at v2.6.19-rc2 3035 lines 82 kB view raw
1/* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7/* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21#include <linux/kernel.h> 22#include <linux/syscalls.h> 23#include <linux/fs.h> 24#include <linux/mm.h> 25#include <linux/percpu.h> 26#include <linux/slab.h> 27#include <linux/smp_lock.h> 28#include <linux/capability.h> 29#include <linux/blkdev.h> 30#include <linux/file.h> 31#include <linux/quotaops.h> 32#include <linux/highmem.h> 33#include <linux/module.h> 34#include <linux/writeback.h> 35#include <linux/hash.h> 36#include <linux/suspend.h> 37#include <linux/buffer_head.h> 38#include <linux/bio.h> 39#include <linux/notifier.h> 40#include <linux/cpu.h> 41#include <linux/bitops.h> 42#include <linux/mpage.h> 43#include <linux/bit_spinlock.h> 44 45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46static void invalidate_bh_lrus(void); 47 48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50inline void 51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52{ 53 bh->b_end_io = handler; 54 bh->b_private = private; 55} 56 57static int sync_buffer(void *word) 58{ 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69} 70 71void fastcall __lock_buffer(struct buffer_head *bh) 72{ 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75} 76EXPORT_SYMBOL(__lock_buffer); 77 78void fastcall unlock_buffer(struct buffer_head *bh) 79{ 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83} 84 85/* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90void __wait_on_buffer(struct buffer_head * bh) 91{ 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93} 94 95static void 96__clear_page_buffers(struct page *page) 97{ 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101} 102 103static void buffer_io_error(struct buffer_head *bh) 104{ 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110} 111 112/* 113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 114 * unlock the buffer. This is what ll_rw_block uses too. 115 */ 116void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 117{ 118 if (uptodate) { 119 set_buffer_uptodate(bh); 120 } else { 121 /* This happens, due to failed READA attempts. */ 122 clear_buffer_uptodate(bh); 123 } 124 unlock_buffer(bh); 125 put_bh(bh); 126} 127 128void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 129{ 130 char b[BDEVNAME_SIZE]; 131 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 136 buffer_io_error(bh); 137 printk(KERN_WARNING "lost page write due to " 138 "I/O error on %s\n", 139 bdevname(bh->b_bdev, b)); 140 } 141 set_buffer_write_io_error(bh); 142 clear_buffer_uptodate(bh); 143 } 144 unlock_buffer(bh); 145 put_bh(bh); 146} 147 148/* 149 * Write out and wait upon all the dirty data associated with a block 150 * device via its mapping. Does not take the superblock lock. 151 */ 152int sync_blockdev(struct block_device *bdev) 153{ 154 int ret = 0; 155 156 if (bdev) 157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 158 return ret; 159} 160EXPORT_SYMBOL(sync_blockdev); 161 162/* 163 * Write out and wait upon all dirty data associated with this 164 * device. Filesystem data as well as the underlying block 165 * device. Takes the superblock lock. 166 */ 167int fsync_bdev(struct block_device *bdev) 168{ 169 struct super_block *sb = get_super(bdev); 170 if (sb) { 171 int res = fsync_super(sb); 172 drop_super(sb); 173 return res; 174 } 175 return sync_blockdev(bdev); 176} 177 178/** 179 * freeze_bdev -- lock a filesystem and force it into a consistent state 180 * @bdev: blockdevice to lock 181 * 182 * This takes the block device bd_mount_mutex to make sure no new mounts 183 * happen on bdev until thaw_bdev() is called. 184 * If a superblock is found on this device, we take the s_umount semaphore 185 * on it to make sure nobody unmounts until the snapshot creation is done. 186 */ 187struct super_block *freeze_bdev(struct block_device *bdev) 188{ 189 struct super_block *sb; 190 191 mutex_lock(&bdev->bd_mount_mutex); 192 sb = get_super(bdev); 193 if (sb && !(sb->s_flags & MS_RDONLY)) { 194 sb->s_frozen = SB_FREEZE_WRITE; 195 smp_wmb(); 196 197 __fsync_super(sb); 198 199 sb->s_frozen = SB_FREEZE_TRANS; 200 smp_wmb(); 201 202 sync_blockdev(sb->s_bdev); 203 204 if (sb->s_op->write_super_lockfs) 205 sb->s_op->write_super_lockfs(sb); 206 } 207 208 sync_blockdev(bdev); 209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 210} 211EXPORT_SYMBOL(freeze_bdev); 212 213/** 214 * thaw_bdev -- unlock filesystem 215 * @bdev: blockdevice to unlock 216 * @sb: associated superblock 217 * 218 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 219 */ 220void thaw_bdev(struct block_device *bdev, struct super_block *sb) 221{ 222 if (sb) { 223 BUG_ON(sb->s_bdev != bdev); 224 225 if (sb->s_op->unlockfs) 226 sb->s_op->unlockfs(sb); 227 sb->s_frozen = SB_UNFROZEN; 228 smp_wmb(); 229 wake_up(&sb->s_wait_unfrozen); 230 drop_super(sb); 231 } 232 233 mutex_unlock(&bdev->bd_mount_mutex); 234} 235EXPORT_SYMBOL(thaw_bdev); 236 237/* 238 * Various filesystems appear to want __find_get_block to be non-blocking. 239 * But it's the page lock which protects the buffers. To get around this, 240 * we get exclusion from try_to_free_buffers with the blockdev mapping's 241 * private_lock. 242 * 243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 244 * may be quite high. This code could TryLock the page, and if that 245 * succeeds, there is no need to take private_lock. (But if 246 * private_lock is contended then so is mapping->tree_lock). 247 */ 248static struct buffer_head * 249__find_get_block_slow(struct block_device *bdev, sector_t block) 250{ 251 struct inode *bd_inode = bdev->bd_inode; 252 struct address_space *bd_mapping = bd_inode->i_mapping; 253 struct buffer_head *ret = NULL; 254 pgoff_t index; 255 struct buffer_head *bh; 256 struct buffer_head *head; 257 struct page *page; 258 int all_mapped = 1; 259 260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 261 page = find_get_page(bd_mapping, index); 262 if (!page) 263 goto out; 264 265 spin_lock(&bd_mapping->private_lock); 266 if (!page_has_buffers(page)) 267 goto out_unlock; 268 head = page_buffers(page); 269 bh = head; 270 do { 271 if (bh->b_blocknr == block) { 272 ret = bh; 273 get_bh(bh); 274 goto out_unlock; 275 } 276 if (!buffer_mapped(bh)) 277 all_mapped = 0; 278 bh = bh->b_this_page; 279 } while (bh != head); 280 281 /* we might be here because some of the buffers on this page are 282 * not mapped. This is due to various races between 283 * file io on the block device and getblk. It gets dealt with 284 * elsewhere, don't buffer_error if we had some unmapped buffers 285 */ 286 if (all_mapped) { 287 printk("__find_get_block_slow() failed. " 288 "block=%llu, b_blocknr=%llu\n", 289 (unsigned long long)block, 290 (unsigned long long)bh->b_blocknr); 291 printk("b_state=0x%08lx, b_size=%zu\n", 292 bh->b_state, bh->b_size); 293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 294 } 295out_unlock: 296 spin_unlock(&bd_mapping->private_lock); 297 page_cache_release(page); 298out: 299 return ret; 300} 301 302/* If invalidate_buffers() will trash dirty buffers, it means some kind 303 of fs corruption is going on. Trashing dirty data always imply losing 304 information that was supposed to be just stored on the physical layer 305 by the user. 306 307 Thus invalidate_buffers in general usage is not allwowed to trash 308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 309 be preserved. These buffers are simply skipped. 310 311 We also skip buffers which are still in use. For example this can 312 happen if a userspace program is reading the block device. 313 314 NOTE: In the case where the user removed a removable-media-disk even if 315 there's still dirty data not synced on disk (due a bug in the device driver 316 or due an error of the user), by not destroying the dirty buffers we could 317 generate corruption also on the next media inserted, thus a parameter is 318 necessary to handle this case in the most safe way possible (trying 319 to not corrupt also the new disk inserted with the data belonging to 320 the old now corrupted disk). Also for the ramdisk the natural thing 321 to do in order to release the ramdisk memory is to destroy dirty buffers. 322 323 These are two special cases. Normal usage imply the device driver 324 to issue a sync on the device (without waiting I/O completion) and 325 then an invalidate_buffers call that doesn't trash dirty buffers. 326 327 For handling cache coherency with the blkdev pagecache the 'update' case 328 is been introduced. It is needed to re-read from disk any pinned 329 buffer. NOTE: re-reading from disk is destructive so we can do it only 330 when we assume nobody is changing the buffercache under our I/O and when 331 we think the disk contains more recent information than the buffercache. 332 The update == 1 pass marks the buffers we need to update, the update == 2 333 pass does the actual I/O. */ 334void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) 335{ 336 struct address_space *mapping = bdev->bd_inode->i_mapping; 337 338 if (mapping->nrpages == 0) 339 return; 340 341 invalidate_bh_lrus(); 342 /* 343 * FIXME: what about destroy_dirty_buffers? 344 * We really want to use invalidate_inode_pages2() for 345 * that, but not until that's cleaned up. 346 */ 347 invalidate_inode_pages(mapping); 348} 349 350/* 351 * Kick pdflush then try to free up some ZONE_NORMAL memory. 352 */ 353static void free_more_memory(void) 354{ 355 struct zone **zones; 356 pg_data_t *pgdat; 357 358 wakeup_pdflush(1024); 359 yield(); 360 361 for_each_online_pgdat(pgdat) { 362 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 363 if (*zones) 364 try_to_free_pages(zones, GFP_NOFS); 365 } 366} 367 368/* 369 * I/O completion handler for block_read_full_page() - pages 370 * which come unlocked at the end of I/O. 371 */ 372static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 373{ 374 unsigned long flags; 375 struct buffer_head *first; 376 struct buffer_head *tmp; 377 struct page *page; 378 int page_uptodate = 1; 379 380 BUG_ON(!buffer_async_read(bh)); 381 382 page = bh->b_page; 383 if (uptodate) { 384 set_buffer_uptodate(bh); 385 } else { 386 clear_buffer_uptodate(bh); 387 if (printk_ratelimit()) 388 buffer_io_error(bh); 389 SetPageError(page); 390 } 391 392 /* 393 * Be _very_ careful from here on. Bad things can happen if 394 * two buffer heads end IO at almost the same time and both 395 * decide that the page is now completely done. 396 */ 397 first = page_buffers(page); 398 local_irq_save(flags); 399 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 400 clear_buffer_async_read(bh); 401 unlock_buffer(bh); 402 tmp = bh; 403 do { 404 if (!buffer_uptodate(tmp)) 405 page_uptodate = 0; 406 if (buffer_async_read(tmp)) { 407 BUG_ON(!buffer_locked(tmp)); 408 goto still_busy; 409 } 410 tmp = tmp->b_this_page; 411 } while (tmp != bh); 412 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 413 local_irq_restore(flags); 414 415 /* 416 * If none of the buffers had errors and they are all 417 * uptodate then we can set the page uptodate. 