at v2.6.18 31 kB view raw
1/* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31#include <linux/kernel.h> 32#include <linux/module.h> 33#include <linux/init.h> 34#include <linux/cpufreq.h> 35#include <linux/proc_fs.h> 36#include <linux/seq_file.h> 37#include <linux/acpi.h> 38#include <linux/dmi.h> 39#include <linux/moduleparam.h> 40#include <linux/sched.h> /* need_resched() */ 41 42#include <asm/io.h> 43#include <asm/uaccess.h> 44 45#include <acpi/acpi_bus.h> 46#include <acpi/processor.h> 47 48#define ACPI_PROCESSOR_COMPONENT 0x01000000 49#define ACPI_PROCESSOR_CLASS "processor" 50#define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver" 51#define _COMPONENT ACPI_PROCESSOR_COMPONENT 52ACPI_MODULE_NAME("acpi_processor") 53#define ACPI_PROCESSOR_FILE_POWER "power" 54#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000) 55#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 56#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 57static void (*pm_idle_save) (void) __read_mostly; 58module_param(max_cstate, uint, 0644); 59 60static unsigned int nocst __read_mostly; 61module_param(nocst, uint, 0000); 62 63/* 64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity 65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms 66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms 67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms 68 * reduce history for more aggressive entry into C3 69 */ 70static unsigned int bm_history __read_mostly = 71 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); 72module_param(bm_history, uint, 0644); 73/* -------------------------------------------------------------------------- 74 Power Management 75 -------------------------------------------------------------------------- */ 76 77/* 78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 79 * For now disable this. Probably a bug somewhere else. 80 * 81 * To skip this limit, boot/load with a large max_cstate limit. 82 */ 83static int set_max_cstate(struct dmi_system_id *id) 84{ 85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 86 return 0; 87 88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 89 " Override with \"processor.max_cstate=%d\"\n", id->ident, 90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 91 92 max_cstate = (long)id->driver_data; 93 94 return 0; 95} 96 97/* Actually this shouldn't be __cpuinitdata, would be better to fix the 98 callers to only run once -AK */ 99static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 100 { set_max_cstate, "IBM ThinkPad R40e", { 101 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 102 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, 103 { set_max_cstate, "IBM ThinkPad R40e", { 104 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 105 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, 106 { set_max_cstate, "IBM ThinkPad R40e", { 107 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 108 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, 109 { set_max_cstate, "IBM ThinkPad R40e", { 110 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 111 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, 112 { set_max_cstate, "IBM ThinkPad R40e", { 113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 114 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, 115 { set_max_cstate, "IBM ThinkPad R40e", { 116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 117 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, 118 { set_max_cstate, "IBM ThinkPad R40e", { 119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 120 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, 121 { set_max_cstate, "IBM ThinkPad R40e", { 122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 123 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, 124 { set_max_cstate, "IBM ThinkPad R40e", { 125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 126 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, 127 { set_max_cstate, "IBM ThinkPad R40e", { 128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 