at v2.6.19-rc2 554 lines 18 kB view raw
1/* pgtable.h: FR-V page table mangling 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * Derived from: 12 * include/asm-m68knommu/pgtable.h 13 * include/asm-i386/pgtable.h 14 */ 15 16#ifndef _ASM_PGTABLE_H 17#define _ASM_PGTABLE_H 18 19#include <asm/mem-layout.h> 20#include <asm/setup.h> 21#include <asm/processor.h> 22 23#ifndef __ASSEMBLY__ 24#include <linux/threads.h> 25#include <linux/slab.h> 26#include <linux/list.h> 27#include <linux/spinlock.h> 28struct mm_struct; 29struct vm_area_struct; 30#endif 31 32#ifndef __ASSEMBLY__ 33#if defined(CONFIG_HIGHPTE) 34typedef unsigned long pte_addr_t; 35#else 36typedef pte_t *pte_addr_t; 37#endif 38#endif 39 40/*****************************************************************************/ 41/* 42 * MMU-less operation case first 43 */ 44#ifndef CONFIG_MMU 45 46#define pgd_present(pgd) (1) /* pages are always present on NO_MM */ 47#define pgd_none(pgd) (0) 48#define pgd_bad(pgd) (0) 49#define pgd_clear(pgdp) 50#define kern_addr_valid(addr) (1) 51#define pmd_offset(a, b) ((void *) 0) 52 53#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */ 54#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */ 55#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */ 56#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */ 57#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */ 58 59#define __swp_type(x) (0) 60#define __swp_offset(x) (0) 61#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 62#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 63#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 64 65#ifndef __ASSEMBLY__ 66static inline int pte_file(pte_t pte) { return 0; } 67#endif 68 69#define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 70 71#define swapper_pg_dir ((pgd_t *) NULL) 72 73#define pgtable_cache_init() do {} while(0) 74 75#else /* !CONFIG_MMU */ 76/*****************************************************************************/ 77/* 78 * then MMU operation 79 */ 80 81/* 82 * ZERO_PAGE is a global shared page that is always zero: used 83 * for zero-mapped memory areas etc.. 84 */ 85#ifndef __ASSEMBLY__ 86extern unsigned long empty_zero_page; 87#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 88#endif 89 90/* 91 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry) 92 * [see Documentation/fujitsu/frv/mmu-layout.txt] 93 * 94 * Page Directory: 95 * - Size: 16KB 96 * - 64 PGEs per PGD 97 * - Each PGE holds 1 PUD and covers 64MB 98 * 99 * Page Upper Directory: 100 * - Size: 256B 101 * - 1 PUE per PUD 102 * - Each PUE holds 1 PMD and covers 64MB 103 * 104 * Page Mid-Level Directory 105 * - Size: 256B 106 * - 1 PME per PMD 107 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table 108 * - All STEs are instantiated at the same time 109 * 110 * Page Table 111 * - Size: 16KB 112 * - 4096 PTEs per PT 113 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries 114 * 115 * Pages 116 * - Size: 4KB 117 * 118 * total PTEs 119 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs 120 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT 121 * = 262144 (or 256 * 1024) 122 */ 123#define PGDIR_SHIFT 26 124#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 125#define PGDIR_MASK (~(PGDIR_SIZE - 1)) 126#define PTRS_PER_PGD 64 127 128#define PUD_SHIFT 26 129#define PTRS_PER_PUD 1 130#define PUD_SIZE (1UL << PUD_SHIFT) 131#define PUD_MASK (~(PUD_SIZE - 1)) 132#define PUE_SIZE 256 133 134#define PMD_SHIFT 26 135#define PMD_SIZE (1UL << PMD_SHIFT) 136#define PMD_MASK (~(PMD_SIZE - 1)) 137#define PTRS_PER_PMD 1 138#define PME_SIZE 256 139 140#define __frv_PT_SIZE 256 141 142#define PTRS_PER_PTE 4096 143 144#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE) 145#define FIRST_USER_ADDRESS 0 146 147#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 148#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) 149 150#define TWOLEVEL_PGDIR_SHIFT 26 151#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) 152#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS) 153 154#ifndef __ASSEMBLY__ 155 156extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 157 158#define pte_ERROR(e) \ 159 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte) 160#define pmd_ERROR(e) \ 161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 162#define pud_ERROR(e) \ 163 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e))) 164#define pgd_ERROR(e) \ 165 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e)))) 166 167/* 168 * Certain architectures need to do special things when PTEs 169 * within a page table are directly modified. Thus, the following 170 * hook is made available. 