418 */ 419 if (page_uptodate && !PageError(page)) 420 SetPageUptodate(page); 421 unlock_page(page); 422 return; 423 424still_busy: 425 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 426 local_irq_restore(flags); 427 return; 428} 429 430/* 431 * Completion handler for block_write_full_page() - pages which are unlocked 432 * during I/O, and which have PageWriteback cleared upon I/O completion. 433 */ 434static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 435{ 436 char b[BDEVNAME_SIZE]; 437 unsigned long flags; 438 struct buffer_head *first; 439 struct buffer_head *tmp; 440 struct page *page; 441 442 BUG_ON(!buffer_async_write(bh)); 443 444 page = bh->b_page; 445 if (uptodate) { 446 set_buffer_uptodate(bh); 447 } else { 448 if (printk_ratelimit()) { 449 buffer_io_error(bh); 450 printk(KERN_WARNING "lost page write due to " 451 "I/O error on %s\n", 452 bdevname(bh->b_bdev, b)); 453 } 454 set_bit(AS_EIO, &page->mapping->flags); 455 clear_buffer_uptodate(bh); 456 SetPageError(page); 457 } 458 459 first = page_buffers(page); 460 local_irq_save(flags); 461 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 462 463 clear_buffer_async_write(bh); 464 unlock_buffer(bh); 465 tmp = bh->b_this_page; 466 while (tmp != bh) { 467 if (buffer_async_write(tmp)) { 468 BUG_ON(!buffer_locked(tmp)); 469 goto still_busy; 470 } 471 tmp = tmp->b_this_page; 472 } 473 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 474 local_irq_restore(flags); 475 end_page_writeback(page); 476 return; 477 478still_busy: 479 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 480 local_irq_restore(flags); 481 return; 482} 483 484/* 485 * If a page's buffers are under async readin (end_buffer_async_read 486 * completion) then there is a possibility that another thread of 487 * control could lock one of the buffers after it has completed 488 * but while some of the other buffers have not completed. This 489 * locked buffer would confuse end_buffer_async_read() into not unlocking 490 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 491 * that this buffer is not under async I/O. 492 * 493 * The page comes unlocked when it has no locked buffer_async buffers 494 * left. 495 * 496 * PageLocked prevents anyone starting new async I/O reads any of 497 * the buffers. 498 * 499 * PageWriteback is used to prevent simultaneous writeout of the same 500 * page. 501 * 502 * PageLocked prevents anyone from starting writeback of a page which is 503 * under read I/O (PageWriteback is only ever set against a locked page). 504 */ 505static void mark_buffer_async_read(struct buffer_head *bh) 506{ 507 bh->b_end_io = end_buffer_async_read; 508 set_buffer_async_read(bh); 509} 510 511void mark_buffer_async_write(struct buffer_head *bh) 512{ 513 bh->b_end_io = end_buffer_async_write; 514 set_buffer_async_write(bh); 515} 516EXPORT_SYMBOL(mark_buffer_async_write); 517 518 519/* 520 * fs/buffer.c contains helper functions for buffer-backed address space's 521 * fsync functions. A common requirement for buffer-based filesystems is 522 * that certain data from the backing blockdev needs to be written out for 523 * a successful fsync(). For example, ext2 indirect blocks need to be 524 * written back and waited upon before fsync() returns. 525 * 526 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 527 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 528 * management of a list of dependent buffers at ->i_mapping->private_list. 529 * 530 * Locking is a little subtle: try_to_free_buffers() will remove buffers 531 * from their controlling inode's queue when they are being freed. But 532 * try_to_free_buffers() will be operating against the *blockdev* mapping 533 * at the time, not against the S_ISREG file which depends on those buffers. 534 * So the locking for private_list is via the private_lock in the address_space 535 * which backs the buffers. Which is different from the address_space 536 * against which the buffers are listed. So for a particular address_space, 537 * mapping->private_lock does *not* protect mapping->private_list! In fact, 538 * mapping->private_list will always be protected by the backing blockdev's 539 * ->private_lock. 540 * 541 * Which introduces a requirement: all buffers on an address_space's 542 * ->private_list must be from the same address_space: the blockdev's. 543 * 544 * address_spaces which do not place buffers at ->private_list via these 545 * utility functions are free to use private_lock and private_list for 546 * whatever they want. The only requirement is that list_empty(private_list) 547 * be true at clear_inode() time. 548 * 549 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 550 * filesystems should do that. invalidate_inode_buffers() should just go 551 * BUG_ON(!list_empty). 552 * 553 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 554 * take an address_space, not an inode. And it should be called 555 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 556 * queued up. 557 * 558 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 559 * list if it is already on a list. Because if the buffer is on a list, 560 * it *must* already be on the right one. If not, the filesystem is being 561 * silly. This will save a ton of locking. But first we have to ensure 562 * that buffers are taken *off* the old inode's list when they are freed 563 * (presumably in truncate). That requires careful auditing of all 564 * filesystems (do it inside bforget()). It could also be done by bringing 565 * b_inode back. 566 */ 567 568/* 569 * The buffer's backing address_space's private_lock must be held 570 */ 571static inline void __remove_assoc_queue(struct buffer_head *bh) 572{ 573 list_del_init(&bh->b_assoc_buffers); 574} 575 576int inode_has_buffers(struct inode *inode) 577{ 578 return !list_empty(&inode->i_data.private_list); 579} 580 581/* 582 * osync is designed to support O_SYNC io. It waits synchronously for 583 * all already-submitted IO to complete, but does not queue any new 584 * writes to the disk. 585 * 586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 587 * you dirty the buffers, and then use osync_inode_buffers to wait for 588 * completion. Any other dirty buffers which are not yet queued for 589 * write will not be flushed to disk by the osync. 590 */ 591static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 592{ 593 struct buffer_head *bh; 594 struct list_head *p; 595 int err = 0; 596 597 spin_lock(lock); 598repeat: 599 list_for_each_prev(p, list) { 600 bh = BH_ENTRY(p); 601 if (buffer_locked(bh)) { 602 get_bh(bh); 603 spin_unlock(lock); 604 wait_on_buffer(bh); 605 if (!buffer_uptodate(bh)) 606 err = -EIO; 607 brelse(bh); 608 spin_lock(lock); 609 goto repeat; 610 } 611 } 612 spin_unlock(lock); 613 return err; 614} 615 616/** 617 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 618 * buffers 619 * @mapping: the mapping which wants those buffers written 620 * 621 * Starts I/O against the buffers at mapping->private_list, and waits upon 622 * that I/O. 623 * 624 * Basically, this is a convenience function for fsync(). 625 * @mapping is a file or directory which needs those buffers to be written for 626 * a successful fsync(). 627 */ 628int sync_mapping_buffers(struct address_space *mapping) 629{ 630 struct address_space *buffer_mapping = mapping->assoc_mapping; 631 632 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 633 return 0; 634 635 return fsync_buffers_list(&buffer_mapping->private_lock, 636 &mapping->private_list); 637} 638EXPORT_SYMBOL(sync_mapping_buffers); 639 640/* 641 * Called when we've recently written block `bblock', and it is known that 642 * `bblock' was for a buffer_boundary() buffer. This means that the block at 643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 644 * dirty, schedule it for IO. So that indirects merge nicely with their data. 645 */ 646void write_boundary_block(struct block_device *bdev, 647 sector_t bblock, unsigned blocksize) 648{ 649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 650 if (bh) { 651 if (buffer_dirty(bh)) 652 ll_rw_block(WRITE, 1, &bh); 653 put_bh(bh); 654 } 655} 656 657void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 658{ 659 struct address_space *mapping = inode->i_mapping; 660 struct address_space *buffer_mapping = bh->b_page->mapping; 661 662 mark_buffer_dirty(bh); 663 if (!mapping->assoc_mapping) { 664 mapping->assoc_mapping = buffer_mapping; 665 } else { 666 BUG_ON(mapping->assoc_mapping != buffer_mapping); 667 } 668 if (list_empty(&bh->b_assoc_buffers)) { 669 spin_lock(&buffer_mapping->private_lock); 670 list_move_tail(&bh->b_assoc_buffers, 671 &mapping->private_list); 672 spin_unlock(&buffer_mapping->private_lock); 673 } 674} 675EXPORT_SYMBOL(mark_buffer_dirty_inode); 676 677/* 678 * Add a page to the dirty page list. 679 * 680 * It is a sad fact of life that this function is called from several places 681 * deeply under spinlocking. It may not sleep. 682 * 683 * If the page has buffers, the uptodate buffers are set dirty, to preserve 684 * dirty-state coherency between the page and the buffers. It the page does 685 * not have buffers then when they are later attached they will all be set 686 * dirty. 687 * 688 * The buffers are dirtied before the page is dirtied. There's a small race 689 * window in which a writepage caller may see the page cleanness but not the 690 * buffer dirtiness. That's fine. If this code were to set the page dirty 691 * before the buffers, a concurrent writepage caller could clear the page dirty 692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 693 * page on the dirty page list. 694 * 695 * We use private_lock to lock against try_to_free_buffers while using the 696 * page's buffer list. Also use this to protect against clean buffers being 697 * added to the page after it was set dirty. 698 * 699 * FIXME: may need to call ->reservepage here as well. That's rather up to the 700 * address_space though. 701 */ 702int __set_page_dirty_buffers(struct page *page) 703{ 704 struct address_space * const mapping = page_mapping(page); 705 706 if (unlikely(!mapping)) 707 return !TestSetPageDirty(page); 708 709 spin_lock(&mapping->private_lock); 710 if (page_has_buffers(page)) { 711 struct buffer_head *head = page_buffers(page); 712 struct buffer_head *bh = head; 713 714 do { 715 set_buffer_dirty(bh); 716 bh = bh->b_this_page; 717 } while (bh != head); 718 } 719 spin_unlock(&mapping->private_lock); 720 721 if (!TestSetPageDirty(page)) { 722 write_lock_irq(&mapping->tree_lock); 723 if (page->mapping) { /* Race with truncate? */ 724 if (mapping_cap_account_dirty(mapping)) 725 __inc_zone_page_state(page, NR_FILE_DIRTY); 726 radix_tree_tag_set(&mapping->page_tree, 727 page_index(page), 728 PAGECACHE_TAG_DIRTY); 729 } 730 write_unlock_irq(&mapping->tree_lock); 731 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 732 return 1; 733 } 734 return 0; 735} 736EXPORT_SYMBOL(__set_page_dirty_buffers); 737 738/* 739 * Write out and wait upon a list of buffers. 