129 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, 130 { set_max_cstate, "IBM ThinkPad R40e", { 131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 132 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, 133 { set_max_cstate, "IBM ThinkPad R40e", { 134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 135 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, 136 { set_max_cstate, "IBM ThinkPad R40e", { 137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 138 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, 139 { set_max_cstate, "IBM ThinkPad R40e", { 140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 141 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, 142 { set_max_cstate, "IBM ThinkPad R40e", { 143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 144 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, 145 { set_max_cstate, "IBM ThinkPad R40e", { 146 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 147 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, 148 { set_max_cstate, "Medion 41700", { 149 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 150 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, 151 { set_max_cstate, "Clevo 5600D", { 152 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 153 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 154 (void *)2}, 155 {}, 156}; 157 158static inline u32 ticks_elapsed(u32 t1, u32 t2) 159{ 160 if (t2 >= t1) 161 return (t2 - t1); 162 else if (!acpi_fadt.tmr_val_ext) 163 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); 164 else 165 return ((0xFFFFFFFF - t1) + t2); 166} 167 168static void 169acpi_processor_power_activate(struct acpi_processor *pr, 170 struct acpi_processor_cx *new) 171{ 172 struct acpi_processor_cx *old; 173 174 if (!pr || !new) 175 return; 176 177 old = pr->power.state; 178 179 if (old) 180 old->promotion.count = 0; 181 new->demotion.count = 0; 182 183 /* Cleanup from old state. */ 184 if (old) { 185 switch (old->type) { 186 case ACPI_STATE_C3: 187 /* Disable bus master reload */ 188 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) 189 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, 190 ACPI_MTX_DO_NOT_LOCK); 191 break; 192 } 193 } 194 195 /* Prepare to use new state. */ 196 switch (new->type) { 197 case ACPI_STATE_C3: 198 /* Enable bus master reload */ 199 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) 200 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, 201 ACPI_MTX_DO_NOT_LOCK); 202 break; 203 } 204 205 pr->power.state = new; 206 207 return; 208} 209 210static void acpi_safe_halt(void) 211{ 212 current_thread_info()->status &= ~TS_POLLING; 213 smp_mb__after_clear_bit(); 214 if (!need_resched()) 215 safe_halt(); 216 current_thread_info()->status |= TS_POLLING; 217} 218 219static atomic_t c3_cpu_count; 220 221static void acpi_processor_idle(void) 222{ 223 struct acpi_processor *pr = NULL; 224 struct acpi_processor_cx *cx = NULL; 225 struct acpi_processor_cx *next_state = NULL; 226 int sleep_ticks = 0; 227 u32 t1, t2 = 0; 228 229 pr = processors[smp_processor_id()]; 230 if (!pr) 231 return; 232 233 /* 234 * Interrupts must be disabled during bus mastering calculations and 235 * for C2/C3 transitions. 236 */ 237 local_irq_disable(); 238 239 /* 240 * Check whether we truly need to go idle, or should 241 * reschedule: 242 */ 243 if (unlikely(need_resched())) { 244 local_irq_enable(); 245 return; 246 } 247 248 cx = pr->power.state; 249 if (!cx) { 250 if (pm_idle_save) 251 pm_idle_save(); 252 else 253 acpi_safe_halt(); 254 return; 255 } 256 257 /* 258 * Check BM Activity 259 * ----------------- 260 * Check for bus mastering activity (if required), record, and check 261 * for demotion. 