at v2.6.18-rc2 105 kB view raw
1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/fs.h> 26#include <linux/binfmts.h> 27#include <linux/signal.h> 28#include <linux/resource.h> 29#include <linux/sem.h> 30#include <linux/shm.h> 31#include <linux/msg.h> 32#include <linux/sched.h> 33#include <linux/key.h> 34 35struct ctl_table; 36 37/* 38 * These functions are in security/capability.c and are used 39 * as the default capabilities functions 40 */ 41extern int cap_capable (struct task_struct *tsk, int cap); 42extern int cap_settime (struct timespec *ts, struct timezone *tz); 43extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 44extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 45extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 46extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47extern int cap_bprm_set_security (struct linux_binprm *bprm); 48extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 49extern int cap_bprm_secureexec(struct linux_binprm *bprm); 50extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 51extern int cap_inode_removexattr(struct dentry *dentry, char *name); 52extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 53extern void cap_task_reparent_to_init (struct task_struct *p); 54extern int cap_syslog (int type); 55extern int cap_vm_enough_memory (long pages); 56 57struct msghdr; 58struct sk_buff; 59struct sock; 60struct sockaddr; 61struct socket; 62struct flowi; 63struct dst_entry; 64struct xfrm_selector; 65struct xfrm_policy; 66struct xfrm_state; 67struct xfrm_user_sec_ctx; 68 69extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 70extern int cap_netlink_recv(struct sk_buff *skb, int cap); 71 72/* 73 * Values used in the task_security_ops calls 74 */ 75/* setuid or setgid, id0 == uid or gid */ 76#define LSM_SETID_ID 1 77 78/* setreuid or setregid, id0 == real, id1 == eff */ 79#define LSM_SETID_RE 2 80 81/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 82#define LSM_SETID_RES 4 83 84/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 85#define LSM_SETID_FS 8 86 87/* forward declares to avoid warnings */ 88struct nfsctl_arg; 89struct sched_param; 90struct swap_info_struct; 91 92/* bprm_apply_creds unsafe reasons */ 93#define LSM_UNSAFE_SHARE 1 94#define LSM_UNSAFE_PTRACE 2 95#define LSM_UNSAFE_PTRACE_CAP 4 96 97#ifdef CONFIG_SECURITY 98 99/** 100 * struct security_operations - main security structure 101 * 102 * Security hooks for program execution operations. 103 * 104 * @bprm_alloc_security: 105 * Allocate and attach a security structure to the @bprm->security field. 106 * The security field is initialized to NULL when the bprm structure is 107 * allocated. 108 * @bprm contains the linux_binprm structure to be modified. 109 * Return 0 if operation was successful. 110 * @bprm_free_security: 111 * @bprm contains the linux_binprm structure to be modified. 112 * Deallocate and clear the @bprm->security field. 113 * @bprm_apply_creds: 114 * Compute and set the security attributes of a process being transformed 115 * by an execve operation based on the old attributes (current->security) 116 * and the information saved in @bprm->security by the set_security hook. 117 * Since this hook function (and its caller) are void, this hook can not 118 * return an error. However, it can leave the security attributes of the 119 * process unchanged if an access failure occurs at this point. 120 * bprm_apply_creds is called under task_lock. @unsafe indicates various 121 * reasons why it may be unsafe to change security state. 122 * @bprm contains the linux_binprm structure. 123 * @bprm_post_apply_creds: 124 * Runs after bprm_apply_creds with the task_lock dropped, so that 125 * functions which cannot be called safely under the task_lock can 126 * be used. This hook is a good place to perform state changes on 127 * the process such as closing open file descriptors to which access 128 * is no longer granted if the attributes were changed. 129 * Note that a security module might need to save state between 130 * bprm_apply_creds and bprm_post_apply_creds to store the decision 131 * on whether the process may proceed. 132 * @bprm contains the linux_binprm structure. 133 * @bprm_set_security: 134 * Save security information in the bprm->security field, typically based 135 * on information about the bprm->file, for later use by the apply_creds 136 * hook. This hook may also optionally check permissions (e.g. for 137 * transitions between security domains). 138 * This hook may be called multiple times during a single execve, e.g. for 139 * interpreters. The hook can tell whether it has already been called by 140 * checking to see if @bprm->security is non-NULL. If so, then the hook 141 * may decide either to retain the security information saved earlier or 142 * to replace it. 143 * @bprm contains the linux_binprm structure. 144 * Return 0 if the hook is successful and permission is granted. 145 * @bprm_check_security: 146 * This hook mediates the point when a search for a binary handler will 147 * begin. It allows a check the @bprm->security value which is set in 148 * the preceding set_security call. The primary difference from 149 * set_security is that the argv list and envp list are reliably 150 * available in @bprm. This hook may be called multiple times 151 * during a single execve; and in each pass set_security is called 152 * first. 153 * @bprm contains the linux_binprm structure. 154 * Return 0 if the hook is successful and permission is granted. 155 * @bprm_secureexec: 156 * Return a boolean value (0 or 1) indicating whether a "secure exec" 157 * is required. The flag is passed in the auxiliary table 158 * on the initial stack to the ELF interpreter to indicate whether libc 159 * should enable secure mode. 160 * @bprm contains the linux_binprm structure. 161 * 162 * Security hooks for filesystem operations. 