at v2.6.19-rc2 983 lines 24 kB view raw
1/* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17#include <linux/errno.h> 18#include <linux/sched.h> 19#include <linux/kernel.h> 20#include <linux/mm.h> 21#include <linux/smp.h> 22#include <linux/smp_lock.h> 23#include <linux/stddef.h> 24#include <linux/unistd.h> 25#include <linux/ptrace.h> 26#include <linux/slab.h> 27#include <linux/user.h> 28#include <linux/elf.h> 29#include <linux/init.h> 30#include <linux/prctl.h> 31#include <linux/init_task.h> 32#include <linux/module.h> 33#include <linux/kallsyms.h> 34#include <linux/mqueue.h> 35#include <linux/hardirq.h> 36#include <linux/utsname.h> 37 38#include <asm/pgtable.h> 39#include <asm/uaccess.h> 40#include <asm/system.h> 41#include <asm/io.h> 42#include <asm/processor.h> 43#include <asm/mmu.h> 44#include <asm/prom.h> 45#include <asm/machdep.h> 46#include <asm/time.h> 47#include <asm/syscalls.h> 48#ifdef CONFIG_PPC64 49#include <asm/firmware.h> 50#endif 51 52extern unsigned long _get_SP(void); 53 54#ifndef CONFIG_SMP 55struct task_struct *last_task_used_math = NULL; 56struct task_struct *last_task_used_altivec = NULL; 57struct task_struct *last_task_used_spe = NULL; 58#endif 59 60/* 61 * Make sure the floating-point register state in the 62 * the thread_struct is up to date for task tsk. 63 */ 64void flush_fp_to_thread(struct task_struct *tsk) 65{ 66 if (tsk->thread.regs) { 67 /* 68 * We need to disable preemption here because if we didn't, 69 * another process could get scheduled after the regs->msr 70 * test but before we have finished saving the FP registers 71 * to the thread_struct. That process could take over the 72 * FPU, and then when we get scheduled again we would store 73 * bogus values for the remaining FP registers. 74 */ 75 preempt_disable(); 76 if (tsk->thread.regs->msr & MSR_FP) { 77#ifdef CONFIG_SMP 78 /* 79 * This should only ever be called for current or 80 * for a stopped child process. Since we save away 81 * the FP register state on context switch on SMP, 82 * there is something wrong if a stopped child appears 83 * to still have its FP state in the CPU registers. 84 */ 85 BUG_ON(tsk != current); 86#endif 87 giveup_fpu(current); 88 } 89 preempt_enable(); 90 } 91} 92 93void enable_kernel_fp(void) 94{ 95 WARN_ON(preemptible()); 96 97#ifdef CONFIG_SMP 98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 99 giveup_fpu(current); 100 else 101 giveup_fpu(NULL); /* just enables FP for kernel */ 102#else 103 giveup_fpu(last_task_used_math); 104#endif /* CONFIG_SMP */ 105} 106EXPORT_SYMBOL(enable_kernel_fp); 107 108int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 109{ 110 if (!tsk->thread.regs) 111 return 0; 112 flush_fp_to_thread(current); 113 114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 115 116 return 1; 117} 118 119#ifdef CONFIG_ALTIVEC 120void enable_kernel_altivec(void) 121{ 122 WARN_ON(preemptible()); 123 124#ifdef CONFIG_SMP 125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 126 giveup_altivec(current); 127 else 128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 129#else 130 giveup_altivec(last_task_used_altivec); 131#endif /* CONFIG_SMP */ 132} 133EXPORT_SYMBOL(enable_kernel_altivec); 134 135/* 136 * Make sure the VMX/Altivec register state in the 137 * the thread_struct is up to date for task tsk. 138 */ 139void flush_altivec_to_thread(struct task_struct *tsk) 140{ 141 if (tsk->thread.regs) { 142 preempt_disable(); 143 if (tsk->thread.regs->msr & MSR_VEC) { 144#ifdef CONFIG_SMP 145 BUG_ON(tsk != current); 146#endif 147 giveup_altivec(current); 148 } 149 preempt_enable(); 150 } 151} 152 153int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 154{ 155 