262 */ 263 if (pr->flags.bm_check) { 264 u32 bm_status = 0; 265 unsigned long diff = jiffies - pr->power.bm_check_timestamp; 266 267 if (diff > 31) 268 diff = 31; 269 270 pr->power.bm_activity <<= diff; 271 272 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, 273 &bm_status, ACPI_MTX_DO_NOT_LOCK); 274 if (bm_status) { 275 pr->power.bm_activity |= 0x1; 276 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 277 1, ACPI_MTX_DO_NOT_LOCK); 278 } 279 /* 280 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 281 * the true state of bus mastering activity; forcing us to 282 * manually check the BMIDEA bit of each IDE channel. 283 */ 284 else if (errata.piix4.bmisx) { 285 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 286 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 287 pr->power.bm_activity |= 0x1; 288 } 289 290 pr->power.bm_check_timestamp = jiffies; 291 292 /* 293 * If bus mastering is or was active this jiffy, demote 294 * to avoid a faulty transition. Note that the processor 295 * won't enter a low-power state during this call (to this 296 * function) but should upon the next. 297 * 298 * TBD: A better policy might be to fallback to the demotion 299 * state (use it for this quantum only) istead of 300 * demoting -- and rely on duration as our sole demotion 301 * qualification. This may, however, introduce DMA 302 * issues (e.g. floppy DMA transfer overrun/underrun). 303 */ 304 if ((pr->power.bm_activity & 0x1) && 305 cx->demotion.threshold.bm) { 306 local_irq_enable(); 307 next_state = cx->demotion.state; 308 goto end; 309 } 310 } 311 312#ifdef CONFIG_HOTPLUG_CPU 313 /* 314 * Check for P_LVL2_UP flag before entering C2 and above on 315 * an SMP system. We do it here instead of doing it at _CST/P_LVL 316 * detection phase, to work cleanly with logical CPU hotplug. 317 */ 318 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 319 !pr->flags.has_cst && !acpi_fadt.plvl2_up) 320 cx = &pr->power.states[ACPI_STATE_C1]; 321#endif 322 323 /* 324 * Sleep: 325 * ------ 326 * Invoke the current Cx state to put the processor to sleep. 327 */ 328 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { 329 current_thread_info()->status &= ~TS_POLLING; 330 smp_mb__after_clear_bit(); 331 if (need_resched()) { 332 current_thread_info()->status |= TS_POLLING; 333 local_irq_enable(); 334 return; 335 } 336 } 337 338 switch (cx->type) { 339 340 case ACPI_STATE_C1: 341 /* 342 * Invoke C1. 343 * Use the appropriate idle routine, the one that would 344 * be used without acpi C-states. 345 */ 346 if (pm_idle_save) 347 pm_idle_save(); 348 else 349 acpi_safe_halt(); 350 351 /* 352 * TBD: Can't get time duration while in C1, as resumes 353 * go to an ISR rather than here. Need to instrument 354 * base interrupt handler. 355 */ 356 sleep_ticks = 0xFFFFFFFF; 357 break; 358 359 case ACPI_STATE_C2: 360 /* Get start time (ticks) */ 361 t1 = inl(acpi_fadt.xpm_tmr_blk.address); 362 /* Invoke C2 */ 363 inb(cx->address); 364 /* Dummy wait op - must do something useless after P_LVL2 read 365 because chipsets cannot guarantee that STPCLK# signal 366 gets asserted in time to freeze execution properly. */ 367 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 368 /* Get end time (ticks) */ 369 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 370 371#ifdef CONFIG_GENERIC_TIME 372 /* TSC halts in C2, so notify users */ 373 mark_tsc_unstable(); 374#endif 375 /* Re-enable interrupts */ 376 local_irq_enable(); 377 current_thread_info()->status |= TS_POLLING; 378 /* Compute time (ticks) that we were actually asleep */ 379 sleep_ticks = 380 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD; 381 break; 382 383 case ACPI_STATE_C3: 384 385 if (pr->flags.bm_check) { 386 if (atomic_inc_return(&c3_cpu_count) == 387 num_online_cpus()) { 388 /* 389 * All CPUs are trying to go to C3 390 * Disable bus master arbitration 391 */ 392 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, 393 ACPI_MTX_DO_NOT_LOCK); 394 } 395 } else { 396 /* SMP with no shared cache... Invalidate cache */ 397 ACPI_FLUSH_CPU_CACHE(); 398 } 399 400 /* Get start time (ticks) */ 401 t1 = inl(acpi_fadt.xpm_tmr_blk.address); 402 /* Invoke C3 */ 403 inb(cx->address); 404 /* Dummy wait op (see above) */ 405 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 406 /* Get end time (ticks) */ 407 t2 = inl(acpi_fadt.xpm_tmr_blk.address); 