* 641 * Test and clear referenced bit in storage key. 642 */ 643static inline int page_test_and_clear_young(struct page *page) 644{ 645 unsigned long physpage = page_to_phys(page); 646 int ccode; 647 648 asm volatile( 649 " rrbe 0,%1\n" 650 " ipm %0\n" 651 " srl %0,28\n" 652 : "=d" (ccode) : "a" (physpage) : "cc" ); 653 return ccode & 2; 654} 655 656/* 657 * Conversion functions: convert a page and protection to a page entry, 658 * and a page entry and page directory to the page they refer to. 659 */ 660static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 661{ 662 pte_t __pte; 663 pte_val(__pte) = physpage + pgprot_val(pgprot); 664 return __pte; 665} 666 667static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 668{ 669 unsigned long physpage = page_to_phys(page); 670 671 return mk_pte_phys(physpage, pgprot); 672} 673 674static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 675{ 676 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 677 678 return mk_pte_phys(physpage, pgprot); 679} 680 681#ifdef __s390x__ 682 683static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 684{ 685 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 686 687 return __pmd(physpage + pgprot_val(pgprot)); 688} 689 690#endif /* __s390x__ */ 691 692#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 693#define pte_page(x) pfn_to_page(pte_pfn(x)) 694 695#define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK) 696 697#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 698 699#define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK) 700 701#define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 702 703/* to find an entry in a page-table-directory */ 704#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 705#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 706 707/* to find an entry in a kernel page-table-directory */ 708#define pgd_offset_k(address) pgd_offset(&init_mm, address) 709 710#ifndef __s390x__ 711 712/* Find an entry in the second-level page table.. */ 713static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 714{ 715 return (pmd_t *) dir; 716} 717 718#else /* __s390x__ */ 719 720/* Find an entry in the second-level page table.. */ 721#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 722#define pmd_offset(dir,addr) \ 723 ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr)) 724 725#endif /* __s390x__ */ 726 727/* Find an entry in the third-level page table.. */ 728#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 729#define pte_offset_kernel(pmd, address) \ 730 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 731#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 732#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 733#define pte_unmap(pte) do { } while (0) 734#define pte_unmap_nested(pte) do { } while (0) 735 736/* 737 * 31 bit swap entry format: 738 * A page-table entry has some bits we have to treat in a special way. 739 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 740 * exception will occur instead of a page translation exception. The 741 * specifiation exception has the bad habit not to store necessary 742 * information in the lowcore. 743 * Bit 21 and bit 22 are the page invalid bit and the page protection 744 * bit. We set both to indicate a swapped page. 745 * Bit 30 and 31 are used to distinguish the different page types. For 746 * a swapped page these bits need to be zero. 747 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 748 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 749 * plus 24 for the offset. 750 * 0| offset |0110|o|type |00| 751 * 0 0000000001111111111 2222 2 22222 33 752 * 0 1234567890123456789 0123 4 56789 01 753 * 754 * 64 bit swap entry format: 755 * A page-table entry has some bits we have to treat in a special way. 756 * Bits 52 and bit 55 have to be zero, otherwise an specification 757 * exception will occur instead of a page translation exception. The 758 * specifiation exception has the bad habit not to store necessary 759 * information in the lowcore. 760 * Bit 53 and bit 54 are the page invalid bit and the page protection 761 * bit. We set both to indicate a swapped page. 762 * Bit 62 and 63 are used to distinguish the different page types. For 763 * a swapped page these bits need to be zero. 764 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 765 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 766 * plus 56 for the offset. 767 * | offset |0110|o|type |00| 768 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 769 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 770 */ 771#ifndef __s390x__ 772#define __SWP_OFFSET_MASK (~0UL >> 12) 773#else 774#define __SWP_OFFSET_MASK (~0UL >> 11) 775#endif 776static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 777{ 778 pte_t pte; 779 offset &= __SWP_OFFSET_MASK; 780 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 781 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 782 return pte; 783} 784 785#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 786#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 787#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 788 789#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 790#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 791 792#ifndef __s390x__ 793# define PTE_FILE_MAX_BITS 26 794#else /* __s390x__ */ 795# define PTE_FILE_MAX_BITS 59 796#endif /* __s390x__ */ 797 798#define pte_to_pgoff(__pte) \ 799 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 800 801#define pgoff_to_pte(__off) \ 802 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 803 | _PAGE_TYPE_FILE }) 804 805#endif /* !__ASSEMBLY__ */ 806 807#define kern_addr_valid(addr) (1) 808 809/* 810 * No page table caches to initialise 811 */ 812#define pgtable_cache_init() do { } while (0) 813 814#define __HAVE_ARCH_PTEP_ESTABLISH 815#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 816#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 817#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 818#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 819#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH 820#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 821#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 822#define __HAVE_ARCH_PTEP_SET_WRPROTECT 823#define __HAVE_ARCH_PTE_SAME 824#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY 825#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 826#include <asm-generic/pgtable.h> 827 828#endif /* _S390_PAGE_H */ 829