flush_altivec_to_thread(current); 156 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs)); 157 return 1; 158} 159#endif /* CONFIG_ALTIVEC */ 160 161#ifdef CONFIG_SPE 162 163void enable_kernel_spe(void) 164{ 165 WARN_ON(preemptible()); 166 167#ifdef CONFIG_SMP 168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 169 giveup_spe(current); 170 else 171 giveup_spe(NULL); /* just enable SPE for kernel - force */ 172#else 173 giveup_spe(last_task_used_spe); 174#endif /* __SMP __ */ 175} 176EXPORT_SYMBOL(enable_kernel_spe); 177 178void flush_spe_to_thread(struct task_struct *tsk) 179{ 180 if (tsk->thread.regs) { 181 preempt_disable(); 182 if (tsk->thread.regs->msr & MSR_SPE) { 183#ifdef CONFIG_SMP 184 BUG_ON(tsk != current); 185#endif 186 giveup_spe(current); 187 } 188 preempt_enable(); 189 } 190} 191 192int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 193{ 194 flush_spe_to_thread(current); 195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 196 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35); 197 return 1; 198} 199#endif /* CONFIG_SPE */ 200 201#ifndef CONFIG_SMP 202/* 203 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 204 * and the current task has some state, discard it. 205 */ 206void discard_lazy_cpu_state(void) 207{ 208 preempt_disable(); 209 if (last_task_used_math == current) 210 last_task_used_math = NULL; 211#ifdef CONFIG_ALTIVEC 212 if (last_task_used_altivec == current) 213 last_task_used_altivec = NULL; 214#endif /* CONFIG_ALTIVEC */ 215#ifdef CONFIG_SPE 216 if (last_task_used_spe == current) 217 last_task_used_spe = NULL; 218#endif 219 preempt_enable(); 220} 221#endif /* CONFIG_SMP */ 222 223#ifdef CONFIG_PPC_MERGE /* XXX for now */ 224int set_dabr(unsigned long dabr) 225{ 226 if (ppc_md.set_dabr) 227 return ppc_md.set_dabr(dabr); 228 229 mtspr(SPRN_DABR, dabr); 230 return 0; 231} 232#endif 233 234#ifdef CONFIG_PPC64 235DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 236static DEFINE_PER_CPU(unsigned long, current_dabr); 237#endif 238 239struct task_struct *__switch_to(struct task_struct *prev, 240 struct task_struct *new) 241{ 242 struct thread_struct *new_thread, *old_thread; 243 unsigned long flags; 244 struct task_struct *last; 245 246#ifdef CONFIG_SMP 247 /* avoid complexity of lazy save/restore of fpu 248 * by just saving it every time we switch out if 249 * this task used the fpu during the last quantum. 250 * 251 * If it tries to use the fpu again, it'll trap and 252 * reload its fp regs. So we don't have to do a restore 253 * every switch, just a save. 254 * -- Cort 255 */ 256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 257 giveup_fpu(prev); 258#ifdef CONFIG_ALTIVEC 259 /* 260 * If the previous thread used altivec in the last quantum 261 * (thus changing altivec regs) then save them. 262 * We used to check the VRSAVE register but not all apps 263 * set it, so we don't rely on it now (and in fact we need 264 * to save & restore VSCR even if VRSAVE == 0). -- paulus 265 * 266 * On SMP we always save/restore altivec regs just to avoid the 267 * complexity of changing processors. 268 * -- Cort 269 */ 270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 271 giveup_altivec(prev); 272#endif /* CONFIG_ALTIVEC */ 273#ifdef CONFIG_SPE 274 /* 275 * If the previous thread used spe in the last quantum 276 * (thus changing spe regs) then save them. 277 * 278 * On SMP we always save/restore spe regs just to avoid the 279 * complexity of changing processors. 