408 if (pr->flags.bm_check) { 409 /* Enable bus master arbitration */ 410 atomic_dec(&c3_cpu_count); 411 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, 412 ACPI_MTX_DO_NOT_LOCK); 413 } 414 415#ifdef CONFIG_GENERIC_TIME 416 /* TSC halts in C3, so notify users */ 417 mark_tsc_unstable(); 418#endif 419 /* Re-enable interrupts */ 420 local_irq_enable(); 421 current_thread_info()->status |= TS_POLLING; 422 /* Compute time (ticks) that we were actually asleep */ 423 sleep_ticks = 424 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD; 425 break; 426 427 default: 428 local_irq_enable(); 429 return; 430 } 431 cx->usage++; 432 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) 433 cx->time += sleep_ticks; 434 435 next_state = pr->power.state; 436 437#ifdef CONFIG_HOTPLUG_CPU 438 /* Don't do promotion/demotion */ 439 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && 440 !pr->flags.has_cst && !acpi_fadt.plvl2_up) { 441 next_state = cx; 442 goto end; 443 } 444#endif 445 446 /* 447 * Promotion? 448 * ---------- 449 * Track the number of longs (time asleep is greater than threshold) 450 * and promote when the count threshold is reached. Note that bus 451 * mastering activity may prevent promotions. 452 * Do not promote above max_cstate. 453 */ 454 if (cx->promotion.state && 455 ((cx->promotion.state - pr->power.states) <= max_cstate)) { 456 if (sleep_ticks > cx->promotion.threshold.ticks) { 457 cx->promotion.count++; 458 cx->demotion.count = 0; 459 if (cx->promotion.count >= 460 cx->promotion.threshold.count) { 461 if (pr->flags.bm_check) { 462 if (! 463 (pr->power.bm_activity & cx-> 464 promotion.threshold.bm)) { 465 next_state = 466 cx->promotion.state; 467 goto end; 468 } 469 } else { 470 next_state = cx->promotion.state; 471 goto end; 472 } 473 } 474 } 475 } 476 477 /* 478 * Demotion? 479 * --------- 480 * Track the number of shorts (time asleep is less than time threshold) 481 * and demote when the usage threshold is reached. 482 */ 483 if (cx->demotion.state) { 484 if (sleep_ticks < cx->demotion.threshold.ticks) { 485 cx->demotion.count++; 486 cx->promotion.count = 0; 487 if (cx->demotion.count >= cx->demotion.threshold.count) { 488 next_state = cx->demotion.state; 489 goto end; 490 } 491 } 492 } 493 494 end: 495 /* 496 * Demote if current state exceeds max_cstate 497 */ 498 if ((pr->power.state - pr->power.states) > max_cstate) { 499 if (cx->demotion.state) 500 next_state = cx->demotion.state; 501 } 502 503 /* 504 * New Cx State? 505 * ------------- 506 * If we're going to start using a new Cx state we must clean up 507 * from the previous and prepare to use the new. 508 */ 509 if (next_state != pr->power.state) 510 acpi_processor_power_activate(pr, next_state); 511} 512 513static int acpi_processor_set_power_policy(struct acpi_processor *pr) 514{ 515 unsigned int i; 516 unsigned int state_is_set = 0; 517 struct acpi_processor_cx *lower = NULL; 518 struct acpi_processor_cx *higher = NULL; 519 struct acpi_processor_cx *cx; 520 521 522 if (!pr) 523 return -EINVAL; 524 525 /* 526 * This function sets the default Cx state policy (OS idle handler). 527 * Our scheme is to promote quickly to C2 but more conservatively 528 * to C3. We're favoring C2 for its characteristics of low latency 529 * (quick response), good power savings, and ability to allow bus 530 * mastering activity. Note that the Cx state policy is completely 531 * customizable and can be altered dynamically. 