at v2.6.19 603 lines 22 kB view raw
1#ifndef _ASM_IA64_PGTABLE_H 2#define _ASM_IA64_PGTABLE_H 3 4/* 5 * This file contains the functions and defines necessary to modify and use 6 * the IA-64 page table tree. 7 * 8 * This hopefully works with any (fixed) IA-64 page-size, as defined 9 * in <asm/page.h>. 10 * 11 * Copyright (C) 1998-2005 Hewlett-Packard Co 12 * David Mosberger-Tang <davidm@hpl.hp.com> 13 */ 14 15 16#include <asm/mman.h> 17#include <asm/page.h> 18#include <asm/processor.h> 19#include <asm/system.h> 20#include <asm/types.h> 21 22#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 23 24/* 25 * First, define the various bits in a PTE. Note that the PTE format 26 * matches the VHPT short format, the firt doubleword of the VHPD long 27 * format, and the first doubleword of the TLB insertion format. 28 */ 29#define _PAGE_P_BIT 0 30#define _PAGE_A_BIT 5 31#define _PAGE_D_BIT 6 32 33#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 34#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 35#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 36#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 37#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 38#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 39#define _PAGE_MA_MASK (0x7 << 2) 40#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 41#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 42#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 43#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 44#define _PAGE_PL_MASK (3 << 7) 45#define _PAGE_AR_R (0 << 9) /* read only */ 46#define _PAGE_AR_RX (1 << 9) /* read & execute */ 47#define _PAGE_AR_RW (2 << 9) /* read & write */ 48#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 49#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 50#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 51#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 52#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 53#define _PAGE_AR_MASK (7 << 9) 54#define _PAGE_AR_SHIFT 9 55#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 56#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 57#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 58#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 59#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 60 61/* Valid only for a PTE with the present bit cleared: */ 62#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ 63 64#define _PFN_MASK _PAGE_PPN_MASK 65/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 66#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 67 68#define _PAGE_SIZE_4K 12 69#define _PAGE_SIZE_8K 13 70#define _PAGE_SIZE_16K 14 71#define _PAGE_SIZE_64K 16 72#define _PAGE_SIZE_256K 18 73#define _PAGE_SIZE_1M 20 74#define _PAGE_SIZE_4M 22 75#define _PAGE_SIZE_16M 24 76#define _PAGE_SIZE_64M 26 77#define _PAGE_SIZE_256M 28 78#define _PAGE_SIZE_1G 30 79#define _PAGE_SIZE_4G 32 80 81#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 82#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 83#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 84 85/* 86 * How many pointers will a page table level hold expressed in shift 87 */ 88#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 89 90/* 91 * Definitions for fourth level: 92 */ 93#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 94 95/* 96 * Definitions for third level: 97 * 98 * PMD_SHIFT determines the size of the area a third-level page table 99 * can map. 100 */ 101#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 102#define PMD_SIZE (1UL << PMD_SHIFT) 103#define PMD_MASK (~(PMD_SIZE-1)) 104#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 105 106#ifdef CONFIG_PGTABLE_4 107/* 108 * Definitions for second level: 109 * 110 * PUD_SHIFT determines the size of the area a second-level page table 111 * can map. 112 */ 113#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 114#define PUD_SIZE (1UL << PUD_SHIFT) 115#define PUD_MASK (~(PUD_SIZE-1)) 116#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 117#endif 118 119/* 120 * Definitions for first level: 121 * 122 * PGDIR_SHIFT determines what a first-level page table entry can map. 123 */ 124#ifdef CONFIG_PGTABLE_4 125#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 126#else 127#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 128#endif 129#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 130#define PGDIR_MASK (~(PGDIR_SIZE-1)) 131#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 132#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 133#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 134#define FIRST_USER_ADDRESS 0 135 136/* 137 * All the normal masks have the "page accessed" bits on, as any time 138 * they are used, the page is accessed. They are cleared only by the 139 * page-out routines. 