280 */ 281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 282 giveup_spe(prev); 283#endif /* CONFIG_SPE */ 284 285#else /* CONFIG_SMP */ 286#ifdef CONFIG_ALTIVEC 287 /* Avoid the trap. On smp this this never happens since 288 * we don't set last_task_used_altivec -- Cort 289 */ 290 if (new->thread.regs && last_task_used_altivec == new) 291 new->thread.regs->msr |= MSR_VEC; 292#endif /* CONFIG_ALTIVEC */ 293#ifdef CONFIG_SPE 294 /* Avoid the trap. On smp this this never happens since 295 * we don't set last_task_used_spe 296 */ 297 if (new->thread.regs && last_task_used_spe == new) 298 new->thread.regs->msr |= MSR_SPE; 299#endif /* CONFIG_SPE */ 300 301#endif /* CONFIG_SMP */ 302 303#ifdef CONFIG_PPC64 /* for now */ 304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 305 set_dabr(new->thread.dabr); 306 __get_cpu_var(current_dabr) = new->thread.dabr; 307 } 308 309 flush_tlb_pending(); 310#endif 311 312 new_thread = &new->thread; 313 old_thread = &current->thread; 314 315#ifdef CONFIG_PPC64 316 /* 317 * Collect processor utilization data per process 318 */ 319 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 320 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 321 long unsigned start_tb, current_tb; 322 start_tb = old_thread->start_tb; 323 cu->current_tb = current_tb = mfspr(SPRN_PURR); 324 old_thread->accum_tb += (current_tb - start_tb); 325 new_thread->start_tb = current_tb; 326 } 327#endif 328 329 local_irq_save(flags); 330 331 account_system_vtime(current); 332 account_process_vtime(current); 333 calculate_steal_time(); 334 335 last = _switch(old_thread, new_thread); 336 337 local_irq_restore(flags); 338 339 return last; 340} 341 342static int instructions_to_print = 16; 343 344#ifdef CONFIG_PPC64 345#define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \ 346 (REGION_ID(pc) != VMALLOC_REGION_ID)) 347#else 348#define BAD_PC(pc) ((pc) < KERNELBASE) 349#endif 350 351static void show_instructions(struct pt_regs *regs) 352{ 353 int i; 354 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 355 sizeof(int)); 356 357 printk("Instruction dump:"); 358 359 for (i = 0; i < instructions_to_print; i++) { 360 int instr; 361 362 if (!(i % 8)) 363 printk("\n"); 364 365 /* We use __get_user here *only* to avoid an OOPS on a 366 * bad address because the pc *should* only be a 367 * kernel address. 368 */ 369 if (BAD_PC(pc) || __get_user(instr, (unsigned int __user *)pc)) { 370 printk("XXXXXXXX "); 371 } else { 372 if (regs->nip == pc) 373 printk("<%08x> ", instr); 374 else 375 printk("%08x ", instr); 376 } 377 378 pc += sizeof(int); 379 } 380 381 printk("\n"); 382} 383 384static struct regbit { 385 unsigned long bit; 386 const char *name; 387} msr_bits[] = { 388 {MSR_EE, "EE"}, 389 {MSR_PR, "PR"}, 390 {MSR_FP, "FP"}, 391 {MSR_ME, "ME"}, 392 {MSR_IR, "IR"}, 393 {MSR_DR, "DR"}, 394 {0, NULL} 395}; 396 397static void printbits(unsigned long val, struct regbit *bits) 398{ 399 const char *sep = ""; 400 401 printk("<"); 402 for (; bits->bit; ++bits) 403 if (val & bits->bit) { 404 printk("%s%s", sep, bits->name); 405 sep = ","; 406 } 407 printk(">"); 408} 409 410#ifdef CONFIG_PPC64 411#define REG "%016lX" 412#define REGS_PER_LINE 4 413#define LAST_VOLATILE 13 414#else 415#define REG "%08lX" 416#define REGS_PER_LINE 8 417#define LAST_VOLATILE 12 418#endif 419 420void show_regs(struct pt_regs * regs) 421{ 422 int i, trap; 423 424 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 425 regs->nip, regs->link, regs->ctr); 426 printk("REGS: %p TRAP: %04lx %s (%s)\n", 427 regs, regs->trap, print_tainted(), init_utsname()->release); 428 printk("MSR: "REG" ", regs->msr); 429 printbits(regs->msr, msr_bits); 430 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer); 431 trap = TRAP(regs); 432 if (trap == 0x300 || trap == 0x600) 433 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 434 printk("TASK = %p[%d] '%s' THREAD: %p", 435 current, current->pid, current->comm, task_thread_info(current)); 436 437#ifdef CONFIG_SMP 438 printk(" CPU: %d", smp_processor_id()); 439#endif /* CONFIG_SMP */ 440 441 for (i = 0; i < 32; i++) { 442 if ((i % REGS_PER_LINE) == 0) 443 printk("\n" KERN_INFO "GPR%02d: ", i); 444 printk(REG " ", regs->gpr[i]); 445 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 446 break; 447 } 448 printk("\n"); 449#ifdef CONFIG_KALLSYMS 450 /* 451 * Lookup NIP late so we have the best change of getting the 452 * above info out without failing 453 */ 454 printk("NIP ["REG"] ", regs->nip); 455 print_symbol("%s\n", regs->nip); 456 printk("LR ["REG"] ", regs->link); 457 print_symbol("%s\n", regs->link); 458#endif 459 show_stack(current, (unsigned long *) regs->gpr[1]); 460 if (!user_mode(regs)) 461 show_instructions(regs); 462} 463 464void exit_thread(void) 465{ 466 discard_lazy_cpu_state(); 467} 468 469void flush_thread(void) 470{ 471#ifdef CONFIG_PPC64 472 struct thread_info *t = current_thread_info(); 473 474 if (t->flags & _TIF_ABI_PENDING) 475 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); 476#endif 477 478 discard_lazy_cpu_state(); 479 480#ifdef CONFIG_PPC64 /* for now */ 481 if (current->thread.dabr) { 482 current->thread.dabr = 0; 483 set_dabr(0); 484 } 485#endif 486} 487 488void 489release_thread(struct task_struct *t) 490{ 491} 492 493/* 494 * This gets called before we allocate a new thread and copy 495 * the current task into it. 496 */ 497void prepare_to_copy(struct task_struct *tsk) 498{ 499 flush_fp_to_thread(current); 500 flush_altivec_to_thread(current); 501 flush_spe_to_thread(current); 502} 503 504/* 505 * Copy a thread.. 506 */ 507int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 508 unsigned long unused, struct task_struct *p, 509 struct pt_regs *regs) 510{ 511 struct pt_regs *childregs, *kregs; 512 extern void ret_from_fork(void); 513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 514 515 CHECK_FULL_REGS(regs); 516 /* Copy registers */ 517 sp -= sizeof(struct pt_regs); 518 childregs = (struct pt_regs *) sp; 519 *childregs = *regs; 520 if ((childregs->msr & MSR_PR) == 0) { 521 /* for kernel thread, set `current' and stackptr in new task */ 522 childregs->gpr[1] = sp + sizeof(struct pt_regs); 523#ifdef CONFIG_PPC32 524 childregs->gpr[2] = (unsigned long) p; 525#else 526 clear_tsk_thread_flag(p, TIF_32BIT); 527#endif 528 p->thread.regs = NULL; /* no user register state */ 529 } else { 530 childregs->gpr[1] = usp; 531 p->thread.regs = childregs; 532 if (clone_flags & CLONE_SETTLS) { 533#ifdef CONFIG_PPC64 534 if (!test_thread_flag(TIF_32BIT)) 535 childregs->gpr[13] = childregs->gpr[6]; 536 else 537#endif 538 childregs->gpr[2] = childregs->gpr[6]; 539 } 540 } 541 childregs->gpr[3] = 0; /* Result from fork() */ 542 sp -= STACK_FRAME_OVERHEAD; 543 544 /* 545 * The way this works is that at some point in the future 546 * some task will call _switch to switch to the new task. 547 * That will pop off the stack frame created below and start 548 * the new task running at ret_from_fork. The new task will 549 * do some house keeping and then return from the fork or clone 550 * system call, using the stack frame created above. 551 */ 552 sp -= sizeof(struct pt_regs); 553 kregs = (struct pt_regs *) sp; 554 sp -= STACK_FRAME_OVERHEAD; 555 p->thread.ksp = sp; 556 557#ifdef CONFIG_PPC64 558 if (cpu_has_feature(CPU_FTR_SLB)) { 559 unsigned long sp_vsid = get_kernel_vsid(sp); 560 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 561 562 sp_vsid <<= SLB_VSID_SHIFT; 563 sp_vsid |= SLB_VSID_KERNEL | llp; 564 p->thread.ksp_vsid = sp_vsid; 565 } 566 567 /* 568 * The PPC64 ABI makes use of a TOC to contain function 569 * pointers. The function (ret_from_except) is actually a pointer 570 * to the TOC entry. The first entry is a pointer to the actual 571 * function. 