740 * 741 * We have conflicting pressures: we want to make sure that all 742 * initially dirty buffers get waited on, but that any subsequently 743 * dirtied buffers don't. After all, we don't want fsync to last 744 * forever if somebody is actively writing to the file. 745 * 746 * Do this in two main stages: first we copy dirty buffers to a 747 * temporary inode list, queueing the writes as we go. Then we clean 748 * up, waiting for those writes to complete. 749 * 750 * During this second stage, any subsequent updates to the file may end 751 * up refiling the buffer on the original inode's dirty list again, so 752 * there is a chance we will end up with a buffer queued for write but 753 * not yet completed on that list. So, as a final cleanup we go through 754 * the osync code to catch these locked, dirty buffers without requeuing 755 * any newly dirty buffers for write. 756 */ 757static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 758{ 759 struct buffer_head *bh; 760 struct list_head tmp; 761 int err = 0, err2; 762 763 INIT_LIST_HEAD(&tmp); 764 765 spin_lock(lock); 766 while (!list_empty(list)) { 767 bh = BH_ENTRY(list->next); 768 list_del_init(&bh->b_assoc_buffers); 769 if (buffer_dirty(bh) || buffer_locked(bh)) { 770 list_add(&bh->b_assoc_buffers, &tmp); 771 if (buffer_dirty(bh)) { 772 get_bh(bh); 773 spin_unlock(lock); 774 /* 775 * Ensure any pending I/O completes so that 776 * ll_rw_block() actually writes the current 777 * contents - it is a noop if I/O is still in 778 * flight on potentially older contents. 779 */ 780 ll_rw_block(SWRITE, 1, &bh); 781 brelse(bh); 782 spin_lock(lock); 783 } 784 } 785 } 786 787 while (!list_empty(&tmp)) { 788 bh = BH_ENTRY(tmp.prev); 789 __remove_assoc_queue(bh); 790 get_bh(bh); 791 spin_unlock(lock); 792 wait_on_buffer(bh); 793 if (!buffer_uptodate(bh)) 794 err = -EIO; 795 brelse(bh); 796 spin_lock(lock); 797 } 798 799 spin_unlock(lock); 800 err2 = osync_buffers_list(lock, list); 801 if (err) 802 return err; 803 else 804 return err2; 805} 806 807/* 808 * Invalidate any and all dirty buffers on a given inode. We are 809 * probably unmounting the fs, but that doesn't mean we have already 810 * done a sync(). Just drop the buffers from the inode list. 811 * 812 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 813 * assumes that all the buffers are against the blockdev. Not true 814 * for reiserfs. 815 */ 816void invalidate_inode_buffers(struct inode *inode) 817{ 818 if (inode_has_buffers(inode)) { 819 struct address_space *mapping = &inode->i_data; 820 struct list_head *list = &mapping->private_list; 821 struct address_space *buffer_mapping = mapping->assoc_mapping; 822 823 spin_lock(&buffer_mapping->private_lock); 824 while (!list_empty(list)) 825 __remove_assoc_queue(BH_ENTRY(list->next)); 826 spin_unlock(&buffer_mapping->private_lock); 827 } 828} 829 830/* 831 * Remove any clean buffers from the inode's buffer list. This is called 832 * when we're trying to free the inode itself. Those buffers can pin it. 833 * 834 * Returns true if all buffers were removed. 835 */ 836int remove_inode_buffers(struct inode *inode) 837{ 838 int ret = 1; 839 840 if (inode_has_buffers(inode)) { 841 struct address_space *mapping = &inode->i_data; 842 struct list_head *list = &mapping->private_list; 843 struct address_space *buffer_mapping = mapping->assoc_mapping; 844 845 spin_lock(&buffer_mapping->private_lock); 846 while (!list_empty(list)) { 847 struct buffer_head *bh = BH_ENTRY(list->next); 848 if (buffer_dirty(bh)) { 849 ret = 0; 850 break; 851 } 852 __remove_assoc_queue(bh); 853 } 854 spin_unlock(&buffer_mapping->private_lock); 855 } 856 return ret; 857} 858 859/* 860 * Create the appropriate buffers when given a page for data area and 861 * the size of each buffer.. Use the bh->b_this_page linked list to 862 * follow the buffers created. Return NULL if unable to create more 863 * buffers. 864 * 865 * The retry flag is used to differentiate async IO (paging, swapping) 866 * which may not fail from ordinary buffer allocations. 867 */ 868struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 869 int retry) 870{ 871 struct buffer_head *bh, *head; 872 long offset; 873 874try_again: 875 head = NULL; 876 offset = PAGE_SIZE; 877 while ((offset -= size) >= 0) { 878 bh = alloc_buffer_head(GFP_NOFS); 879 if (!bh) 880 goto no_grow; 881 882 bh->b_bdev = NULL; 883 bh->b_this_page = head; 884 bh->b_blocknr = -1; 885 head = bh; 886 887 bh->b_state = 0; 888 atomic_set(&bh->b_count, 0); 889 bh->b_private = NULL; 890 bh->b_size = size; 891 892 /* Link the buffer to its page */ 893 set_bh_page(bh, page, offset); 894 895 init_buffer(bh, NULL, NULL); 896 } 897 return head; 898/* 899 * In case anything failed, we just free everything we got. 900 */ 901no_grow: 902 if (head) { 903 do { 904 bh = head; 905 head = head->b_this_page; 906 free_buffer_head(bh); 907 } while (head); 908 } 909 910 /* 911 * Return failure for non-async IO requests. Async IO requests 912 * are not allowed to fail, so we have to wait until buffer heads 913 * become available. But we don't want tasks sleeping with 914 * partially complete buffers, so all were released above. 915 */ 916 if (!retry) 917 return NULL; 918 919 /* We're _really_ low on memory. Now we just 920 * wait for old buffer heads to become free due to 921 * finishing IO. Since this is an async request and 922 * the reserve list is empty, we're sure there are 923 * async buffer heads in use. 924 */ 925 free_more_memory(); 926 goto try_again; 927} 928EXPORT_SYMBOL_GPL(alloc_page_buffers); 929 930static inline void 931link_dev_buffers(struct page *page, struct buffer_head *head) 932{ 933 struct buffer_head *bh, *tail; 934 935 bh = head; 936 do { 937 tail = bh; 938 bh = bh->b_this_page; 939 } while (bh); 940 tail->b_this_page = head; 941 attach_page_buffers(page, head); 942} 943 944/* 945 * Initialise the state of a blockdev page's buffers. 946 */ 947static void 948init_page_buffers(struct page *page, struct block_device *bdev, 949 sector_t block, int size) 950{ 951 struct buffer_head *head = page_buffers(page); 952 struct buffer_head *bh = head; 953 int uptodate = PageUptodate(page); 954 955 do { 956 if (!buffer_mapped(bh)) { 957 init_buffer(bh, NULL, NULL); 958 bh->b_bdev = bdev; 959 bh->b_blocknr = block; 960 if (uptodate) 961 set_buffer_uptodate(bh); 962 set_buffer_mapped(bh); 963 } 964 block++; 965 bh = bh->b_this_page; 966 } while (bh != head); 967} 968 969/* 970 * Create the page-cache page that contains the requested block. 971 * 972 * This is user purely for blockdev mappings. 973 */ 974static struct page * 975grow_dev_page(struct block_device *bdev, sector_t block, 976 pgoff_t index, int size) 977{ 978 struct inode *inode = bdev->bd_inode; 979 struct page *page; 980 struct buffer_head *bh; 981 982 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 983 if (!page) 984 return NULL; 985 986 BUG_ON(!PageLocked(page)); 987 988 if (page_has_buffers(page)) { 989 bh = page_buffers(page); 990 if (bh->b_size == size) { 991 init_page_buffers(page, bdev, block, size); 992 return page; 993 } 994 if (!try_to_free_buffers(page)) 995 goto failed; 996 } 997 998 /* 999 * Allocate some buffers for this page 1000 */ 1001 bh = alloc_page_buffers(page, size, 0); 1002 if (!bh) 1003 goto failed; 1004 1005 /* 1006 * Link the page to the buffers and initialise them. Take the 1007 * lock to be atomic wrt __find_get_block(), which does not 1008 * run under the page lock. 1009 */ 1010 spin_lock(&inode->i_mapping->private_lock); 1011 link_dev_buffers(page, bh); 1012 init_page_buffers(page, bdev, block, size); 1013 spin_unlock(&inode->i_mapping->private_lock); 1014 return page; 1015 1016failed: 1017 BUG(); 1018 unlock_page(page); 1019 page_cache_release(page); 1020 return NULL; 1021} 1022 1023/* 1024 * Create buffers for the specified block device block's page. If 1025 * that page was dirty, the buffers are set dirty also. 1026 * 1027 * Except that's a bug. Attaching dirty buffers to a dirty 1028 * blockdev's page can result in filesystem corruption, because 1029 * some of those buffers may be aliases of filesystem data. 1030 * grow_dev_page() will go BUG() if this happens. 1031 */ 1032static int 1033grow_buffers(struct block_device *bdev, sector_t block, int size) 1034{ 1035 struct page *page; 1036 pgoff_t index; 1037 int sizebits; 1038 1039 sizebits = -1; 1040 do { 1041 sizebits++; 1042 } while ((size << sizebits) < PAGE_SIZE); 1043 1044 index = block >> sizebits; 1045 1046 /* 1047 * Check for a block which wants to lie outside our maximum possible 1048 * pagecache index. (this comparison is done using sector_t types). 1049 */ 1050 if (unlikely(index != block >> sizebits)) { 1051 char b[BDEVNAME_SIZE]; 1052 1053 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1054 "device %s\n", 1055 __FUNCTION__, (unsigned long long)block, 1056 bdevname(bdev, b)); 1057 return -EIO; 1058 } 1059 block = index << sizebits; 1060 /* Create a page with the proper size buffers.. */ 1061 page = grow_dev_page(bdev, block, index, size); 1062 if (!page) 1063 return 0; 1064 unlock_page(page); 1065 page_cache_release(page); 1066 return 1; 1067} 1068 1069static struct buffer_head * 1070__getblk_slow(struct block_device *bdev, sector_t block, int size) 1071{ 1072 /* Size must be multiple of hard sectorsize */ 1073 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1074 (size < 512 || size > PAGE_SIZE))) { 1075 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1076 size); 1077 printk(KERN_ERR "hardsect size: %d\n", 1078 bdev_hardsect_size(bdev)); 1079 1080 dump_stack(); 1081 return NULL; 1082 } 1083 1084 for (;;) { 1085 struct buffer_head * bh; 1086 int ret; 1087 1088 bh = __find_get_block(bdev, block, size); 1089 if (bh) 1090 return bh; 1091 1092 ret = grow_buffers(bdev, block, size); 1093 if (ret < 0) 1094 return NULL; 1095 if (ret == 0) 1096 free_more_memory(); 1097 } 1098} 1099 1100/* 1101 * The relationship between dirty buffers and dirty pages: 1102 * 1103 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1104 * the page is tagged dirty in its radix tree. 1105 * 1106 * At all times, the dirtiness of the buffers represents the dirtiness of 1107 * subsections of the page. If the page has buffers, the page dirty bit is 1108 * merely a hint about the true dirty state. 1109 * 1110 * When a page is set dirty in its entirety, all its buffers are marked dirty 1111 * (if the page has buffers). 