140 */ 141#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 142#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 143#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 144#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 145#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 146#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 147#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 148#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 149 150# ifndef __ASSEMBLY__ 151 152#include <linux/sched.h> /* for mm_struct */ 153#include <asm/bitops.h> 154#include <asm/cacheflush.h> 155#include <asm/mmu_context.h> 156#include <asm/processor.h> 157 158/* 159 * Next come the mappings that determine how mmap() protection bits 160 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 161 * _P version gets used for a private shared memory segment, the _S 162 * version gets used for a shared memory segment with MAP_SHARED on. 163 * In a private shared memory segment, we do a copy-on-write if a task 164 * attempts to write to the page. 165 */ 166 /* xwr */ 167#define __P000 PAGE_NONE 168#define __P001 PAGE_READONLY 169#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 170#define __P011 PAGE_READONLY /* ditto */ 171#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 172#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 173#define __P110 PAGE_COPY_EXEC 174#define __P111 PAGE_COPY_EXEC 175 176#define __S000 PAGE_NONE 177#define __S001 PAGE_READONLY 178#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 179#define __S011 PAGE_SHARED 180#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 181#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 182#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 183#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 184 185#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 186#ifdef CONFIG_PGTABLE_4 187#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 188#endif 189#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 190#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 191 192 193/* 194 * Some definitions to translate between mem_map, PTEs, and page addresses: 195 */ 196 197 198/* Quick test to see if ADDR is a (potentially) valid physical address. */ 199static inline long 200ia64_phys_addr_valid (unsigned long addr) 201{ 202 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 203} 204 205/* 206 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 207 * memory. For the return value to be meaningful, ADDR must be >= 208 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 209 * require a hash-, or multi-level tree-lookup or something of that 210 * sort) but it guarantees to return TRUE only if accessing the page 211 * at that address does not cause an error. Note that there may be 212 * addresses for which kern_addr_valid() returns FALSE even though an 213 * access would not cause an error (e.g., this is typically true for 214 * memory mapped I/O regions. 215 * 216 * XXX Need to implement this for IA-64. 217 */ 218#define kern_addr_valid(addr) (1) 219 220 221/* 222 * Now come the defines and routines to manage and access the three-level 223 * page table. 224 */ 225 226/* 227 * On some architectures, special things need to be done when setting 228 * the PTE in a page table. Nothing special needs to be on IA-64. 229 */ 230#define set_pte(ptep, pteval) (*(ptep) = (pteval)) 231#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 232 233#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 234#ifdef CONFIG_VIRTUAL_MEM_MAP 235# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 236# define VMALLOC_END vmalloc_end 237 extern unsigned long vmalloc_end; 238#else 239# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 240#endif 241 242/* fs/proc/kcore.c */ 243#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 244#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 245 246#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 247#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 248 249/* 250 * Conversion functions: convert page frame number (pfn) and a protection value to a page 251 * table entry (pte). 252 */ 253#define pfn_pte(pfn, pgprot) \ 254({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 255 256/* Extract pfn from pte. */ 257#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 258 259#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 260 261/* This takes a physical page address that is used by the remapping functions */ 262#define mk_pte_phys(physpage, pgprot) \ 263({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 264 265#define pte_modify(_pte, newprot) \ 266 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 267 268#define pte_none(pte) (!pte_val(pte)) 269#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 270#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 271/* pte_page() returns the "struct page *" corresponding to the PTE: */ 272#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 273 274#define pmd_none(pmd) (!pmd_val(pmd)) 275#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 276#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 277#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 278#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 279#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 280 281#define pud_none(pud) (!pud_val(pud)) 282#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 283#define pud_present(pud) (pud_val(pud) != 0UL) 284#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 285#define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) 286#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) 287 288#ifdef CONFIG_PGTABLE_4 289#define pgd_none(pgd) (!pgd_val(pgd)) 290#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) 291#define pgd_present(pgd) (pgd_val(pgd) != 0UL) 292#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) 