at v2.6.19 272 lines 8.9 kB view raw
1#ifndef _ASM_IA64_SYSTEM_H 2#define _ASM_IA64_SYSTEM_H 3 4/* 5 * System defines. Note that this is included both from .c and .S 6 * files, so it does only defines, not any C code. This is based 7 * on information published in the Processor Abstraction Layer 8 * and the System Abstraction Layer manual. 9 * 10 * Copyright (C) 1998-2003 Hewlett-Packard Co 11 * David Mosberger-Tang <davidm@hpl.hp.com> 12 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 13 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 14 */ 15 16#include <asm/kregs.h> 17#include <asm/page.h> 18#include <asm/pal.h> 19#include <asm/percpu.h> 20 21#define GATE_ADDR RGN_BASE(RGN_GATE) 22 23/* 24 * 0xa000000000000000+2*PERCPU_PAGE_SIZE 25 * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page) 26 */ 27#define KERNEL_START (GATE_ADDR+__IA64_UL_CONST(0x100000000)) 28#define PERCPU_ADDR (-PERCPU_PAGE_SIZE) 29 30#ifndef __ASSEMBLY__ 31 32#include <linux/kernel.h> 33#include <linux/types.h> 34 35struct pci_vector_struct { 36 __u16 segment; /* PCI Segment number */ 37 __u16 bus; /* PCI Bus number */ 38 __u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */ 39 __u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */ 40 __u32 irq; /* IRQ assigned */ 41}; 42 43extern struct ia64_boot_param { 44 __u64 command_line; /* physical address of command line arguments */ 45 __u64 efi_systab; /* physical address of EFI system table */ 46 __u64 efi_memmap; /* physical address of EFI memory map */ 47 __u64 efi_memmap_size; /* size of EFI memory map */ 48 __u64 efi_memdesc_size; /* size of an EFI memory map descriptor */ 49 __u32 efi_memdesc_version; /* memory descriptor version */ 50 struct { 51 __u16 num_cols; /* number of columns on console output device */ 52 __u16 num_rows; /* number of rows on console output device */ 53 __u16 orig_x; /* cursor's x position */ 54 __u16 orig_y; /* cursor's y position */ 55 } console_info; 56 __u64 fpswa; /* physical address of the fpswa interface */ 57 __u64 initrd_start; 58 __u64 initrd_size; 59} *ia64_boot_param; 60 61/* 62 * Macros to force memory ordering. In these descriptions, "previous" 63 * and "subsequent" refer to program order; "visible" means that all 64 * architecturally visible effects of a memory access have occurred 65 * (at a minimum, this means the memory has been read or written). 66 * 67 * wmb(): Guarantees that all preceding stores to memory- 68 * like regions are visible before any subsequent 69 * stores and that all following stores will be 70 * visible only after all previous stores. 71 * rmb(): Like wmb(), but for reads. 72 * mb(): wmb()/rmb() combo, i.e., all previous memory 73 * accesses are visible before all subsequent 74 * accesses and vice versa. This is also known as 75 * a "fence." 76 * 77 * Note: "mb()" and its variants cannot be used as a fence to order 78 * accesses to memory mapped I/O registers. For that, mf.a needs to 79 * be used. However, we don't want to always use mf.a because (a) 80 * it's (presumably) much slower than mf and (b) mf.a is supported for 81 * sequential memory pages only. 82 */ 83#define mb() ia64_mf() 84#define rmb() mb() 85#define wmb() mb() 86#define read_barrier_depends() do { } while(0) 87 88#ifdef CONFIG_SMP 89# define smp_mb() mb() 90# define smp_rmb() rmb() 91# define smp_wmb() wmb() 92# define smp_read_barrier_depends() read_barrier_depends() 93#else 94# define smp_mb() barrier() 95# define smp_rmb() barrier() 96# define smp_wmb() barrier() 97# define smp_read_barrier_depends() do { } while(0) 98#endif 99 100/* 101 * XXX check on this ---I suspect what Linus really wants here is 102 * acquire vs release semantics but we can't discuss this stuff with 103 * Linus just yet. Grrr... 104 */ 105#define set_mb(var, value) do { (var) = (value); mb(); } while (0) 106 107#define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */ 108 109/* 110 * The group barrier in front of the rsm & ssm are necessary to ensure 111 * that none of the previous instructions in the same group are 112 * affected by the rsm/ssm. 113 */ 114/* For spinlocks etc */ 115 116/* 117 * - clearing psr.i is implicitly serialized (visible by next insn) 118 * - setting psr.i requires data serialization 119 * - we need a stop-bit before reading PSR because we sometimes 120 * write a floating-point register right before reading the PSR 121 * and that writes to PSR.mfl 122 */ 123#define __local_irq_save(x) \ 124do { \ 125 ia64_stop(); \ 126 (x) = ia64_getreg(_IA64_REG_PSR); \ 127 ia64_stop(); \ 128 ia64_rsm(IA64_PSR_I); \ 129} while (0) 130 