1112 * 1113 * When a buffer is marked dirty, its page is dirtied, but the page's other 1114 * buffers are not. 1115 * 1116 * Also. When blockdev buffers are explicitly read with bread(), they 1117 * individually become uptodate. But their backing page remains not 1118 * uptodate - even if all of its buffers are uptodate. A subsequent 1119 * block_read_full_page() against that page will discover all the uptodate 1120 * buffers, will set the page uptodate and will perform no I/O. 1121 */ 1122 1123/** 1124 * mark_buffer_dirty - mark a buffer_head as needing writeout 1125 * @bh: the buffer_head to mark dirty 1126 * 1127 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1128 * backing page dirty, then tag the page as dirty in its address_space's radix 1129 * tree and then attach the address_space's inode to its superblock's dirty 1130 * inode list. 1131 * 1132 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1133 * mapping->tree_lock and the global inode_lock. 1134 */ 1135void fastcall mark_buffer_dirty(struct buffer_head *bh) 1136{ 1137 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1138 __set_page_dirty_nobuffers(bh->b_page); 1139} 1140 1141/* 1142 * Decrement a buffer_head's reference count. If all buffers against a page 1143 * have zero reference count, are clean and unlocked, and if the page is clean 1144 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1145 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1146 * a page but it ends up not being freed, and buffers may later be reattached). 1147 */ 1148void __brelse(struct buffer_head * buf) 1149{ 1150 if (atomic_read(&buf->b_count)) { 1151 put_bh(buf); 1152 return; 1153 } 1154 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1155 WARN_ON(1); 1156} 1157 1158/* 1159 * bforget() is like brelse(), except it discards any 1160 * potentially dirty data. 1161 */ 1162void __bforget(struct buffer_head *bh) 1163{ 1164 clear_buffer_dirty(bh); 1165 if (!list_empty(&bh->b_assoc_buffers)) { 1166 struct address_space *buffer_mapping = bh->b_page->mapping; 1167 1168 spin_lock(&buffer_mapping->private_lock); 1169 list_del_init(&bh->b_assoc_buffers); 1170 spin_unlock(&buffer_mapping->private_lock); 1171 } 1172 __brelse(bh); 1173} 1174 1175static struct buffer_head *__bread_slow(struct buffer_head *bh) 1176{ 1177 lock_buffer(bh); 1178 if (buffer_uptodate(bh)) { 1179 unlock_buffer(bh); 1180 return bh; 1181 } else { 1182 get_bh(bh); 1183 bh->b_end_io = end_buffer_read_sync; 1184 submit_bh(READ, bh); 1185 wait_on_buffer(bh); 1186 if (buffer_uptodate(bh)) 1187 return bh; 1188 } 1189 brelse(bh); 1190 return NULL; 1191} 1192 1193/* 1194 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1195 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1196 * refcount elevated by one when they're in an LRU. A buffer can only appear 1197 * once in a particular CPU's LRU. A single buffer can be present in multiple 1198 * CPU's LRUs at the same time. 1199 * 1200 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1201 * sb_find_get_block(). 1202 * 1203 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1204 * a local interrupt disable for that. 1205 */ 1206 1207#define BH_LRU_SIZE 8 1208 1209struct bh_lru { 1210 struct buffer_head *bhs[BH_LRU_SIZE]; 1211}; 1212 1213static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1214 1215#ifdef CONFIG_SMP 1216#define bh_lru_lock() local_irq_disable() 1217#define bh_lru_unlock() local_irq_enable() 1218#else 1219#define bh_lru_lock() preempt_disable() 1220#define bh_lru_unlock() preempt_enable() 1221#endif 1222 1223static inline void check_irqs_on(void) 1224{ 1225#ifdef irqs_disabled 1226 BUG_ON(irqs_disabled()); 1227#endif 1228} 1229 1230/* 1231 * The LRU management algorithm is dopey-but-simple. Sorry. 1232 */ 1233static void bh_lru_install(struct buffer_head *bh) 1234{ 1235 struct buffer_head *evictee = NULL; 1236 struct bh_lru *lru; 1237 1238 check_irqs_on(); 1239 bh_lru_lock(); 1240 lru = &__get_cpu_var(bh_lrus); 1241 if (lru->bhs[0] != bh) { 1242 struct buffer_head *bhs[BH_LRU_SIZE]; 1243 int in; 1244 int out = 0; 1245 1246 get_bh(bh); 1247 bhs[out++] = bh; 1248 for (in = 0; in < BH_LRU_SIZE; in++) { 1249 struct buffer_head *bh2 = lru->bhs[in]; 1250 1251 if (bh2 == bh) { 1252 __brelse(bh2); 1253 } else { 1254 if (out >= BH_LRU_SIZE) { 1255 BUG_ON(evictee != NULL); 1256 evictee = bh2; 1257 } else { 1258 bhs[out++] = bh2; 1259 } 1260 } 1261 } 1262 while (out < BH_LRU_SIZE) 1263 bhs[out++] = NULL; 1264 memcpy(lru->bhs, bhs, sizeof(bhs)); 1265 } 1266 bh_lru_unlock(); 1267 1268 if (evictee) 1269 __brelse(evictee); 1270} 1271 1272/* 1273 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1274 */ 1275static struct buffer_head * 1276lookup_bh_lru(struct block_device *bdev, sector_t block, int size) 1277{ 1278 struct buffer_head *ret = NULL; 1279 struct bh_lru *lru; 1280 int i; 1281 1282 check_irqs_on(); 1283 bh_lru_lock(); 1284 lru = &__get_cpu_var(bh_lrus); 1285 for (i = 0; i < BH_LRU_SIZE; i++) { 1286 struct buffer_head *bh = lru->bhs[i]; 1287 1288 if (bh && bh->b_bdev == bdev && 1289 bh->b_blocknr == block && bh->b_size == size) { 1290 if (i) { 1291 while (i) { 1292 lru->bhs[i] = lru->bhs[i - 1]; 1293 i--; 1294 } 1295 lru->bhs[0] = bh; 1296 } 1297 get_bh(bh); 1298 ret = bh; 1299 break; 1300 } 1301 } 1302 bh_lru_unlock(); 1303 return ret; 1304} 1305 1306/* 1307 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1308 * it in the LRU and mark it as accessed. If it is not present then return 1309 * NULL 1310 */ 1311struct buffer_head * 1312__find_get_block(struct block_device *bdev, sector_t block, int size) 1313{ 1314 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1315 1316 if (bh == NULL) { 1317 bh = __find_get_block_slow(bdev, block); 1318 if (bh) 1319 bh_lru_install(bh); 1320 } 1321 if (bh) 1322 touch_buffer(bh); 1323 return bh; 1324} 1325EXPORT_SYMBOL(__find_get_block); 1326 1327/* 1328 * __getblk will locate (and, if necessary, create) the buffer_head 1329 * which corresponds to the passed block_device, block and size. The 1330 * returned buffer has its reference count incremented. 1331 * 1332 * __getblk() cannot fail - it just keeps trying. If you pass it an 1333 * illegal block number, __getblk() will happily return a buffer_head 1334 * which represents the non-existent block. Very weird. 1335 * 1336 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1337 * attempt is failing. FIXME, perhaps? 1338 */ 1339struct buffer_head * 1340__getblk(struct block_device *bdev, sector_t block, int size) 1341{ 1342 struct buffer_head *bh = __find_get_block(bdev, block, size); 1343 1344 might_sleep(); 1345 if (bh == NULL) 1346 bh = __getblk_slow(bdev, block, size); 1347 return bh; 1348} 1349EXPORT_SYMBOL(__getblk); 1350 1351/* 1352 * Do async read-ahead on a buffer.. 1353 */ 1354void __breadahead(struct block_device *bdev, sector_t block, int size) 1355{ 1356 struct buffer_head *bh = __getblk(bdev, block, size); 1357 if (likely(bh)) { 1358 ll_rw_block(READA, 1, &bh); 1359 brelse(bh); 1360 } 1361} 1362EXPORT_SYMBOL(__breadahead); 1363 1364/** 1365 * __bread() - reads a specified block and returns the bh 1366 * @bdev: the block_device to read from 1367 * @block: number of block 1368 * @size: size (in bytes) to read 1369 * 1370 * Reads a specified block, and returns buffer head that contains it. 1371 * It returns NULL if the block was unreadable. 1372 */ 1373struct buffer_head * 1374__bread(struct block_device *bdev, sector_t block, int size) 1375{ 1376 struct buffer_head *bh = __getblk(bdev, block, size); 1377 1378 if (likely(bh) && !buffer_uptodate(bh)) 1379 bh = __bread_slow(bh); 1380 return bh; 1381} 1382EXPORT_SYMBOL(__bread); 1383 1384/* 1385 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1386 * This doesn't race because it runs in each cpu either in irq 1387 * or with preempt disabled. 1388 */ 1389static void invalidate_bh_lru(void *arg) 1390{ 1391 struct bh_lru *b = &get_cpu_var(bh_lrus); 1392 int i; 1393 1394 for (i = 0; i < BH_LRU_SIZE; i++) { 1395 brelse(b->bhs[i]); 1396 b->bhs[i] = NULL; 1397 } 1398 put_cpu_var(bh_lrus); 1399} 1400 1401static void invalidate_bh_lrus(void) 1402{ 1403 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1404} 1405 1406void set_bh_page(struct buffer_head *bh, 1407 struct page *page, unsigned long offset) 1408{ 1409 bh->b_page = page; 1410 BUG_ON(offset >= PAGE_SIZE); 1411 if (PageHighMem(page)) 1412 /* 1413 * This catches illegal uses and preserves the offset: 1414 */ 1415 bh->b_data = (char *)(0 + offset); 1416 else 1417 bh->b_data = page_address(page) + offset; 1418} 1419EXPORT_SYMBOL(set_bh_page); 1420 1421/* 1422 * Called when truncating a buffer on a page completely. 1423 */ 1424static void discard_buffer(struct buffer_head * bh) 1425{ 1426 lock_buffer(bh); 1427 clear_buffer_dirty(bh); 1428 bh->b_bdev = NULL; 1429 clear_buffer_mapped(bh); 1430 clear_buffer_req(bh); 1431 clear_buffer_new(bh); 1432 clear_buffer_delay(bh); 1433 unlock_buffer(bh); 1434} 1435 1436/** 1437 * block_invalidatepage - invalidate part of all of a buffer-backed page 1438 * 1439 * @page: the page which is affected 1440 * @offset: the index of the truncation point 1441 * 1442 * block_invalidatepage() is called when all or part of the page has become 1443 * invalidatedby a truncate operation. 1444 * 1445 * block_invalidatepage() does not have to release all buffers, but it must 1446 * ensure that no dirty buffer is left outside @offset and that no I/O 1447 * is underway against any of the blocks which are outside the truncation 1448 * point. Because the caller is about to free (and possibly reuse) those 1449 * blocks on-disk. 1450 */ 1451void block_invalidatepage(struct page *page, unsigned long offset) 1452{ 1453 struct buffer_head *head, *bh, *next; 1454 unsigned int curr_off = 0; 1455 1456 BUG_ON(!PageLocked(page)); 1457 if (!page_has_buffers(page)) 1458 goto out; 1459 1460 head = page_buffers(page); 1461 bh = head; 1462 do { 1463 unsigned int next_off = curr_off + bh->b_size; 1464 next = bh->b_this_page; 1465 1466 /* 1467 * is this block fully invalidated? 1468 */ 1469 if (offset <= curr_off) 1470 discard_buffer(bh); 1471 curr_off = next_off; 1472 bh = next; 1473 } while (bh != head); 1474 1475 /* 1476 * We release buffers only if the entire page is being invalidated. 1477 * The get_block cached value has been unconditionally invalidated, 1478 * so real IO is not possible anymore. 1479 */ 1480 if (offset == 0) 1481 try_to_release_page(page, 0); 1482out: 1483 return; 1484} 1485EXPORT_SYMBOL(block_invalidatepage); 1486 1487/* 1488 * We attach and possibly dirty the buffers atomically wrt 1489 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1490 * is already excluded via the page lock. 1491 */ 1492void create_empty_buffers(struct page *page, 1493 unsigned long blocksize, unsigned long b_state) 1494{ 1495 struct buffer_head *bh, *head, *tail; 1496 1497 head = alloc_page_buffers(page, blocksize, 1); 1498 bh = head; 1499 do { 1500 bh->b_state |= b_state; 1501 tail = bh; 1502 bh = bh->b_this_page; 1503 } while (bh); 1504 tail->b_this_page = head; 1505 1506 spin_lock(&page->mapping->private_lock); 1507 if (PageUptodate(page) || PageDirty(page)) { 1508 bh = head; 1509 do { 1510 if (PageDirty(page)) 1511 set_buffer_dirty(bh); 1512 if (PageUptodate(page)) 1513 set_buffer_uptodate(bh); 1514 bh = bh->b_this_page; 1515 } while (bh != head); 1516 } 1517 attach_page_buffers(page, head); 1518 spin_unlock(&page->mapping->private_lock); 1519} 1520EXPORT_SYMBOL(create_empty_buffers); 1521 1522/* 1523 * We are taking a block for data and we don't want any output from any 1524 * buffer-cache aliases starting from return from that function and 1525 * until the moment when something will explicitly mark the buffer 1526 * dirty (hopefully that will not happen until we will free that block ;-) 1527 * We don't even need to mark it not-uptodate - nobody can expect 1528 * anything from a newly allocated buffer anyway. We used to used 1529 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1530 * don't want to mark the alias unmapped, for example - it would confuse 1531 * anyone who might pick it with bread() afterwards... 