532 */ 533 534 /* startup state */ 535 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 536 cx = &pr->power.states[i]; 537 if (!cx->valid) 538 continue; 539 540 if (!state_is_set) 541 pr->power.state = cx; 542 state_is_set++; 543 break; 544 } 545 546 if (!state_is_set) 547 return -ENODEV; 548 549 /* demotion */ 550 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 551 cx = &pr->power.states[i]; 552 if (!cx->valid) 553 continue; 554 555 if (lower) { 556 cx->demotion.state = lower; 557 cx->demotion.threshold.ticks = cx->latency_ticks; 558 cx->demotion.threshold.count = 1; 559 if (cx->type == ACPI_STATE_C3) 560 cx->demotion.threshold.bm = bm_history; 561 } 562 563 lower = cx; 564 } 565 566 /* promotion */ 567 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { 568 cx = &pr->power.states[i]; 569 if (!cx->valid) 570 continue; 571 572 if (higher) { 573 cx->promotion.state = higher; 574 cx->promotion.threshold.ticks = cx->latency_ticks; 575 if (cx->type >= ACPI_STATE_C2) 576 cx->promotion.threshold.count = 4; 577 else 578 cx->promotion.threshold.count = 10; 579 if (higher->type == ACPI_STATE_C3) 580 cx->promotion.threshold.bm = bm_history; 581 } 582 583 higher = cx; 584 } 585 586 return 0; 587} 588 589static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 590{ 591 592 if (!pr) 593 return -EINVAL; 594 595 if (!pr->pblk) 596 return -ENODEV; 597 598 /* if info is obtained from pblk/fadt, type equals state */ 599 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 600 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 601 602#ifndef CONFIG_HOTPLUG_CPU 603 /* 604 * Check for P_LVL2_UP flag before entering C2 and above on 605 * an SMP system. 606 */ 607 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up) 608 return -ENODEV; 609#endif 610 611 /* determine C2 and C3 address from pblk */ 612 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 613 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 614 615 /* determine latencies from FADT */ 616 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat; 617 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat; 618 619 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 620 "lvl2[0x%08x] lvl3[0x%08x]\n", 621 pr->power.states[ACPI_STATE_C2].address, 622 pr->power.states[ACPI_STATE_C3].address)); 623 624 return 0; 625} 626 627static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr) 628{ 629 630 /* Zero initialize all the C-states info. */ 631 memset(pr->power.states, 0, sizeof(pr->power.states)); 632 633 /* set the first C-State to C1 */ 634 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 635 636 /* the C0 state only exists as a filler in our array, 637 * and all processors need to support C1 */ 638 pr->power.states[ACPI_STATE_C0].valid = 1; 639 pr->power.states[ACPI_STATE_C1].valid = 1; 640 641 return 0; 642} 643 644static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 645{ 646 acpi_status status = 0; 647 acpi_integer count; 648 int current_count; 649 int i; 650 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 651 union acpi_object *cst; 652 653 654 if (nocst) 655 return -ENODEV; 656 657 current_count = 1; 658 659 /* Zero initialize C2 onwards and prepare for fresh CST lookup */ 660 for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++) 661 memset(&(pr->power.states[i]), 0, 662 sizeof(struct acpi_processor_cx)); 663 664 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 665 if (ACPI_FAILURE(status)) { 666 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 667 return -ENODEV; 668 } 669 670 cst = (union acpi_object *)buffer.pointer; 671 672 /* There must be at least 2 elements */ 673 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 674 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 675 status = -EFAULT; 676 goto end; 677 } 678 679 count = cst->package.elements[0].integer.value; 680 681 /* Validate number of power states. */ 682 if (count < 1 || count != cst->package.count - 1) { 683 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 684 status = -EFAULT; 685 goto end; 686 } 687 688 /* Tell driver that at least _CST is supported. */ 689 pr->flags.has_cst = 1; 690 691 for (i = 1; i <= count; i++) { 692 union acpi_object *element; 693 union acpi_object *obj; 694 struct acpi_power_register *reg; 695 struct acpi_processor_cx cx; 696 697 memset(&cx, 0, sizeof(cx)); 698 699 element = (union acpi_object *)&(cst->package.elements[i]); 700 if (element->type != ACPI_TYPE_PACKAGE) 701 continue; 702 703 if (element->package.count != 4) 704 continue; 705 706 obj = (union acpi_object *)&(element->package.elements[0]); 707 708 if (obj->type != ACPI_TYPE_BUFFER) 709 continue; 710 711 reg = (struct acpi_power_register *)obj->buffer.pointer; 712 713 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 714 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 715 continue; 716 717 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ? 