171 */ 172#define set_pte(pteptr, pteval) \ 173do { \ 174 *(pteptr) = (pteval); \ 175 asm volatile("dcf %M0" :: "U"(*pteptr)); \ 176} while(0) 177#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 178 179/* 180 * pgd_offset() returns a (pgd_t *) 181 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 182 */ 183#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 184 185/* 186 * a shortcut which implies the use of the kernel's pgd, instead 187 * of a process's 188 */ 189#define pgd_offset_k(address) pgd_offset(&init_mm, address) 190 191/* 192 * The "pgd_xxx()" functions here are trivial for a folded two-level 193 * setup: the pud is never bad, and a pud always exists (as it's folded 194 * into the pgd entry) 195 */ 196static inline int pgd_none(pgd_t pgd) { return 0; } 197static inline int pgd_bad(pgd_t pgd) { return 0; } 198static inline int pgd_present(pgd_t pgd) { return 1; } 199static inline void pgd_clear(pgd_t *pgd) { } 200 201#define pgd_populate(mm, pgd, pud) do { } while (0) 202/* 203 * (puds are folded into pgds so this doesn't get actually called, 204 * but the define is needed for a generic inline function.) 205 */ 206#define set_pgd(pgdptr, pgdval) \ 207do { \ 208 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \ 209 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \ 210} while(0) 211 212static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 213{ 214 return (pud_t *) pgd; 215} 216 217#define pgd_page(pgd) (pud_page((pud_t){ pgd })) 218#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd })) 219 220/* 221 * allocating and freeing a pud is trivial: the 1-entry pud is 222 * inside the pgd, so has no extra memory associated with it. 223 */ 224#define pud_alloc_one(mm, address) NULL 225#define pud_free(x) do { } while (0) 226#define __pud_free_tlb(tlb, x) do { } while (0) 227 228/* 229 * The "pud_xxx()" functions here are trivial for a folded two-level 230 * setup: the pmd is never bad, and a pmd always exists (as it's folded 231 * into the pud entry) 232 */ 233static inline int pud_none(pud_t pud) { return 0; } 234static inline int pud_bad(pud_t pud) { return 0; } 235static inline int pud_present(pud_t pud) { return 1; } 236static inline void pud_clear(pud_t *pud) { } 237 238#define pud_populate(mm, pmd, pte) do { } while (0) 239 240/* 241 * (pmds are folded into puds so this doesn't get actually called, 242 * but the define is needed for a generic inline function.) 243 */ 244#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval }) 245 246#define pud_page(pud) (pmd_page((pmd_t){ pud })) 247#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud })) 248 249/* 250 * (pmds are folded into pgds so this doesn't get actually called, 251 * but the define is needed for a generic inline function.) 252 */ 253extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd); 254 255#define set_pmd(pmdptr, pmdval) \ 256do { \ 257 __set_pmd((pmdptr), (pmdval).ste[0]); \ 258} while(0) 259 260#define __pmd_index(address) 0 261 262static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address) 263{ 264 return (pmd_t *) dir + __pmd_index(address); 265} 266 267#define pte_same(a, b) ((a).pte == (b).pte) 268#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT)))) 269#define pte_none(x) (!(x).pte) 270#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT))) 271#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 272#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 273 274#define VMALLOC_VMADDR(x) ((unsigned long) (x)) 275 276#endif /* !__ASSEMBLY__ */ 277 278/* 279 * control flags in AMPR registers and TLB entries 280 */ 281#define _PAGE_BIT_PRESENT xAMPRx_V_BIT 282#define _PAGE_BIT_WP DAMPRx_WP_BIT 283#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT 284#define _PAGE_BIT_SUPER xAMPRx_S_BIT 285#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT 286#define _PAGE_BIT_DIRTY xAMPRx_M_BIT 287#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT 288 289#define _PAGE_PRESENT xAMPRx_V 290#define _PAGE_WP DAMPRx_WP 291#define _PAGE_NOCACHE xAMPRx_C 292#define _PAGE_SUPER xAMPRx_S 293#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */ 294#define _PAGE_DIRTY xAMPRx_M 295#define _PAGE_NOTGLOBAL xAMPRx_NG 296 