572 */ 573 kregs->nip = *((unsigned long *)ret_from_fork); 574#else 575 kregs->nip = (unsigned long)ret_from_fork; 576 p->thread.last_syscall = -1; 577#endif 578 579 return 0; 580} 581 582/* 583 * Set up a thread for executing a new program 584 */ 585void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 586{ 587#ifdef CONFIG_PPC64 588 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 589#endif 590 591 set_fs(USER_DS); 592 593 /* 594 * If we exec out of a kernel thread then thread.regs will not be 595 * set. Do it now. 596 */ 597 if (!current->thread.regs) { 598 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 599 current->thread.regs = regs - 1; 600 } 601 602 memset(regs->gpr, 0, sizeof(regs->gpr)); 603 regs->ctr = 0; 604 regs->link = 0; 605 regs->xer = 0; 606 regs->ccr = 0; 607 regs->gpr[1] = sp; 608 609#ifdef CONFIG_PPC32 610 regs->mq = 0; 611 regs->nip = start; 612 regs->msr = MSR_USER; 613#else 614 if (!test_thread_flag(TIF_32BIT)) { 615 unsigned long entry, toc; 616 617 /* start is a relocated pointer to the function descriptor for 618 * the elf _start routine. The first entry in the function 619 * descriptor is the entry address of _start and the second 620 * entry is the TOC value we need to use. 621 */ 622 __get_user(entry, (unsigned long __user *)start); 623 __get_user(toc, (unsigned long __user *)start+1); 624 625 /* Check whether the e_entry function descriptor entries 626 * need to be relocated before we can use them. 627 */ 628 if (load_addr != 0) { 629 entry += load_addr; 630 toc += load_addr; 631 } 632 regs->nip = entry; 633 regs->gpr[2] = toc; 634 regs->msr = MSR_USER64; 635 } else { 636 regs->nip = start; 637 regs->gpr[2] = 0; 638 regs->msr = MSR_USER32; 639 } 640#endif 641 642 discard_lazy_cpu_state(); 643 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 644 current->thread.fpscr.val = 0; 645#ifdef CONFIG_ALTIVEC 646 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 647 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr)); 648 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 649 current->thread.vrsave = 0; 650 current->thread.used_vr = 0; 651#endif /* CONFIG_ALTIVEC */ 652#ifdef CONFIG_SPE 653 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 654 current->thread.acc = 0; 655 current->thread.spefscr = 0; 656 current->thread.used_spe = 0; 657#endif /* CONFIG_SPE */ 658} 659 660#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 661 | PR_FP_EXC_RES | PR_FP_EXC_INV) 662 663int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 664{ 665 struct pt_regs *regs = tsk->thread.regs; 666 667 /* This is a bit hairy. If we are an SPE enabled processor 668 * (have embedded fp) we store the IEEE exception enable flags in 669 * fpexc_mode. fpexc_mode is also used for setting FP exception 670 * mode (asyn, precise, disabled) for 'Classic' FP. */ 671 if (val & PR_FP_EXC_SW_ENABLE) { 672#ifdef CONFIG_SPE 673 tsk->thread.fpexc_mode = val & 674 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 675 return 0; 676#else 677 return -EINVAL; 678#endif 679 } 680 681 /* on a CONFIG_SPE this does not hurt us. The bits that 682 * __pack_fe01 use do not overlap with bits used for 683 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 684 * on CONFIG_SPE implementations are reserved so writing to 685 * them does not change anything */ 686 if (val > PR_FP_EXC_PRECISE) 687 return -EINVAL; 688 tsk->thread.fpexc_mode = __pack_fe01(val); 689 if (regs != NULL && (regs->msr & MSR_FP) != 0) 690 