131#define __local_irq_disable() \ 132do { \ 133 ia64_stop(); \ 134 ia64_rsm(IA64_PSR_I); \ 135} while (0) 136 137#define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I) 138 139#ifdef CONFIG_IA64_DEBUG_IRQ 140 141 extern unsigned long last_cli_ip; 142 143# define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP) 144 145# define local_irq_save(x) \ 146do { \ 147 unsigned long psr; \ 148 \ 149 __local_irq_save(psr); \ 150 if (psr & IA64_PSR_I) \ 151 __save_ip(); \ 152 (x) = psr; \ 153} while (0) 154 155# define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0) 156 157# define local_irq_restore(x) \ 158do { \ 159 unsigned long old_psr, psr = (x); \ 160 \ 161 local_save_flags(old_psr); \ 162 __local_irq_restore(psr); \ 163 if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) \ 164 __save_ip(); \ 165} while (0) 166 167#else /* !CONFIG_IA64_DEBUG_IRQ */ 168# define local_irq_save(x) __local_irq_save(x) 169# define local_irq_disable() __local_irq_disable() 170# define local_irq_restore(x) __local_irq_restore(x) 171#endif /* !CONFIG_IA64_DEBUG_IRQ */ 172 173#define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); }) 174#define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); }) 175 176#define irqs_disabled() \ 177({ \ 178 unsigned long __ia64_id_flags; \ 179 local_save_flags(__ia64_id_flags); \ 180 (__ia64_id_flags & IA64_PSR_I) == 0; \ 181}) 182 183#ifdef __KERNEL__ 184 185#ifdef CONFIG_IA32_SUPPORT 186# define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0) 187#else 188# define IS_IA32_PROCESS(regs) 0 189struct task_struct; 190static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){} 191static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){} 192#endif 193 194/* 195 * Context switch from one thread to another. If the two threads have 196 * different address spaces, schedule() has already taken care of 197 * switching to the new address space by calling switch_mm(). 198 * 199 * Disabling access to the fph partition and the debug-register 200 * context switch MUST be done before calling ia64_switch_to() since a 201 * newly created thread returns directly to 202 * ia64_ret_from_syscall_clear_r8. 203 */ 204extern struct task_struct *ia64_switch_to (void *next_task); 205 206struct task_struct; 207 208extern void ia64_save_extra (struct task_struct *task); 209extern void ia64_load_extra (struct task_struct *task); 210 211#ifdef CONFIG_PERFMON 212 DECLARE_PER_CPU(unsigned long, pfm_syst_info); 213# define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1) 214#else 215# define PERFMON_IS_SYSWIDE() (0) 216#endif 217 218#define IA64_HAS_EXTRA_STATE(t) \ 219 ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \ 220 || IS_IA32_PROCESS(task_pt_regs(t)) || PERFMON_IS_SYSWIDE()) 221 222#define __switch_to(prev,next,last) do { \ 223 if (IA64_HAS_EXTRA_STATE(prev)) \ 224 ia64_save_extra(prev); \ 225 if (IA64_HAS_EXTRA_STATE(next)) \ 226 ia64_load_extra(next); \ 227 ia64_psr(task_pt_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \ 228 (last) = ia64_switch_to((next)); \ 229} while (0) 230 231#ifdef CONFIG_SMP 232/* 233 * In the SMP case, we save the fph state when context-switching away from a thread that 234 * modified fph. This way, when the thread gets scheduled on another CPU, the CPU can 235 * pick up the state from task->thread.fph, avoiding the complication of having to fetch 236 * the latest fph state from another CPU. In other words: eager save, lazy restore. 237 */ 238# define switch_to(prev,next,last) do { \ 239 if (ia64_psr(task_pt_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \ 240 ia64_psr(task_pt_regs(prev))->mfh = 0; \ 241 (prev)->thread.flags |= IA64_THREAD_FPH_VALID; \ 242 __ia64_save_fpu((prev)->thread.fph); \ 243 } \ 244 __switch_to(prev, next, last); \ 245 /* "next" in old context is "current" in new context */ \ 246 if (unlikely((current->thread.flags & IA64_THREAD_MIGRATION) && \ 247 (task_cpu(current) != \ 248 task_thread_info(current)->last_cpu))) { \ 249 platform_migrate(current); \ 250 task_thread_info(current)->last_cpu = task_cpu(current); \ 251 } \ 252} while (0) 253#else 254# define switch_to(prev,next,last) __switch_to(prev, next, last) 255#endif 256 257#define __ARCH_WANT_UNLOCKED_CTXSW 258#define ARCH_HAS_PREFETCH_SWITCH_STACK 259#define ia64_platform_is(x) (strcmp(x, platform_name) == 0) 260 261void cpu_idle_wait(void); 262void sched_cacheflush(void); 263 264#define arch_align_stack(x) (x) 265 266void default_idle(void); 267 268#endif /* __KERNEL__ */ 269 270#endif /* __ASSEMBLY__ */ 271 272#endif /* _ASM_IA64_SYSTEM_H */