718 0 : reg->address; 719 720 /* There should be an easy way to extract an integer... */ 721 obj = (union acpi_object *)&(element->package.elements[1]); 722 if (obj->type != ACPI_TYPE_INTEGER) 723 continue; 724 725 cx.type = obj->integer.value; 726 727 if ((cx.type != ACPI_STATE_C1) && 728 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO)) 729 continue; 730 731 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3)) 732 continue; 733 734 obj = (union acpi_object *)&(element->package.elements[2]); 735 if (obj->type != ACPI_TYPE_INTEGER) 736 continue; 737 738 cx.latency = obj->integer.value; 739 740 obj = (union acpi_object *)&(element->package.elements[3]); 741 if (obj->type != ACPI_TYPE_INTEGER) 742 continue; 743 744 cx.power = obj->integer.value; 745 746 current_count++; 747 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 748 749 /* 750 * We support total ACPI_PROCESSOR_MAX_POWER - 1 751 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 752 */ 753 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 754 printk(KERN_WARNING 755 "Limiting number of power states to max (%d)\n", 756 ACPI_PROCESSOR_MAX_POWER); 757 printk(KERN_WARNING 758 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 759 break; 760 } 761 } 762 763 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 764 current_count)); 765 766 /* Validate number of power states discovered */ 767 if (current_count < 2) 768 status = -EFAULT; 769 770 end: 771 kfree(buffer.pointer); 772 773 return status; 774} 775 776static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) 777{ 778 779 if (!cx->address) 780 return; 781 782 /* 783 * C2 latency must be less than or equal to 100 784 * microseconds. 785 */ 786 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 787 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 788 "latency too large [%d]\n", cx->latency)); 789 return; 790 } 791 792 /* 793 * Otherwise we've met all of our C2 requirements. 794 * Normalize the C2 latency to expidite policy 795 */ 796 cx->valid = 1; 797 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 798 799 return; 800} 801 802static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 803 struct acpi_processor_cx *cx) 804{ 805 static int bm_check_flag; 806 807 808 if (!cx->address) 809 return; 810 811 /* 812 * C3 latency must be less than or equal to 1000 813 * microseconds. 814 */ 815 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 816 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 817 "latency too large [%d]\n", cx->latency)); 818 return; 819 } 820 821 /* 822 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 823 * DMA transfers are used by any ISA device to avoid livelock. 824 * Note that we could disable Type-F DMA (as recommended by 825 * the erratum), but this is known to disrupt certain ISA 826 * devices thus we take the conservative approach. 827 */ 828 else if (errata.piix4.fdma) { 829 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 830 "C3 not supported on PIIX4 with Type-F DMA\n")); 831 return; 832 } 833 834 /* All the logic here assumes flags.bm_check is same across all CPUs */ 835 if (!bm_check_flag) { 836 /* Determine whether bm_check is needed based on CPU */ 837 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 838 bm_check_flag = pr->flags.bm_check; 839 } else { 840 pr->flags.bm_check = bm_check_flag; 841 } 842 843 if (pr->flags.bm_check) { 844 /* bus mastering control is necessary */ 845 if (!pr->flags.bm_control) { 846 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 847 "C3 support requires bus mastering control\n")); 848 return; 849 } 850 } else { 851 /* 852 * WBINVD should be set in fadt, for C3 state to be 853 * supported on when bm_check is not required. 