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 691 | tsk->thread.fpexc_mode; 692 return 0; 693} 694 695int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 696{ 697 unsigned int val; 698 699 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 700#ifdef CONFIG_SPE 701 val = tsk->thread.fpexc_mode; 702#else 703 return -EINVAL; 704#endif 705 else 706 val = __unpack_fe01(tsk->thread.fpexc_mode); 707 return put_user(val, (unsigned int __user *) adr); 708} 709 710int set_endian(struct task_struct *tsk, unsigned int val) 711{ 712 struct pt_regs *regs = tsk->thread.regs; 713 714 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 715 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 716 return -EINVAL; 717 718 if (regs == NULL) 719 return -EINVAL; 720 721 if (val == PR_ENDIAN_BIG) 722 regs->msr &= ~MSR_LE; 723 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 724 regs->msr |= MSR_LE; 725 else 726 return -EINVAL; 727 728 return 0; 729} 730 731int get_endian(struct task_struct *tsk, unsigned long adr) 732{ 733 struct pt_regs *regs = tsk->thread.regs; 734 unsigned int val; 735 736 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 737 !cpu_has_feature(CPU_FTR_REAL_LE)) 738 return -EINVAL; 739 740 if (regs == NULL) 741 return -EINVAL; 742 743 if (regs->msr & MSR_LE) { 744 if (cpu_has_feature(CPU_FTR_REAL_LE)) 745 val = PR_ENDIAN_LITTLE; 746 else 747 val = PR_ENDIAN_PPC_LITTLE; 748 } else 749 val = PR_ENDIAN_BIG; 750 751 return put_user(val, (unsigned int __user *)adr); 752} 753 754int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 755{ 756 tsk->thread.align_ctl = val; 757 return 0; 758} 759 760int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 761{ 762 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 763} 764 765#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 766 767int sys_clone(unsigned long clone_flags, unsigned long usp, 768 int __user *parent_tidp, void __user *child_threadptr, 769 int __user *child_tidp, int p6, 770 struct pt_regs *regs) 771{ 772 CHECK_FULL_REGS(regs); 773 if (usp == 0) 774 usp = regs->gpr[1]; /* stack pointer for child */ 775#ifdef CONFIG_PPC64 776 if (test_thread_flag(TIF_32BIT)) { 777 parent_tidp = TRUNC_PTR(parent_tidp); 778 child_tidp = TRUNC_PTR(child_tidp); 779 } 780#endif 781 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 782} 783 784int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 785 unsigned long p4, unsigned long p5, unsigned long p6, 786 struct pt_regs *regs) 787{ 788 CHECK_FULL_REGS(regs); 789 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 790} 791 792int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 793 unsigned long p4, unsigned long p5, unsigned long p6, 794 struct pt_regs *regs) 795{ 796 CHECK_FULL_REGS(regs); 797 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 798 regs, 0, NULL, NULL); 799} 800 801int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 802 unsigned long a3, unsigned long a4, unsigned long a5, 803 struct pt_regs *regs) 804{ 805 int error; 806 char *filename; 807 808 filename = getname((char __user *) a0); 809 error = PTR_ERR(filename); 810 if (IS_ERR(filename)) 811 goto out; 812 flush_fp_to_thread(current); 813 flush_altivec_to_thread(current); 814 flush_spe_to_thread(current); 815 error = do_execve(filename, (char __user * __user *) a1, 816 (char __user * __user *) a2, regs); 817 if (error == 0) { 818 task_lock(current); 819 current->ptrace &= ~PT_DTRACE; 820 task_unlock(current); 821 } 822 putname(filename); 823out: 824 return error; 825} 826 827int validate_sp(unsigned long sp, struct task_struct *p, 828 unsigned long nbytes) 829{ 830 unsigned long stack_page = (unsigned