1532 * 1533 * Also.. Note that bforget() doesn't lock the buffer. So there can 1534 * be writeout I/O going on against recently-freed buffers. We don't 1535 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1536 * only if we really need to. That happens here. 1537 */ 1538void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1539{ 1540 struct buffer_head *old_bh; 1541 1542 might_sleep(); 1543 1544 old_bh = __find_get_block_slow(bdev, block); 1545 if (old_bh) { 1546 clear_buffer_dirty(old_bh); 1547 wait_on_buffer(old_bh); 1548 clear_buffer_req(old_bh); 1549 __brelse(old_bh); 1550 } 1551} 1552EXPORT_SYMBOL(unmap_underlying_metadata); 1553 1554/* 1555 * NOTE! All mapped/uptodate combinations are valid: 1556 * 1557 * Mapped Uptodate Meaning 1558 * 1559 * No No "unknown" - must do get_block() 1560 * No Yes "hole" - zero-filled 1561 * Yes No "allocated" - allocated on disk, not read in 1562 * Yes Yes "valid" - allocated and up-to-date in memory. 1563 * 1564 * "Dirty" is valid only with the last case (mapped+uptodate). 1565 */ 1566 1567/* 1568 * While block_write_full_page is writing back the dirty buffers under 1569 * the page lock, whoever dirtied the buffers may decide to clean them 1570 * again at any time. We handle that by only looking at the buffer 1571 * state inside lock_buffer(). 1572 * 1573 * If block_write_full_page() is called for regular writeback 1574 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1575 * locked buffer. This only can happen if someone has written the buffer 1576 * directly, with submit_bh(). At the address_space level PageWriteback 1577 * prevents this contention from occurring. 1578 */ 1579static int __block_write_full_page(struct inode *inode, struct page *page, 1580 get_block_t *get_block, struct writeback_control *wbc) 1581{ 1582 int err; 1583 sector_t block; 1584 sector_t last_block; 1585 struct buffer_head *bh, *head; 1586 const unsigned blocksize = 1 << inode->i_blkbits; 1587 int nr_underway = 0; 1588 1589 BUG_ON(!PageLocked(page)); 1590 1591 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1592 1593 if (!page_has_buffers(page)) { 1594 create_empty_buffers(page, blocksize, 1595 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1596 } 1597 1598 /* 1599 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1600 * here, and the (potentially unmapped) buffers may become dirty at 1601 * any time. If a buffer becomes dirty here after we've inspected it 1602 * then we just miss that fact, and the page stays dirty. 1603 * 1604 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1605 * handle that here by just cleaning them. 1606 */ 1607 1608 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1609 head = page_buffers(page); 1610 bh = head; 1611 1612 /* 1613 * Get all the dirty buffers mapped to disk addresses and 1614 * handle any aliases from the underlying blockdev's mapping. 1615 */ 1616 do { 1617 if (block > last_block) { 1618 /* 1619 * mapped buffers outside i_size will occur, because 1620 * this page can be outside i_size when there is a 1621 * truncate in progress. 1622 */ 1623 /* 1624 * The buffer was zeroed by block_write_full_page() 1625 */ 1626 clear_buffer_dirty(bh); 1627 set_buffer_uptodate(bh); 1628 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1629 WARN_ON(bh->b_size != blocksize); 1630 err = get_block(inode, block, bh, 1); 1631 if (err) 1632 goto recover; 1633 if (buffer_new(bh)) { 1634 /* blockdev mappings never come here */ 1635 clear_buffer_new(bh); 1636 unmap_underlying_metadata(bh->b_bdev, 1637 bh->b_blocknr); 1638 } 1639 } 1640 bh = bh->b_this_page; 1641 block++; 1642 } while (bh != head); 1643 1644 do { 1645 if (!buffer_mapped(bh)) 1646 continue; 1647 /* 1648 * If it's a fully non-blocking write attempt and we cannot 1649 * lock the buffer then redirty the page. Note that this can 1650 * potentially cause a busy-wait loop from pdflush and kswapd 1651 * activity, but those code paths have their own higher-level 1652 * throttling. 1653 */ 1654 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1655 lock_buffer(bh); 1656 } else if (test_set_buffer_locked(bh)) { 1657 redirty_page_for_writepage(wbc, page); 1658 continue; 1659 } 1660 if (test_clear_buffer_dirty(bh)) { 1661 mark_buffer_async_write(bh); 1662 } else { 1663 unlock_buffer(bh); 1664 } 1665 } while ((bh = bh->b_this_page) != head); 1666 1667 /* 1668 * The page and its buffers are protected by PageWriteback(), so we can 1669 * drop the bh refcounts early. 1670 */ 1671 BUG_ON(PageWriteback(page)); 1672 set_page_writeback(page); 1673 1674 do { 1675 struct buffer_head *next = bh->b_this_page; 1676 if (buffer_async_write(bh)) { 1677 submit_bh(WRITE, bh); 1678 nr_underway++; 1679 } 1680 bh = next; 1681 } while (bh != head); 1682 unlock_page(page); 1683 1684 err = 0; 1685done: 1686 if (nr_underway == 0) { 1687 /* 1688 * The page was marked dirty, but the buffers were 1689 * clean. Someone wrote them back by hand with 1690 * ll_rw_block/submit_bh. A rare case. 1691 */ 1692 int uptodate = 1; 1693 do { 1694 if (!buffer_uptodate(bh)) { 1695 uptodate = 0; 1696 break; 1697 } 1698 bh = bh->b_this_page; 1699 } while (bh != head); 1700 if (uptodate) 1701 SetPageUptodate(page); 1702 end_page_writeback(page); 1703 /* 1704 * The page and buffer_heads can be released at any time from 1705 * here on. 1706 */ 1707 wbc->pages_skipped++; /* We didn't write this page */ 1708 } 1709 return err; 1710 1711recover: 1712 /* 1713 * ENOSPC, or some other error. We may already have added some 1714 * blocks to the file, so we need to write these out to avoid 1715 * exposing stale data. 1716 * The page is currently locked and not marked for writeback 1717 */ 1718 bh = head; 1719 /* Recovery: lock and submit the mapped buffers */ 1720 do { 1721 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1722 lock_buffer(bh); 1723 mark_buffer_async_write(bh); 1724 } else { 1725 /* 1726 * The buffer may have been set dirty during 1727 * attachment to a dirty page. 1728 */ 1729 clear_buffer_dirty(bh); 1730 } 1731 } while ((bh = bh->b_this_page) != head); 1732 SetPageError(page); 1733 BUG_ON(PageWriteback(page)); 1734 set_page_writeback(page); 1735 unlock_page(page); 1736 do { 1737 struct buffer_head *next = bh->b_this_page; 1738 if (buffer_async_write(bh)) { 1739 clear_buffer_dirty(bh); 1740 submit_bh(WRITE, bh); 1741 nr_underway++; 1742 } 1743 bh = next; 1744 } while (bh != head); 1745 goto done; 1746} 1747 1748static int __block_prepare_write(struct inode *inode, struct page *page, 1749 unsigned from, unsigned to, get_block_t *get_block) 1750{ 1751 unsigned block_start, block_end; 1752 sector_t block; 1753 int err = 0; 1754 unsigned blocksize, bbits; 1755 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1756 1757 BUG_ON(!PageLocked(page)); 1758 BUG_ON(from > PAGE_CACHE_SIZE); 1759 BUG_ON(to > PAGE_CACHE_SIZE); 1760 BUG_ON(from > to); 1761 1762 blocksize = 1 << inode->i_blkbits; 1763 if (!page_has_buffers(page)) 1764 create_empty_buffers(page, blocksize, 0); 1765 head = page_buffers(page); 1766 1767 bbits = inode->i_blkbits; 1768 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1769 1770 for(bh = head, block_start = 0; bh != head || !block_start; 1771 block++, block_start=block_end, bh = bh->b_this_page) { 1772 block_end = block_start + blocksize; 1773 if (block_end <= from || block_start >= to) { 1774 if (PageUptodate(page)) { 1775 if (!buffer_uptodate(bh)) 1776 set_buffer_uptodate(bh); 1777 } 1778 continue; 1779 } 1780 if (buffer_new(bh)) 1781 clear_buffer_new(bh); 1782 if (!buffer_mapped(bh)) { 1783 WARN_ON(bh->b_size != blocksize); 1784 err = get_block(inode, block, bh, 1); 1785 if (err) 1786 break; 1787 if (buffer_new(bh)) { 1788 unmap_underlying_metadata(bh->b_bdev, 1789 bh->b_blocknr); 1790 if (PageUptodate(page)) { 1791 set_buffer_uptodate(bh); 1792 continue; 1793 } 1794 if (block_end > to || block_start < from) { 1795 void *kaddr; 1796 1797 kaddr = kmap_atomic(page, KM_USER0); 1798 if (block_end > to) 1799 memset(kaddr+to, 0, 1800 block_end-to); 1801 if (block_start < from) 1802 memset(kaddr+block_start, 1803 0, from-block_start); 1804 flush_dcache_page(page); 1805 kunmap_atomic(kaddr, KM_USER0); 1806 } 1807 continue; 1808 } 1809 } 1810 if (PageUptodate(page)) { 1811 if (!buffer_uptodate(bh)) 1812 set_buffer_uptodate(bh); 1813 continue; 1814 } 1815 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1816 (block_start < from || block_end > to)) { 1817 ll_rw_block(READ, 1, &bh); 1818 *wait_bh++=bh; 1819 } 1820 } 1821 /* 1822 * If we issued read requests - let them complete. 1823 */ 1824 while(wait_bh > wait) { 1825 wait_on_buffer(*--wait_bh); 1826 if (!buffer_uptodate(*wait_bh)) 1827 err = -EIO; 1828 } 1829 if (!err) { 1830 bh = head; 1831 do { 1832 if (buffer_new(bh)) 1833 clear_buffer_new(bh); 1834 } while ((bh = bh->b_this_page) != head); 1835 return 0; 1836 } 1837 /* Error case: */ 1838 /* 1839 * Zero out any newly allocated blocks to avoid exposing stale 1840 * data. If BH_New is set, we know that the block was newly 1841 * allocated in the above loop. 1842 */ 1843 bh = head; 1844 block_start = 0; 1845 do { 1846 block_end = block_start+blocksize; 1847 if (block_end <= from) 1848 goto next_bh; 1849 if (block_start >= to) 1850 break; 1851 if (buffer_new(bh)) { 1852 void *kaddr; 1853 1854 clear_buffer_new(bh); 1855 kaddr = kmap_atomic(page, KM_USER0); 1856 memset(kaddr+block_start, 0, bh->b_size); 1857 flush_dcache_page(page); 1858 kunmap_atomic(kaddr, KM_USER0); 1859 set_buffer_uptodate(bh); 1860 mark_buffer_dirty(bh); 1861 } 1862next_bh: 1863 block_start = block_end; 1864 bh = bh->b_this_page; 1865 } while (bh != head); 1866 return err; 1867} 1868 1869static int __block_commit_write(struct inode *inode, struct page *page, 1870 unsigned from, unsigned to) 1871{ 1872 unsigned block_start, block_end; 1873 int partial = 0; 1874 unsigned blocksize; 1875 struct buffer_head *bh, *head; 1876 1877 blocksize = 1 << inode->i_blkbits; 1878 1879 for(bh = head = page_buffers(page), block_start = 0; 1880 bh != head || !block_start; 1881 block_start=block_end, bh = bh->b_this_page) { 1882 block_end = block_start + blocksize; 1883 if (block_end <= from || block_start >= to) { 1884 if (!buffer_uptodate(bh)) 1885 partial = 1; 1886 } else { 1887 set_buffer_uptodate(bh); 1888 mark_buffer_dirty(bh); 1889 } 1890 } 1891 1892 /* 1893 * If this is a partial write which happened to make all buffers 1894 * uptodate then we can optimize away a bogus readpage() for 1895 * the next read(). Here we 'discover' whether the page went 1896 * uptodate as a result of this (potentially partial) write. 