854 */ 855 if (acpi_fadt.wb_invd != 1) { 856 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 857 "Cache invalidation should work properly" 858 " for C3 to be enabled on SMP systems\n")); 859 return; 860 } 861 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 862 0, ACPI_MTX_DO_NOT_LOCK); 863 } 864 865 /* 866 * Otherwise we've met all of our C3 requirements. 867 * Normalize the C3 latency to expidite policy. Enable 868 * checking of bus mastering status (bm_check) so we can 869 * use this in our C3 policy 870 */ 871 cx->valid = 1; 872 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 873 874 return; 875} 876 877static int acpi_processor_power_verify(struct acpi_processor *pr) 878{ 879 unsigned int i; 880 unsigned int working = 0; 881 882#ifdef ARCH_APICTIMER_STOPS_ON_C3 883 int timer_broadcast = 0; 884 cpumask_t mask = cpumask_of_cpu(pr->id); 885 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1); 886#endif 887 888 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 889 struct acpi_processor_cx *cx = &pr->power.states[i]; 890 891 switch (cx->type) { 892 case ACPI_STATE_C1: 893 cx->valid = 1; 894 break; 895 896 case ACPI_STATE_C2: 897 acpi_processor_power_verify_c2(cx); 898#ifdef ARCH_APICTIMER_STOPS_ON_C3 899 /* Some AMD systems fake C3 as C2, but still 900 have timer troubles */ 901 if (cx->valid && 902 boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 903 timer_broadcast++; 904#endif 905 break; 906 907 case ACPI_STATE_C3: 908 acpi_processor_power_verify_c3(pr, cx); 909#ifdef ARCH_APICTIMER_STOPS_ON_C3 910 if (cx->valid) 911 timer_broadcast++; 912#endif 913 break; 914 } 915 916 if (cx->valid) 917 working++; 918 } 919 920#ifdef ARCH_APICTIMER_STOPS_ON_C3 921 if (timer_broadcast) 922 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1); 923#endif 924 925 return (working); 926} 927 928static int acpi_processor_get_power_info(struct acpi_processor *pr) 929{ 930 unsigned int i; 931 int result; 932 933 934 /* NOTE: the idle thread may not be running while calling 935 * this function */ 936 937 /* Adding C1 state */ 938 acpi_processor_get_power_info_default_c1(pr); 939 result = acpi_processor_get_power_info_cst(pr); 940 if (result == -ENODEV) 941 acpi_processor_get_power_info_fadt(pr); 942 943 pr->power.count = acpi_processor_power_verify(pr); 944 945 /* 946 * Set Default Policy 947 * ------------------ 948 * Now that we know which states are supported, set the default 949 * policy. Note that this policy can be changed dynamically 950 * (e.g. encourage deeper sleeps to conserve battery life when 951 * not on AC). 952 */ 953 result = acpi_processor_set_power_policy(pr); 954 if (result) 955 return result; 956 957 /* 958 * if one state of type C2 or C3 is available, mark this 959 * CPU as being "idle manageable" 960 */ 961 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 962 if (pr->power.states[i].valid) { 963 pr->power.count = i; 964 if (pr->power.states[i].type >= ACPI_STATE_C2) 965 pr->flags.power = 1; 966 } 967 } 968 969 return 0; 970} 971 972int acpi_processor_cst_has_changed(struct acpi_processor *pr) 973{ 974 int result = 0; 975 976 977 if (!pr) 978 return -EINVAL; 979 980 if (nocst) { 981 return -ENODEV; 982 } 983 984 if (!pr->flags.power_setup_done) 985 return -ENODEV; 986 987 /* Fall back to the default idle loop */ 988 pm_idle = pm_idle_save; 989 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */ 990 991 pr->flags.power = 0; 992 result = acpi_processor_get_power_info(pr); 993 if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) 994 pm_idle = acpi_processor_idle; 995 996 return result; 997} 998 999/* proc interface */ 1000 1001static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 1002{ 1003 struct acpi_processor *pr = (struct acpi_processor *)seq->private; 1004 unsigned int i; 1005 1006 1007 if (!pr) 1008 goto end; 1009 1010 seq_printf(seq, "active state: C%zd\n" 1011 "max_cstate: C%d\n" 1012 "bus master activity: %08x\n", 1013 pr->power.state ? pr->power.state - pr->power.states : 0, 1014 max_cstate, (unsigned)pr->power.bm_activity); 1015 1016 