297#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13) 298 299#define _PAGE_FILE 0x002 /* set:pagecache unset:swap */ 300#define _PAGE_PROTNONE 0x000 /* If not present */ 301 302#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 303 304#define __PGPROT_BASE \ 305 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED) 306 307#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 308#define PAGE_SHARED __pgprot(__PGPROT_BASE) 309#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP) 310#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP) 311 312#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY) 313#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE) 314#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP) 315 316#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL) 317 318#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) 319#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) 320#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) 321 322#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb) 323 324#ifndef __ASSEMBLY__ 325 326/* 327 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for 328 * instruction access and for data access. However, we don't have enough reserved bits to say 329 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa. 330 */ 331#define __P000 PAGE_NONE 332#define __P001 PAGE_READONLY 333#define __P010 PAGE_COPY 334#define __P011 PAGE_COPY 335#define __P100 PAGE_READONLY 336#define __P101 PAGE_READONLY 337#define __P110 PAGE_COPY 338#define __P111 PAGE_COPY 339 340#define __S000 PAGE_NONE 341#define __S001 PAGE_READONLY 342#define __S010 PAGE_SHARED 343#define __S011 PAGE_SHARED 344#define __S100 PAGE_READONLY 345#define __S101 PAGE_READONLY 346#define __S110 PAGE_SHARED 347#define __S111 PAGE_SHARED 348 349/* 350 * Define this to warn about kernel memory accesses that are 351 * done without a 'access_ok(VERIFY_WRITE,..)' 352 */ 353#undef TEST_ACCESS_OK 354 355#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 356#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) 357 358#define pmd_none(x) (!pmd_val(x)) 359#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 360#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS) 361#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0) 362 363#define pmd_page_vaddr(pmd) \ 364 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 365 366#ifndef CONFIG_DISCONTIGMEM 367#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 368#endif 369 370#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 371 372/* 373 * The following only work if pte_present() is true. 374 * Undefined behaviour if not.. 375 */ 376static inline int pte_read(pte_t pte) { return !((pte).pte & _PAGE_SUPER); } 377static inline int pte_exec(pte_t pte) { return !((pte).pte & _PAGE_SUPER); } 378static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; } 379static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; } 380static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); } 381 382static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; } 383static inline pte_t pte_exprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; } 384static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; } 385static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; } 386static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; } 387static inline pte_t pte_mkread(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; } 388static inline pte_t pte_mkexec(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; } 389static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; } 390static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; } 391static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; } 392 393static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 394{ 395 int i = test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); 396 asm volatile("dcf %M0" :: "U"(*ptep)); 397 return i; 398} 399 400static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 401{ 402 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); 403 asm volatile("dcf %M0" :: "U"(*ptep)); 404 return i; 405} 406 407static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 408{ 409 unsigned long x = xchg(&ptep->pte, 0); 410 asm volatile("dcf %M0" :: "U"(*ptep)); 411 return __pte(x); 412} 413 414static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 415{ 416 set_bit(_PAGE_BIT_WP, ptep); 417 asm