long)task_stack_page(p); 831 832 if (sp >= stack_page + sizeof(struct thread_struct) 833 && sp <= stack_page + THREAD_SIZE - nbytes) 834 return 1; 835 836#ifdef CONFIG_IRQSTACKS 837 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)]; 838 if (sp >= stack_page + sizeof(struct thread_struct) 839 && sp <= stack_page + THREAD_SIZE - nbytes) 840 return 1; 841 842 stack_page = (unsigned long) softirq_ctx[task_cpu(p)]; 843 if (sp >= stack_page + sizeof(struct thread_struct) 844 && sp <= stack_page + THREAD_SIZE - nbytes) 845 return 1; 846#endif 847 848 return 0; 849} 850 851#ifdef CONFIG_PPC64 852#define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 853#define FRAME_LR_SAVE 2 854#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 855#define REGS_MARKER 0x7265677368657265ul 856#define FRAME_MARKER 12 857#else 858#define MIN_STACK_FRAME 16 859#define FRAME_LR_SAVE 1 860#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 861#define REGS_MARKER 0x72656773ul 862#define FRAME_MARKER 2 863#endif 864 865EXPORT_SYMBOL(validate_sp); 866 867unsigned long get_wchan(struct task_struct *p) 868{ 869 unsigned long ip, sp; 870 int count = 0; 871 872 if (!p || p == current || p->state == TASK_RUNNING) 873 return 0; 874 875 sp = p->thread.ksp; 876 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 877 return 0; 878 879 do { 880 sp = *(unsigned long *)sp; 881 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 882 return 0; 883 if (count > 0) { 884 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 885 if (!in_sched_functions(ip)) 886 return ip; 887 } 888 } while (count++ < 16); 889 return 0; 890} 891 892static int kstack_depth_to_print = 64; 893 894void show_stack(struct task_struct *tsk, unsigned long *stack) 895{ 896 unsigned long sp, ip, lr, newsp; 897 int count = 0; 898 int firstframe = 1; 899 900 sp = (unsigned long) stack; 901 if (tsk == NULL) 902 tsk = current; 903 if (sp == 0) { 904 if (tsk == current) 905 asm("mr %0,1" : "=r" (sp)); 906 else 907 sp = tsk->thread.ksp; 908 } 909 910 lr = 0; 911 printk("Call Trace:\n"); 912 do { 913 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 914 return; 915 916 stack = (unsigned long *) sp; 917 newsp = stack[0]; 918 ip = stack[FRAME_LR_SAVE]; 919 if (!firstframe || ip != lr) { 920 printk("["REG"] ["REG"] ", sp, ip); 921 print_symbol("%s", ip); 922 if (firstframe) 923 printk(" (unreliable)"); 924 printk("\n"); 925 } 926 firstframe = 0; 927 928 /* 929 * See if this is an exception frame. 930 * We look for the "regshere" marker in the current frame. 931 */ 932 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 933 && stack[FRAME_MARKER] == REGS_MARKER) { 934 struct pt_regs *regs = (struct pt_regs *) 935 (sp + STACK_FRAME_OVERHEAD); 936 printk("--- Exception: %lx", regs->trap); 937 print_symbol(" at %s\n", regs->nip); 938 lr = regs->link; 939 print_symbol(" LR = %s\n", lr); 940 firstframe = 1; 941 } 942 943 sp = newsp; 944 } while (count++ < kstack_depth_to_print); 945} 946 947void dump_stack(void) 948{ 949 show_stack(current, NULL); 950} 951EXPORT_SYMBOL(dump_stack); 952 953#ifdef CONFIG_PPC64 954void ppc64_runlatch_on(void) 955{ 956 unsigned long ctrl; 957 958 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 959 HMT_medium(); 960 961 ctrl = mfspr(SPRN_CTRLF); 962 ctrl |= CTRL_RUNLATCH; 963 mtspr(SPRN_CTRLT, ctrl); 964 965 set_thread_flag(TIF_RUNLATCH); 966 } 967} 968 969void ppc64_runlatch_off(void) 970{ 971 unsigned long ctrl; 972 973 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 974 HMT_medium(); 975 976 clear_thread_flag(TIF_RUNLATCH); 977 978 ctrl = mfspr(SPRN_CTRLF); 979 ctrl &= ~CTRL_RUNLATCH; 980 mtspr(SPRN_CTRLT, ctrl); 981 } 982} 983#endif