seq_puts(seq, "states:\n"); 1017 1018 for (i = 1; i <= pr->power.count; i++) { 1019 seq_printf(seq, " %cC%d: ", 1020 (&pr->power.states[i] == 1021 pr->power.state ? '*' : ' '), i); 1022 1023 if (!pr->power.states[i].valid) { 1024 seq_puts(seq, "<not supported>\n"); 1025 continue; 1026 } 1027 1028 switch (pr->power.states[i].type) { 1029 case ACPI_STATE_C1: 1030 seq_printf(seq, "type[C1] "); 1031 break; 1032 case ACPI_STATE_C2: 1033 seq_printf(seq, "type[C2] "); 1034 break; 1035 case ACPI_STATE_C3: 1036 seq_printf(seq, "type[C3] "); 1037 break; 1038 default: 1039 seq_printf(seq, "type[--] "); 1040 break; 1041 } 1042 1043 if (pr->power.states[i].promotion.state) 1044 seq_printf(seq, "promotion[C%zd] ", 1045 (pr->power.states[i].promotion.state - 1046 pr->power.states)); 1047 else 1048 seq_puts(seq, "promotion[--] "); 1049 1050 if (pr->power.states[i].demotion.state) 1051 seq_printf(seq, "demotion[C%zd] ", 1052 (pr->power.states[i].demotion.state - 1053 pr->power.states)); 1054 else 1055 seq_puts(seq, "demotion[--] "); 1056 1057 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 1058 pr->power.states[i].latency, 1059 pr->power.states[i].usage, 1060 pr->power.states[i].time); 1061 } 1062 1063 end: 1064 return 0; 1065} 1066 1067static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 1068{ 1069 return single_open(file, acpi_processor_power_seq_show, 1070 PDE(inode)->data); 1071} 1072 1073static const struct file_operations acpi_processor_power_fops = { 1074 .open = acpi_processor_power_open_fs, 1075 .read = seq_read, 1076 .llseek = seq_lseek, 1077 .release = single_release, 1078}; 1079 1080int acpi_processor_power_init(struct acpi_processor *pr, 1081 struct acpi_device *device) 1082{ 1083 acpi_status status = 0; 1084 static int first_run; 1085 struct proc_dir_entry *entry = NULL; 1086 unsigned int i; 1087 1088 1089 if (!first_run) { 1090 dmi_check_system(processor_power_dmi_table); 1091 if (max_cstate < ACPI_C_STATES_MAX) 1092 printk(KERN_NOTICE 1093 "ACPI: processor limited to max C-state %d\n", 1094 max_cstate); 1095 first_run++; 1096 } 1097 1098 if (!pr) 1099 return -EINVAL; 1100 1101 if (acpi_fadt.cst_cnt && !nocst) { 1102 status = 1103 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8); 1104 if (ACPI_FAILURE(status)) { 1105 ACPI_EXCEPTION((AE_INFO, status, 1106 "Notifying BIOS of _CST ability failed")); 1107 } 1108 } 1109 1110 acpi_processor_get_power_info(pr); 1111 1112 /* 1113 * Install the idle handler if processor power management is supported. 1114 * Note that we use previously set idle handler will be used on 1115 * platforms that only support C1. 1116 */ 1117 if ((pr->flags.power) && (!boot_option_idle_override)) { 1118 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); 1119 for (i = 1; i <= pr->power.count; i++) 1120 if (pr->power.states[i].valid) 1121 printk(" C%d[C%d]", i, 1122 pr->power.states[i].type); 1123 printk(")\n"); 1124 1125 if (pr->id == 0) { 1126 pm_idle_save = pm_idle; 1127 pm_idle = acpi_processor_idle; 1128 } 1129 } 1130 1131 /* 'power' [R] */ 1132 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1133 S_IRUGO, acpi_device_dir(device)); 1134 if (!entry) 1135 return -EIO; 1136 else { 1137 entry->proc_fops = &acpi_processor_power_fops; 1138 entry->data = acpi_driver_data(device); 1139 entry->owner = THIS_MODULE; 1140 } 1141 1142 pr->flags.power_setup_done = 1; 1143 1144 return 0; 1145} 1146 1147int acpi_processor_power_exit(struct acpi_processor *pr, 1148 struct acpi_device *device) 1149{ 1150 1151 pr->flags.power_setup_done = 0; 1152 1153 if (acpi_device_dir(device)) 1154 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1155 acpi_device_dir(device)); 1156 1157 /* Unregister the idle handler when processor #0 is removed. */ 1158 if (pr->id == 0) { 1159 pm_idle = pm_idle_save; 1160 1161 /* 1162 * We are about to unload the current idle thread pm callback 1163 * (pm_idle), Wait for all processors to update cached/local 1164 * copies of pm_idle before proceeding. 1165 */ 1166 cpu_idle_wait(); 1167 } 1168 1169 return 0; 1170}