1897 */ 1898 if (!partial) 1899 SetPageUptodate(page); 1900 return 0; 1901} 1902 1903/* 1904 * Generic "read page" function for block devices that have the normal 1905 * get_block functionality. This is most of the block device filesystems. 1906 * Reads the page asynchronously --- the unlock_buffer() and 1907 * set/clear_buffer_uptodate() functions propagate buffer state into the 1908 * page struct once IO has completed. 1909 */ 1910int block_read_full_page(struct page *page, get_block_t *get_block) 1911{ 1912 struct inode *inode = page->mapping->host; 1913 sector_t iblock, lblock; 1914 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 1915 unsigned int blocksize; 1916 int nr, i; 1917 int fully_mapped = 1; 1918 1919 BUG_ON(!PageLocked(page)); 1920 blocksize = 1 << inode->i_blkbits; 1921 if (!page_has_buffers(page)) 1922 create_empty_buffers(page, blocksize, 0); 1923 head = page_buffers(page); 1924 1925 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1926 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 1927 bh = head; 1928 nr = 0; 1929 i = 0; 1930 1931 do { 1932 if (buffer_uptodate(bh)) 1933 continue; 1934 1935 if (!buffer_mapped(bh)) { 1936 int err = 0; 1937 1938 fully_mapped = 0; 1939 if (iblock < lblock) { 1940 WARN_ON(bh->b_size != blocksize); 1941 err = get_block(inode, iblock, bh, 0); 1942 if (err) 1943 SetPageError(page); 1944 } 1945 if (!buffer_mapped(bh)) { 1946 void *kaddr = kmap_atomic(page, KM_USER0); 1947 memset(kaddr + i * blocksize, 0, blocksize); 1948 flush_dcache_page(page); 1949 kunmap_atomic(kaddr, KM_USER0); 1950 if (!err) 1951 set_buffer_uptodate(bh); 1952 continue; 1953 } 1954 /* 1955 * get_block() might have updated the buffer 1956 * synchronously 1957 */ 1958 if (buffer_uptodate(bh)) 1959 continue; 1960 } 1961 arr[nr++] = bh; 1962 } while (i++, iblock++, (bh = bh->b_this_page) != head); 1963 1964 if (fully_mapped) 1965 SetPageMappedToDisk(page); 1966 1967 if (!nr) { 1968 /* 1969 * All buffers are uptodate - we can set the page uptodate 1970 * as well. But not if get_block() returned an error. 1971 */ 1972 if (!PageError(page)) 1973 SetPageUptodate(page); 1974 unlock_page(page); 1975 return 0; 1976 } 1977 1978 /* Stage two: lock the buffers */ 1979 for (i = 0; i < nr; i++) { 1980 bh = arr[i]; 1981 lock_buffer(bh); 1982 mark_buffer_async_read(bh); 1983 } 1984 1985 /* 1986 * Stage 3: start the IO. Check for uptodateness 1987 * inside the buffer lock in case another process reading 1988 * the underlying blockdev brought it uptodate (the sct fix). 1989 */ 1990 for (i = 0; i < nr; i++) { 1991 bh = arr[i]; 1992 if (buffer_uptodate(bh)) 1993 end_buffer_async_read(bh, 1); 1994 else 1995 submit_bh(READ, bh); 1996 } 1997 return 0; 1998} 1999 2000/* utility function for filesystems that need to do work on expanding 2001 * truncates. Uses prepare/commit_write to allow the filesystem to 2002 * deal with the hole. 2003 */ 2004static int __generic_cont_expand(struct inode *inode, loff_t size, 2005 pgoff_t index, unsigned int offset) 2006{ 2007 struct address_space *mapping = inode->i_mapping; 2008 struct page *page; 2009 unsigned long limit; 2010 int err; 2011 2012 err = -EFBIG; 2013 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2014 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2015 send_sig(SIGXFSZ, current, 0); 2016 goto out; 2017 } 2018 if (size > inode->i_sb->s_maxbytes) 2019 goto out; 2020 2021 err = -ENOMEM; 2022 page = grab_cache_page(mapping, index); 2023 if (!page) 2024 goto out; 2025 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2026 if (err) { 2027 /* 2028 * ->prepare_write() may have instantiated a few blocks 2029 * outside i_size. Trim these off again. 2030 */ 2031 unlock_page(page); 2032 page_cache_release(page); 2033 vmtruncate(inode, inode->i_size); 2034 goto out; 2035 } 2036 2037 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2038 2039 unlock_page(page); 2040 page_cache_release(page); 2041 if (err > 0) 2042 err = 0; 2043out: 2044 return err; 2045} 2046 2047int generic_cont_expand(struct inode *inode, loff_t size) 2048{ 2049 pgoff_t index; 2050 unsigned int offset; 2051 2052 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2053 2054 /* ugh. in prepare/commit_write, if from==to==start of block, we 2055 ** skip the prepare. make sure we never send an offset for the start 2056 ** of a block 2057 */ 2058 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2059 /* caller must handle this extra byte. */ 2060 offset++; 2061 } 2062 index = size >> PAGE_CACHE_SHIFT; 2063 2064 return __generic_cont_expand(inode, size, index, offset); 2065} 2066 2067int generic_cont_expand_simple(struct inode *inode, loff_t size) 2068{ 2069 loff_t pos = size - 1; 2070 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2071 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2072 2073 /* prepare/commit_write can handle even if from==to==start of block. */ 2074 return __generic_cont_expand(inode, size, index, offset); 2075} 2076 2077/* 2078 * For moronic filesystems that do not allow holes in file. 2079 * We may have to extend the file. 2080 */ 2081 2082int cont_prepare_write(struct page *page, unsigned offset, 2083 unsigned to, get_block_t *get_block, loff_t *bytes) 2084{ 2085 struct address_space *mapping = page->mapping; 2086 struct inode *inode = mapping->host; 2087 struct page *new_page; 2088 pgoff_t pgpos; 2089 long status; 2090 unsigned zerofrom; 2091 unsigned blocksize = 1 << inode->i_blkbits; 2092 void *kaddr; 2093 2094 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2095 status = -ENOMEM; 2096 new_page = grab_cache_page(mapping, pgpos); 2097 if (!new_page) 2098 goto out; 2099 /* we might sleep */ 2100 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2101 unlock_page(new_page); 2102 page_cache_release(new_page); 2103 continue; 2104 } 2105 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2106 if (zerofrom & (blocksize-1)) { 2107 *bytes |= (blocksize-1); 2108 (*bytes)++; 2109 } 2110 status = __block_prepare_write(inode, new_page, zerofrom, 2111 PAGE_CACHE_SIZE, get_block); 2112 if (status) 2113 goto out_unmap; 2114 kaddr = kmap_atomic(new_page, KM_USER0); 2115 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2116 flush_dcache_page(new_page); 2117 kunmap_atomic(kaddr, KM_USER0); 2118 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2119 unlock_page(new_page); 2120 page_cache_release(new_page); 2121 } 2122 2123 if (page->index < pgpos) { 2124 /* completely inside the area */ 2125 zerofrom = offset; 2126 } else { 2127 /* page covers the boundary, find the boundary offset */ 2128 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2129 2130 /* if we will expand the thing last block will be filled */ 2131 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2132 *bytes |= (blocksize-1); 2133 (*bytes)++; 2134 } 2135 2136 /* starting below the boundary? Nothing to zero out */ 2137 if (offset <= zerofrom) 2138 zerofrom = offset; 2139 } 2140 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2141 if (status) 2142 goto out1; 2143 if (zerofrom < offset) { 2144 kaddr = kmap_atomic(page, KM_USER0); 2145 memset(kaddr+zerofrom, 0, offset-zerofrom); 2146 flush_dcache_page(page); 2147 kunmap_atomic(kaddr, KM_USER0); 2148 __block_commit_write(inode, page, zerofrom, offset); 2149 } 2150 return 0; 2151out1: 2152 ClearPageUptodate(page); 2153 return status; 2154 2155out_unmap: 2156 ClearPageUptodate(new_page); 2157 unlock_page(new_page); 2158 page_cache_release(new_page); 2159out: 2160 return status; 2161} 2162 2163int block_prepare_write(struct page *page, unsigned from, unsigned to, 2164 get_block_t *get_block) 2165{ 2166 struct inode *inode = page->mapping->host; 2167 int err = __block_prepare_write(inode, page, from, to, get_block); 2168 if (err) 2169 ClearPageUptodate(page); 2170 return err; 2171} 2172 2173int block_commit_write(struct page *page, unsigned from, unsigned to) 2174{ 2175 struct inode *inode = page->mapping->host; 2176 __block_commit_write(inode,page,from,to); 2177 return 0; 2178} 2179 2180int generic_commit_write(struct file *file, struct page *page, 2181 unsigned from, unsigned to) 2182{ 2183 struct inode *inode = page->mapping->host; 2184 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2185 __block_commit_write(inode,page,from,to); 2186 /* 2187 * No need to use i_size_read() here, the i_size 2188 * cannot change under us because we hold i_mutex. 2189 */ 2190 if (pos > inode->i_size) { 2191 i_size_write(inode, pos); 2192 mark_inode_dirty(inode); 2193 } 2194 return 0; 2195} 2196 2197 2198/* 2199 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2200 * immediately, while under the page lock. So it needs a special end_io 2201 * handler which does not touch the bh after unlocking it. 2202 * 2203 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2204 * a race there is benign: unlock_buffer() only use the bh's address for 2205 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2206 * itself. 2207 */ 2208static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2209{ 2210 if (uptodate) { 2211 set_buffer_uptodate(bh); 2212 } else { 2213 /* This happens, due to failed READA attempts. */ 2214 clear_buffer_uptodate(bh); 2215 } 2216 unlock_buffer(bh); 2217} 2218 2219/* 2220 * On entry, the page is fully not uptodate. 2221 * On exit the page is fully uptodate in the areas outside (from,to) 2222 */ 2223int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2224 get_block_t *get_block) 2225{ 2226 struct inode *inode = page->mapping->host; 2227 const unsigned blkbits = inode->i_blkbits; 2228 const unsigned blocksize = 1 << blkbits; 2229 struct buffer_head map_bh; 2230 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2231 unsigned block_in_page; 2232 unsigned block_start; 2233 sector_t block_in_file; 2234 char *kaddr; 2235 int nr_reads = 0; 2236 int i; 2237 int ret = 0; 2238 int is_mapped_to_disk = 1; 2239 int dirtied_it = 0; 2240 2241 if (PageMappedToDisk(page)) 2242 return 0; 2243 2244 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2245 map_bh.b_page = page; 2246 2247 /* 2248 * We loop across all blocks in the page, whether or not they are 2249 * part of the affected region. This is so we can discover if the 2250 * page is fully mapped-to-disk. 2251 */ 2252 for (block_start = 0, block_in_page = 0; 2253 block_start < PAGE_CACHE_SIZE; 2254 block_in_page++, block_start += blocksize) { 2255 unsigned block_end = block_start + blocksize; 2256 int create; 2257 2258 map_bh.b_state = 0; 2259 create = 1; 2260 if (block_start >= to) 2261 create = 0; 2262 map_bh.b_size = blocksize; 2263 ret = get_block(inode, block_in_file + block_in_page, 2264 &map_bh, create); 2265 if (ret) 2266 goto failed; 2267 if (!buffer_mapped(&map_bh)) 2268 is_mapped_to_disk = 0; 2269 if (buffer_new(&map_bh)) 2270 unmap_underlying_metadata(map_bh.b_bdev, 2271 map_bh.b_blocknr); 2272 if (PageUptodate(page)) 2273 continue; 2274 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2275 kaddr = kmap_atomic(page, KM_USER0); 2276 if (block_start < from) { 2277 memset(kaddr+block_start, 0, from-block_start); 2278 dirtied_it = 1; 2279 } 2280 if (block_end > to) { 2281 memset(kaddr + to, 0, block_end - to); 2282 dirtied_it = 1; 2283 } 2284 flush_dcache_page(page); 2285 kunmap_atomic(kaddr, KM_USER0); 2286 continue; 2287 } 2288 if (buffer_uptodate(&map_bh)) 2289 continue; /* reiserfs does this */ 2290 if (block_start < from || block_end > to) { 2291 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2292 2293 if (!bh) { 2294 ret = -ENOMEM; 2295 goto failed; 2296 } 2297 bh->b_state = map_bh.b_state; 2298 atomic_set(&bh->b_count, 0); 2299 bh->b_this_page = NULL; 2300 bh->b_page = page; 2301 bh->b_blocknr = map_bh.b_blocknr; 2302 bh->b_size = blocksize; 2303 bh->b_data = (char *)(long)block_start; 2304 bh->b_bdev = map_bh.b_bdev; 2305 bh->b_private = NULL; 2306 read_bh[nr_reads++] = bh; 2307 } 2308 } 2309 2310 if (nr_reads) { 2311 struct buffer_head *bh; 2312 2313 /* 2314 * The page is locked, so these buffers are protected from 2315 * any VM or truncate activity. Hence we don't need to care 2316 * for the buffer_head refcounts. 