293#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) 294#define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) 295#endif 296 297/* 298 * The following have defined behavior only work if pte_present() is true. 299 */ 300#define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) 301#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) 302#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 303#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 304#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 305#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 306#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) 307/* 308 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 309 * access rights: 310 */ 311#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 312#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 313#define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX)) 314#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 315#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 316#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 317#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 318#define pte_mkhuge(pte) (__pte(pte_val(pte))) 319 320/* 321 * Make page protection values cacheable, uncacheable, or write- 322 * combining. Note that "protection" is really a misnomer here as the 323 * protection value contains the memory attribute bits, dirty bits, and 324 * various other bits as well. 325 */ 326#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) 327#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 328#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 329 330struct file; 331extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 332 unsigned long size, pgprot_t vma_prot); 333#define __HAVE_PHYS_MEM_ACCESS_PROT 334 335static inline unsigned long 336pgd_index (unsigned long address) 337{ 338 unsigned long region = address >> 61; 339 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 340 341 return (region << (PAGE_SHIFT - 6)) | l1index; 342} 343 344/* The offset in the 1-level directory is given by the 3 region bits 345 (61..63) and the level-1 bits. */ 346static inline pgd_t* 347pgd_offset (struct mm_struct *mm, unsigned long address) 348{ 349 return mm->pgd + pgd_index(address); 350} 351 352/* In the kernel's mapped region we completely ignore the region number 353 (since we know it's in region number 5). */ 354#define pgd_offset_k(addr) \ 355 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 356 357/* Look up a pgd entry in the gate area. On IA-64, the gate-area 358 resides in the kernel-mapped segment, hence we use pgd_offset_k() 359 here. */ 360#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 361 362#ifdef CONFIG_PGTABLE_4 363/* Find an entry in the second-level page table.. */ 364#define pud_offset(dir,addr) \ 365 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) 366#endif 367 368/* Find an entry in the third-level page table.. */ 369#define pmd_offset(dir,addr) \ 370 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 371 372/* 373 * Find an entry in the third-level page table. This looks more complicated than it 374 * should be because some platforms place page tables in high memory. 375 */ 376#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 377#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 378#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 379#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) 380#define pte_unmap(pte) do { } while (0) 381#define pte_unmap_nested(pte) do { } while (0) 382 383/* atomic versions of the some PTE manipulations: */ 384 385static inline int 386ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 387{ 388#ifdef CONFIG_SMP 389 if (!pte_young(*ptep)) 390 return 0; 391 return test_and_clear_bit(_PAGE_A_BIT, ptep); 392#else 393 pte_t pte = *ptep; 394 if (!pte_young(pte)) 395 return 0; 396 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 397 return 1; 398#endif 399} 400 401static inline int 402ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 403{ 404#ifdef CONFIG_SMP 405 if (!pte_dirty(*ptep)) 406 return 0; 407 return test_and_clear_bit(_PAGE_D_BIT, ptep); 408#else 409 pte_t pte = *ptep; 410 if (!pte_dirty(pte)) 411 return 0; 412 set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); 413 return 1; 414#endif 415} 416 417static inline pte_t 418ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 419{ 420#ifdef CONFIG_SMP 421 return __pte(xchg((long *) ptep, 0)); 422#else 423 pte_t pte = *ptep; 424 pte_clear(mm, addr, ptep); 425 return pte; 426#endif 427} 428 429static inline void 430ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 431{ 432#ifdef CONFIG_SMP 433 unsigned long new, old; 434 435 do { 436 old = pte_val(*ptep); 437 new = pte_val(pte_wrprotect(__pte (old))); 438 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 439#else 440 pte_t old_pte = *ptep; 441 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 442#endif 443} 444 445static inline int 446pte_same (pte_t a, pte_t b) 447{ 448 return pte_val(a) == pte_val(b); 449} 450 451#define update_mmu_cache(vma, address, pte) do { } while (0) 452 453extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 454extern void paging_init (void); 455 456/* 457 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 458 * bits in the swap-type field of the swap