volatile("dcf %M0" :: "U"(*ptep)); 418} 419 420/* 421 * Macro to mark a page protection value as "uncacheable" 422 */ 423#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE)) 424 425/* 426 * Conversion functions: convert a page and protection to a page entry, 427 * and a page entry and page directory to the page they refer to. 428 */ 429 430#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 431#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE) 432 433/* This takes a physical page address that is used by the remapping functions */ 434#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot) 435 436static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 437{ 438 pte.pte &= _PAGE_CHG_MASK; 439 pte.pte |= pgprot_val(newprot); 440 return pte; 441} 442 443/* to find an entry in a page-table-directory. */ 444#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 445#define pgd_index_k(addr) pgd_index(addr) 446 447/* Find an entry in the bottom-level page table.. */ 448#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 449 450/* 451 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 452 * 453 * this macro returns the index of the entry in the pte page which would 454 * control the given virtual address 455 */ 456#define pte_index(address) \ 457 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 458#define pte_offset_kernel(dir, address) \ 459 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 460 461#if defined(CONFIG_HIGHPTE) 462#define pte_offset_map(dir, address) \ 463 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) 464#define pte_offset_map_nested(dir, address) \ 465 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) 466#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 467#define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1) 468#else 469#define pte_offset_map(dir, address) \ 470 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 471#define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address)) 472#define pte_unmap(pte) do { } while (0) 473#define pte_unmap_nested(pte) do { } while (0) 474#endif 475 476/* 477 * Handle swap and file entries 478 * - the PTE is encoded in the following format: 479 * bit 0: Must be 0 (!_PAGE_PRESENT) 480 * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE) 481 * bits 2-7: Swap type 482 * bits 8-31: Swap offset 483 * bits 2-31: File pgoff 484 */ 485#define __swp_type(x) (((x).val >> 2) & 0x1f) 486#define __swp_offset(x) ((x).val >> 8) 487#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) }) 488#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte }) 489#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 490 491static inline int pte_file(pte_t pte) 492{ 493 return pte.pte & _PAGE_FILE; 494} 495 496#define PTE_FILE_MAX_BITS 29 497 498#define pte_to_pgoff(PTE) ((PTE).pte >> 2) 499#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE) 500 501/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 502#define PageSkip(page) (0) 503#define kern_addr_valid(addr) (1) 504 505#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 506 remap_pfn_range(vma, vaddr, pfn, size, prot) 507 508#define MK_IOSPACE_PFN(space, pfn) (pfn) 509#define GET_IOSPACE(pfn) 0 510#define GET_PFN(pfn) (pfn) 511 512#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 513#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 514#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 515#define __HAVE_ARCH_PTEP_SET_WRPROTECT 516#define __HAVE_ARCH_PTE_SAME 517#include <asm-generic/pgtable.h> 518 519/* 520 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache 521 */ 522static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) 523{ 524 unsigned long ampr; 525 pgd_t *pge = pgd_offset(current->mm, address); 526 pud_t *pue = pud_offset(pge, address); 527 pmd_t *pme = pmd_offset(pue, address); 528 529 ampr = pme->ste[0] & 0xffffff00; 530 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | xAMPRx_V; 531 532 asm volatile("movgs %0,scr0\n" 533 "movgs %0,scr1\n" 534 "movgs %1,dampr4\n" 535 "movgs %1,dampr5\n" 536 : 537 : "r"(address), "r"(ampr) 538 ); 539} 540 541#ifdef CONFIG_PROC_FS 542extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer); 543#endif 544 545extern void __init pgtable_cache_init(void); 546 547#endif /* !__ASSEMBLY__ */ 548#endif /* !CONFIG_MMU */ 549 550#ifndef __ASSEMBLY__ 551extern void __init paging_init(void); 552#endif /* !__ASSEMBLY__ */ 553 554#endif /* _ASM_PGTABLE_H */