2317 */ 2318 for (i = 0; i < nr_reads; i++) { 2319 bh = read_bh[i]; 2320 lock_buffer(bh); 2321 bh->b_end_io = end_buffer_read_nobh; 2322 submit_bh(READ, bh); 2323 } 2324 for (i = 0; i < nr_reads; i++) { 2325 bh = read_bh[i]; 2326 wait_on_buffer(bh); 2327 if (!buffer_uptodate(bh)) 2328 ret = -EIO; 2329 free_buffer_head(bh); 2330 read_bh[i] = NULL; 2331 } 2332 if (ret) 2333 goto failed; 2334 } 2335 2336 if (is_mapped_to_disk) 2337 SetPageMappedToDisk(page); 2338 SetPageUptodate(page); 2339 2340 /* 2341 * Setting the page dirty here isn't necessary for the prepare_write 2342 * function - commit_write will do that. But if/when this function is 2343 * used within the pagefault handler to ensure that all mmapped pages 2344 * have backing space in the filesystem, we will need to dirty the page 2345 * if its contents were altered. 2346 */ 2347 if (dirtied_it) 2348 set_page_dirty(page); 2349 2350 return 0; 2351 2352failed: 2353 for (i = 0; i < nr_reads; i++) { 2354 if (read_bh[i]) 2355 free_buffer_head(read_bh[i]); 2356 } 2357 2358 /* 2359 * Error recovery is pretty slack. Clear the page and mark it dirty 2360 * so we'll later zero out any blocks which _were_ allocated. 2361 */ 2362 kaddr = kmap_atomic(page, KM_USER0); 2363 memset(kaddr, 0, PAGE_CACHE_SIZE); 2364 flush_dcache_page(page); 2365 kunmap_atomic(kaddr, KM_USER0); 2366 SetPageUptodate(page); 2367 set_page_dirty(page); 2368 return ret; 2369} 2370EXPORT_SYMBOL(nobh_prepare_write); 2371 2372int nobh_commit_write(struct file *file, struct page *page, 2373 unsigned from, unsigned to) 2374{ 2375 struct inode *inode = page->mapping->host; 2376 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2377 2378 set_page_dirty(page); 2379 if (pos > inode->i_size) { 2380 i_size_write(inode, pos); 2381 mark_inode_dirty(inode); 2382 } 2383 return 0; 2384} 2385EXPORT_SYMBOL(nobh_commit_write); 2386 2387/* 2388 * nobh_writepage() - based on block_full_write_page() except 2389 * that it tries to operate without attaching bufferheads to 2390 * the page. 2391 */ 2392int nobh_writepage(struct page *page, get_block_t *get_block, 2393 struct writeback_control *wbc) 2394{ 2395 struct inode * const inode = page->mapping->host; 2396 loff_t i_size = i_size_read(inode); 2397 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2398 unsigned offset; 2399 void *kaddr; 2400 int ret; 2401 2402 /* Is the page fully inside i_size? */ 2403 if (page->index < end_index) 2404 goto out; 2405 2406 /* Is the page fully outside i_size? (truncate in progress) */ 2407 offset = i_size & (PAGE_CACHE_SIZE-1); 2408 if (page->index >= end_index+1 || !offset) { 2409 /* 2410 * The page may have dirty, unmapped buffers. For example, 2411 * they may have been added in ext3_writepage(). Make them 2412 * freeable here, so the page does not leak. 2413 */ 2414#if 0 2415 /* Not really sure about this - do we need this ? */ 2416 if (page->mapping->a_ops->invalidatepage) 2417 page->mapping->a_ops->invalidatepage(page, offset); 2418#endif 2419 unlock_page(page); 2420 return 0; /* don't care */ 2421 } 2422 2423 /* 2424 * The page straddles i_size. It must be zeroed out on each and every 2425 * writepage invocation because it may be mmapped. "A file is mapped 2426 * in multiples of the page size. For a file that is not a multiple of 2427 * the page size, the remaining memory is zeroed when mapped, and 2428 * writes to that region are not written out to the file." 2429 */ 2430 kaddr = kmap_atomic(page, KM_USER0); 2431 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2432 flush_dcache_page(page); 2433 kunmap_atomic(kaddr, KM_USER0); 2434out: 2435 ret = mpage_writepage(page, get_block, wbc); 2436 if (ret == -EAGAIN) 2437 ret = __block_write_full_page(inode, page, get_block, wbc); 2438 return ret; 2439} 2440EXPORT_SYMBOL(nobh_writepage); 2441 2442/* 2443 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2444 */ 2445int nobh_truncate_page(struct address_space *mapping, loff_t from) 2446{ 2447 struct inode *inode = mapping->host; 2448 unsigned blocksize = 1 << inode->i_blkbits; 2449 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2450 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2451 unsigned to; 2452 struct page *page; 2453 const struct address_space_operations *a_ops = mapping->a_ops; 2454 char *kaddr; 2455 int ret = 0; 2456 2457 if ((offset & (blocksize - 1)) == 0) 2458 goto out; 2459 2460 ret = -ENOMEM; 2461 page = grab_cache_page(mapping, index); 2462 if (!page) 2463 goto out; 2464 2465 to = (offset + blocksize) & ~(blocksize - 1); 2466 ret = a_ops->prepare_write(NULL, page, offset, to); 2467 if (ret == 0) { 2468 kaddr = kmap_atomic(page, KM_USER0); 2469 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2470 flush_dcache_page(page); 2471 kunmap_atomic(kaddr, KM_USER0); 2472 set_page_dirty(page); 2473 } 2474 unlock_page(page); 2475 page_cache_release(page); 2476out: 2477 return ret; 2478} 2479EXPORT_SYMBOL(nobh_truncate_page); 2480 2481int block_truncate_page(struct address_space *mapping, 2482 loff_t from, get_block_t *get_block) 2483{ 2484 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2485 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2486 unsigned blocksize; 2487 sector_t iblock; 2488 unsigned length, pos; 2489 struct inode *inode = mapping->host; 2490 struct page *page; 2491 struct buffer_head *bh; 2492 void *kaddr; 2493 int err; 2494 2495 blocksize = 1 << inode->i_blkbits; 2496 length = offset & (blocksize - 1); 2497 2498 /* Block boundary? Nothing to do */ 2499 if (!length) 2500 return 0; 2501 2502 length = blocksize - length; 2503 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2504 2505 page = grab_cache_page(mapping, index); 2506 err = -ENOMEM; 2507 if (!page) 2508 goto out; 2509 2510 if (!page_has_buffers(page)) 2511 create_empty_buffers(page, blocksize, 0); 2512 2513 /* Find the buffer that contains "offset" */ 2514 bh = page_buffers(page); 2515 pos = blocksize; 2516 while (offset >= pos) { 2517 bh = bh->b_this_page; 2518 iblock++; 2519 pos += blocksize; 2520 } 2521 2522 err = 0; 2523 if (!buffer_mapped(bh)) { 2524 WARN_ON(bh->b_size != blocksize); 2525 err = get_block(inode, iblock, bh, 0); 2526 if (err) 2527 goto unlock; 2528 /* unmapped? It's a hole - nothing to do */ 2529 if (!buffer_mapped(bh)) 2530 goto unlock; 2531 } 2532 2533 /* Ok, it's mapped. Make sure it's up-to-date */ 2534 if (PageUptodate(page)) 2535 set_buffer_uptodate(bh); 2536 2537 if (!buffer_uptodate(bh) && !buffer_delay(bh)) { 2538 err = -EIO; 2539 ll_rw_block(READ, 1, &bh); 2540 wait_on_buffer(bh); 2541 /* Uhhuh. Read error. Complain and punt. */ 2542 if (!buffer_uptodate(bh)) 2543 goto unlock; 2544 } 2545 2546 kaddr = kmap_atomic(page, KM_USER0); 2547 memset(kaddr + offset, 0, length); 2548 flush_dcache_page(page); 2549 kunmap_atomic(kaddr, KM_USER0); 2550 2551 mark_buffer_dirty(bh); 2552 err = 0; 2553 2554unlock: 2555 unlock_page(page); 2556 page_cache_release(page); 2557out: 2558 return err; 2559} 2560 2561/* 2562 * The generic ->writepage function for buffer-backed address_spaces 2563 */ 2564int block_write_full_page(struct page *page, get_block_t *get_block, 2565 struct writeback_control *wbc) 2566{ 2567 struct inode * const inode = page->mapping->host; 2568 loff_t i_size = i_size_read(inode); 2569 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2570 unsigned offset; 2571 void *kaddr; 2572 2573 /* Is the page fully inside i_size? */ 2574 if (page->index < end_index) 2575 return __block_write_full_page(inode, page, get_block, wbc); 2576 2577 /* Is the page fully outside i_size? (truncate in progress) */ 2578 offset = i_size & (PAGE_CACHE_SIZE-1); 2579 if (page->index >= end_index+1 || !offset) { 2580 /* 2581 * The page may have dirty, unmapped buffers. For example, 2582 * they may have been added in ext3_writepage(). Make them 2583 * freeable here, so the page does not leak. 2584 */ 2585 do_invalidatepage(page, 0); 2586 unlock_page(page); 2587 return 0; /* don't care */ 2588 } 2589 2590 /* 2591 * The page straddles i_size. It must be zeroed out on each and every 2592 * writepage invokation because it may be mmapped. "A file is mapped 2593 * in multiples of the page size. For a file that is not a multiple of 2594 * the page size, the remaining memory is zeroed when mapped, and 2595 * writes to that region are not written out to the file." 2596 */ 2597 kaddr = kmap_atomic(page, KM_USER0); 2598 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2599 flush_dcache_page(page); 2600 kunmap_atomic(kaddr, KM_USER0); 2601 return __block_write_full_page(inode, page, get_block, wbc); 2602} 2603 2604sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2605 get_block_t *get_block) 2606{ 2607 struct buffer_head tmp; 2608 struct inode *inode = mapping->host; 2609 tmp.b_state = 0; 2610 tmp.b_blocknr = 0; 2611 tmp.b_size = 1 << inode->i_blkbits; 2612 get_block(inode, block, &tmp, 0); 2613 return tmp.b_blocknr; 2614} 2615 2616static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2617{ 2618 struct buffer_head *bh = bio->bi_private; 2619 2620 if (bio->bi_size) 2621 return 1; 2622 2623 if (err == -EOPNOTSUPP) { 2624 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2625 set_bit(BH_Eopnotsupp, &bh->b_state); 2626 } 2627 2628 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2629 bio_put(bio); 2630 return 0; 2631} 2632 2633int submit_bh(int rw, struct buffer_head * bh) 2634{ 2635 struct bio *bio; 2636 int ret = 0; 2637 2638 BUG_ON(!buffer_locked(bh)); 2639 BUG_ON(!buffer_mapped(bh)); 2640 BUG_ON(!bh->b_end_io); 2641 2642 if (buffer_ordered(bh) && (rw == WRITE)) 2643 rw = WRITE_BARRIER; 2644 2645 /* 2646 * Only clear out a write error when rewriting, should this 2647 * include WRITE_SYNC as well? 2648 */ 2649 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2650 clear_buffer_write_io_error(bh); 2651 2652 /* 2653 * from here on down, it's all bio -- do the initial mapping, 2654 * submit_bio -> generic_make_request may further map this bio around 2655 */ 2656 bio = bio_alloc(GFP_NOIO, 1); 2657 2658 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2659 bio->bi_bdev = bh->b_bdev; 2660 bio->bi_io_vec[0].bv_page = bh->b_page; 2661 bio->bi_io_vec[0].bv_len = bh->b_size; 2662 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2663 2664 bio->bi_vcnt = 1; 2665 bio->bi_idx = 0; 2666 bio->bi_size = bh->b_size; 2667 2668 bio->bi_end_io = end_bio_bh_io_sync; 2669 bio->bi_private = bh; 2670 2671 bio_get(bio); 2672 submit_bio(rw, bio); 2673 2674 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2675 ret = -EOPNOTSUPP; 2676 2677 bio_put(bio); 2678 return ret; 2679} 2680 2681/** 2682 * ll_rw_block: low-level access to block devices (DEPRECATED) 2683 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2684 * @nr: number of &struct buffer_heads in the array 2685 * @bhs: array of pointers to &struct buffer_head 2686 * 2687 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2688 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2689 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2690 * are sent to disk. The fourth %READA option is described in the documentation 2691 * for generic_make_request() which ll_rw_block() calls. 