pte. It would be nice to 459 * enforce that, but we can't easily include <linux/swap.h> here. 460 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 461 * 462 * Format of swap pte: 463 * bit 0 : present bit (must be zero) 464 * bit 1 : _PAGE_FILE (must be zero) 465 * bits 2- 8: swap-type 466 * bits 9-62: swap offset 467 * bit 63 : _PAGE_PROTNONE bit 468 * 469 * Format of file pte: 470 * bit 0 : present bit (must be zero) 471 * bit 1 : _PAGE_FILE (must be one) 472 * bits 2-62: file_offset/PAGE_SIZE 473 * bit 63 : _PAGE_PROTNONE bit 474 */ 475#define __swp_type(entry) (((entry).val >> 2) & 0x7f) 476#define __swp_offset(entry) (((entry).val << 1) >> 10) 477#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) 478#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 479#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 480 481#define PTE_FILE_MAX_BITS 61 482#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) 483#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) 484 485#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 486 remap_pfn_range(vma, vaddr, pfn, size, prot) 487 488#define MK_IOSPACE_PFN(space, pfn) (pfn) 489#define GET_IOSPACE(pfn) 0 490#define GET_PFN(pfn) (pfn) 491 492/* 493 * ZERO_PAGE is a global shared page that is always zero: used 494 * for zero-mapped memory areas etc.. 495 */ 496extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 497extern struct page *zero_page_memmap_ptr; 498#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 499 500/* We provide our own get_unmapped_area to cope with VA holes for userland */ 501#define HAVE_ARCH_UNMAPPED_AREA 502 503#ifdef CONFIG_HUGETLB_PAGE 504#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 505#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 506#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 507#endif 508 509/* 510 * IA-64 doesn't have any external MMU info: the page tables contain all the necessary 511 * information. However, we use this routine to take care of any (delayed) i-cache 512 * flushing that may be necessary. 513 */ 514extern void lazy_mmu_prot_update (pte_t pte); 515 516#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 517/* 518 * Update PTEP with ENTRY, which is guaranteed to be a less 519 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 520 * WRITABLE bits turned on, when the value at PTEP did not. The 521 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 522 * 523 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 524 * having to worry about races. On SMP machines, there are only two 525 * cases where this is true: 526 * 527 * (1) *PTEP has the PRESENT bit turned OFF 528 * (2) ENTRY has the DIRTY bit turned ON 529 * 530 * On ia64, we could implement this routine with a cmpxchg()-loop 531 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 532 * However, like on x86, we can get a more streamlined version by 533 * observing that it is OK to drop ACCESSED bit updates when 534 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 535 * result in an extra Access-bit fault, which would then turn on the 536 * ACCESSED bit in the low-level fault handler (iaccess_bit or 537 * daccess_bit in ivt.S). 538 */ 539#ifdef CONFIG_SMP 540# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 541do { \ 542 if (__safely_writable) { \ 543 set_pte(__ptep, __entry); \ 544 flush_tlb_page(__vma, __addr); \ 545 } \ 546} while (0) 547#else 548# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 549 ptep_establish(__vma, __addr, __ptep, __entry) 550#endif 551 552# ifdef CONFIG_VIRTUAL_MEM_MAP 553 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 554# define __HAVE_ARCH_MEMMAP_INIT 555 extern void memmap_init (unsigned long size, int nid, unsigned long zone, 556 unsigned long start_pfn); 557# endif /* CONFIG_VIRTUAL_MEM_MAP */ 558# endif /* !__ASSEMBLY__ */ 559 560/* 561 * Identity-mapped regions use a large page size. We'll call such large pages 562 * "granules". If you can think of a better name that's unambiguous, let me 563 * know... 564 */ 565#if defined(CONFIG_IA64_GRANULE_64MB) 566# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 567#elif defined(CONFIG_IA64_GRANULE_16MB) 568# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 569#endif 570#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 571/* 572 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 573 */ 574#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 575#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 576 577/* 578 * No page table caches to initialise 579 */ 580#define pgtable_cache_init() do { } while (0) 581 582/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 583#define FIXADDR_USER_START GATE_ADDR 584#ifdef HAVE_BUGGY_SEGREL 585# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 586#else 587# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 588#endif 589 590#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 591#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 592#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 593#define __HAVE_ARCH_PTEP_SET_WRPROTECT 594#define __HAVE_ARCH_PTE_SAME 595#define __HAVE_ARCH_PGD_OFFSET_GATE 596#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE 597 598#ifndef CONFIG_PGTABLE_4 599#include <asm-generic/pgtable-nopud.h> 600#endif 601#include <asm-generic/pgtable.h> 602 603#endif /* _ASM_IA64_PGTABLE_H */