2692 * 2693 * This function drops any buffer that it cannot get a lock on (with the 2694 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2695 * clean when doing a write request, and any buffer that appears to be 2696 * up-to-date when doing read request. Further it marks as clean buffers that 2697 * are processed for writing (the buffer cache won't assume that they are 2698 * actually clean until the buffer gets unlocked). 2699 * 2700 * ll_rw_block sets b_end_io to simple completion handler that marks 2701 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2702 * any waiters. 2703 * 2704 * All of the buffers must be for the same device, and must also be a 2705 * multiple of the current approved size for the device. 2706 */ 2707void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2708{ 2709 int i; 2710 2711 for (i = 0; i < nr; i++) { 2712 struct buffer_head *bh = bhs[i]; 2713 2714 if (rw == SWRITE) 2715 lock_buffer(bh); 2716 else if (test_set_buffer_locked(bh)) 2717 continue; 2718 2719 if (rw == WRITE || rw == SWRITE) { 2720 if (test_clear_buffer_dirty(bh)) { 2721 bh->b_end_io = end_buffer_write_sync; 2722 get_bh(bh); 2723 submit_bh(WRITE, bh); 2724 continue; 2725 } 2726 } else { 2727 if (!buffer_uptodate(bh)) { 2728 bh->b_end_io = end_buffer_read_sync; 2729 get_bh(bh); 2730 submit_bh(rw, bh); 2731 continue; 2732 } 2733 } 2734 unlock_buffer(bh); 2735 } 2736} 2737 2738/* 2739 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2740 * and then start new I/O and then wait upon it. The caller must have a ref on 2741 * the buffer_head. 2742 */ 2743int sync_dirty_buffer(struct buffer_head *bh) 2744{ 2745 int ret = 0; 2746 2747 WARN_ON(atomic_read(&bh->b_count) < 1); 2748 lock_buffer(bh); 2749 if (test_clear_buffer_dirty(bh)) { 2750 get_bh(bh); 2751 bh->b_end_io = end_buffer_write_sync; 2752 ret = submit_bh(WRITE, bh); 2753 wait_on_buffer(bh); 2754 if (buffer_eopnotsupp(bh)) { 2755 clear_buffer_eopnotsupp(bh); 2756 ret = -EOPNOTSUPP; 2757 } 2758 if (!ret && !buffer_uptodate(bh)) 2759 ret = -EIO; 2760 } else { 2761 unlock_buffer(bh); 2762 } 2763 return ret; 2764} 2765 2766/* 2767 * try_to_free_buffers() checks if all the buffers on this particular page 2768 * are unused, and releases them if so. 2769 * 2770 * Exclusion against try_to_free_buffers may be obtained by either 2771 * locking the page or by holding its mapping's private_lock. 2772 * 2773 * If the page is dirty but all the buffers are clean then we need to 2774 * be sure to mark the page clean as well. This is because the page 2775 * may be against a block device, and a later reattachment of buffers 2776 * to a dirty page will set *all* buffers dirty. Which would corrupt 2777 * filesystem data on the same device. 2778 * 2779 * The same applies to regular filesystem pages: if all the buffers are 2780 * clean then we set the page clean and proceed. To do that, we require 2781 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2782 * private_lock. 2783 * 2784 * try_to_free_buffers() is non-blocking. 2785 */ 2786static inline int buffer_busy(struct buffer_head *bh) 2787{ 2788 return atomic_read(&bh->b_count) | 2789 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2790} 2791 2792static int 2793drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2794{ 2795 struct buffer_head *head = page_buffers(page); 2796 struct buffer_head *bh; 2797 2798 bh = head; 2799 do { 2800 if (buffer_write_io_error(bh) && page->mapping) 2801 set_bit(AS_EIO, &page->mapping->flags); 2802 if (buffer_busy(bh)) 2803 goto failed; 2804 bh = bh->b_this_page; 2805 } while (bh != head); 2806 2807 do { 2808 struct buffer_head *next = bh->b_this_page; 2809 2810 if (!list_empty(&bh->b_assoc_buffers)) 2811 __remove_assoc_queue(bh); 2812 bh = next; 2813 } while (bh != head); 2814 *buffers_to_free = head; 2815 __clear_page_buffers(page); 2816 return 1; 2817failed: 2818 return 0; 2819} 2820 2821int try_to_free_buffers(struct page *page) 2822{ 2823 struct address_space * const mapping = page->mapping; 2824 struct buffer_head *buffers_to_free = NULL; 2825 int ret = 0; 2826 2827 BUG_ON(!PageLocked(page)); 2828 if (PageWriteback(page)) 2829 return 0; 2830 2831 if (mapping == NULL) { /* can this still happen? */ 2832 ret = drop_buffers(page, &buffers_to_free); 2833 goto out; 2834 } 2835 2836 spin_lock(&mapping->private_lock); 2837 ret = drop_buffers(page, &buffers_to_free); 2838 spin_unlock(&mapping->private_lock); 2839 if (ret) { 2840 /* 2841 * If the filesystem writes its buffers by hand (eg ext3) 2842 * then we can have clean buffers against a dirty page. We 2843 * clean the page here; otherwise later reattachment of buffers 2844 * could encounter a non-uptodate page, which is unresolvable. 2845 * This only applies in the rare case where try_to_free_buffers 2846 * succeeds but the page is not freed. 2847 */ 2848 clear_page_dirty(page); 2849 } 2850out: 2851 if (buffers_to_free) { 2852 struct buffer_head *bh = buffers_to_free; 2853 2854 do { 2855 struct buffer_head *next = bh->b_this_page; 2856 free_buffer_head(bh); 2857 bh = next; 2858 } while (bh != buffers_to_free); 2859 } 2860 return ret; 2861} 2862EXPORT_SYMBOL(try_to_free_buffers); 2863 2864void block_sync_page(struct page *page) 2865{ 2866 struct address_space *mapping; 2867 2868 smp_mb(); 2869 mapping = page_mapping(page); 2870 if (mapping) 2871 blk_run_backing_dev(mapping->backing_dev_info, page); 2872} 2873 2874/* 2875 * There are no bdflush tunables left. But distributions are 2876 * still running obsolete flush daemons, so we terminate them here. 2877 * 2878 * Use of bdflush() is deprecated and will be removed in a future kernel. 2879 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 2880 */ 2881asmlinkage long sys_bdflush(int func, long data) 2882{ 2883 static int msg_count; 2884 2885 if (!capable(CAP_SYS_ADMIN)) 2886 return -EPERM; 2887 2888 if (msg_count < 5) { 2889 msg_count++; 2890 printk(KERN_INFO 2891 "warning: process `%s' used the obsolete bdflush" 2892 " system call\n", current->comm); 2893 printk(KERN_INFO "Fix your initscripts?\n"); 2894 } 2895 2896 if (func == 1) 2897 do_exit(0); 2898 return 0; 2899} 2900 2901/* 2902 * Buffer-head allocation 2903 */ 2904static kmem_cache_t *bh_cachep; 2905 2906/* 2907 * Once the number of bh's in the machine exceeds this level, we start 2908 * stripping them in writeback. 2909 */ 2910static int max_buffer_heads; 2911 2912int buffer_heads_over_limit; 2913 2914struct bh_accounting { 2915 int nr; /* Number of live bh's */ 2916 int ratelimit; /* Limit cacheline bouncing */ 2917}; 2918 2919static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2920 2921static void recalc_bh_state(void) 2922{ 2923 int i; 2924 int tot = 0; 2925 2926 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 2927 return; 2928 __get_cpu_var(bh_accounting).ratelimit = 0; 2929 for_each_online_cpu(i) 2930 tot += per_cpu(bh_accounting, i).nr; 2931 buffer_heads_over_limit = (tot > max_buffer_heads); 2932} 2933 2934struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2935{ 2936 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 2937 if (ret) { 2938 get_cpu_var(bh_accounting).nr++; 2939 recalc_bh_state(); 2940 put_cpu_var(bh_accounting); 2941 } 2942 return ret; 2943} 2944EXPORT_SYMBOL(alloc_buffer_head); 2945 2946void free_buffer_head(struct buffer_head *bh) 2947{ 2948 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2949 kmem_cache_free(bh_cachep, bh); 2950 get_cpu_var(bh_accounting).nr--; 2951 recalc_bh_state(); 2952 put_cpu_var(bh_accounting); 2953} 2954EXPORT_SYMBOL(free_buffer_head); 2955 2956static void 2957init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) 2958{ 2959 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 2960 SLAB_CTOR_CONSTRUCTOR) { 2961 struct buffer_head * bh = (struct buffer_head *)data; 2962 2963 memset(bh, 0, sizeof(*bh)); 2964 INIT_LIST_HEAD(&bh->b_assoc_buffers); 2965 } 2966} 2967 2968#ifdef CONFIG_HOTPLUG_CPU 2969static void buffer_exit_cpu(int cpu) 2970{ 2971 int i; 2972 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2973 2974 for (i = 0; i < BH_LRU_SIZE; i++) { 2975 brelse(b->bhs[i]); 2976 b->bhs[i] = NULL; 2977 } 2978 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 2979 per_cpu(bh_accounting, cpu).nr = 0; 2980 put_cpu_var(bh_accounting); 2981} 2982 2983static int buffer_cpu_notify(struct notifier_block *self, 2984 unsigned long action, void *hcpu) 2985{ 2986 if (action == CPU_DEAD) 2987 buffer_exit_cpu((unsigned long)hcpu); 2988 return NOTIFY_OK; 2989} 2990#endif /* CONFIG_HOTPLUG_CPU */ 2991 2992void __init buffer_init(void) 2993{ 2994 int nrpages; 2995 2996 bh_cachep = kmem_cache_create("buffer_head", 2997 sizeof(struct buffer_head), 0, 2998 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2999 SLAB_MEM_SPREAD), 3000 init_buffer_head, 3001 NULL); 3002 3003 /* 3004 * Limit the bh occupancy to 10% of ZONE_NORMAL 3005 */ 3006 nrpages = (nr_free_buffer_pages() * 10) / 100; 3007 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3008 hotcpu_notifier(buffer_cpu_notify, 0); 3009} 3010 3011EXPORT_SYMBOL(__bforget); 3012EXPORT_SYMBOL(__brelse); 3013EXPORT_SYMBOL(__wait_on_buffer); 3014EXPORT_SYMBOL(block_commit_write); 3015EXPORT_SYMBOL(block_prepare_write); 3016EXPORT_SYMBOL(block_read_full_page); 3017EXPORT_SYMBOL(block_sync_page); 3018EXPORT_SYMBOL(block_truncate_page); 3019EXPORT_SYMBOL(block_write_full_page); 3020EXPORT_SYMBOL(cont_prepare_write); 3021EXPORT_SYMBOL(end_buffer_read_sync); 3022EXPORT_SYMBOL(end_buffer_write_sync); 3023EXPORT_SYMBOL(file_fsync); 3024EXPORT_SYMBOL(fsync_bdev); 3025EXPORT_SYMBOL(generic_block_bmap); 3026EXPORT_SYMBOL(generic_commit_write); 3027EXPORT_SYMBOL(generic_cont_expand); 3028EXPORT_SYMBOL(generic_cont_expand_simple); 3029EXPORT_SYMBOL(init_buffer); 3030EXPORT_SYMBOL(invalidate_bdev); 3031EXPORT_SYMBOL(ll_rw_block); 3032EXPORT_SYMBOL(mark_buffer_dirty); 3033EXPORT_SYMBOL(submit_bh); 3034EXPORT_SYMBOL(sync_dirty_buffer); 3035EXPORT_SYMBOL(unlock_buffer);