163 * 164 * @sb_alloc_security: 165 * Allocate and attach a security structure to the sb->s_security field. 166 * The s_security field is initialized to NULL when the structure is 167 * allocated. 168 * @sb contains the super_block structure to be modified. 169 * Return 0 if operation was successful. 170 * @sb_free_security: 171 * Deallocate and clear the sb->s_security field. 172 * @sb contains the super_block structure to be modified. 173 * @sb_statfs: 174 * Check permission before obtaining filesystem statistics for the @mnt 175 * mountpoint. 176 * @dentry is a handle on the superblock for the filesystem. 177 * Return 0 if permission is granted. 178 * @sb_mount: 179 * Check permission before an object specified by @dev_name is mounted on 180 * the mount point named by @nd. For an ordinary mount, @dev_name 181 * identifies a device if the file system type requires a device. For a 182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 184 * pathname of the object being mounted. 185 * @dev_name contains the name for object being mounted. 186 * @nd contains the nameidata structure for mount point object. 187 * @type contains the filesystem type. 188 * @flags contains the mount flags. 189 * @data contains the filesystem-specific data. 190 * Return 0 if permission is granted. 191 * @sb_copy_data: 192 * Allow mount option data to be copied prior to parsing by the filesystem, 193 * so that the security module can extract security-specific mount 194 * options cleanly (a filesystem may modify the data e.g. with strsep()). 195 * This also allows the original mount data to be stripped of security- 196 * specific options to avoid having to make filesystems aware of them. 197 * @type the type of filesystem being mounted. 198 * @orig the original mount data copied from userspace. 199 * @copy copied data which will be passed to the security module. 200 * Returns 0 if the copy was successful. 201 * @sb_check_sb: 202 * Check permission before the device with superblock @mnt->sb is mounted 203 * on the mount point named by @nd. 204 * @mnt contains the vfsmount for device being mounted. 205 * @nd contains the nameidata object for the mount point. 206 * Return 0 if permission is granted. 207 * @sb_umount: 208 * Check permission before the @mnt file system is unmounted. 209 * @mnt contains the mounted file system. 210 * @flags contains the unmount flags, e.g. MNT_FORCE. 211 * Return 0 if permission is granted. 212 * @sb_umount_close: 213 * Close any files in the @mnt mounted filesystem that are held open by 214 * the security module. This hook is called during an umount operation 215 * prior to checking whether the filesystem is still busy. 216 * @mnt contains the mounted filesystem. 217 * @sb_umount_busy: 218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 219 * any files that were closed by umount_close. This hook is called during 220 * an umount operation if the umount fails after a call to the 221 * umount_close hook. 222 * @mnt contains the mounted filesystem. 223 * @sb_post_remount: 224 * Update the security module's state when a filesystem is remounted. 225 * This hook is only called if the remount was successful. 226 * @mnt contains the mounted file system. 227 * @flags contains the new filesystem flags. 228 * @data contains the filesystem-specific data. 229 * @sb_post_mountroot: 230 * Update the security module's state when the root filesystem is mounted. 231 * This hook is only called if the mount was successful. 232 * @sb_post_addmount: 233 * Update the security module's state when a filesystem is mounted. 234 * This hook is called any time a mount is successfully grafetd to 235 * the tree. 236 * @mnt contains the mounted filesystem. 237 * @mountpoint_nd contains the nameidata structure for the mount point. 238 * @sb_pivotroot: 239 * Check permission before pivoting the root filesystem. 240 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 241 * @new_nd contains the nameidata structure for the new root (new_root). 242 * Return 0 if permission is granted. 243 * @sb_post_pivotroot: 244 * Update module state after a successful pivot. 245 * @old_nd contains the nameidata structure for the old root. 246 * @new_nd contains the nameidata structure for the new root. 247 * 248 * Security hooks for inode operations. 249 * 250 * @inode_alloc_security: 251 * Allocate and attach a security structure to @inode->i_security. The 252 * i_security field is initialized to NULL when the inode structure is 253 * allocated. 254 * @inode contains the inode structure. 255 * Return 0 if operation was successful. 256 * @inode_free_security: 257 * @inode contains the inode structure. 258 * Deallocate the inode security structure and set @inode->i_security to 259 * NULL. 260 * @inode_init_security: 261 * Obtain the security attribute name suffix and value to set on a newly 262 * created inode and set up the incore security field for the new inode. 263 * This hook is called by the fs code as part of the inode creation 264 * transaction and provides for atomic labeling of the inode, unlike 265 * the post_create/mkdir/... hooks called by the VFS. The hook function 266 * is expected to allocate the name and value via kmalloc, with the caller 267 * being responsible for calling kfree after using them. 268 * If the security module does not use security attributes or does 269 * not wish to put a security attribute on this particular inode, 270 * then it should return -EOPNOTSUPP to skip this processing. 271 * @inode contains the inode structure of the newly created inode. 272 * @dir contains the inode structure of the parent directory. 273 * @name will be set to the allocated name suffix (e.g. selinux). 274 * @value will be set to the allocated attribute value. 275 * @len will be set to the length of the value. 276 * Returns 0 if @name and @value have been successfully set, 277 * -EOPNOTSUPP if no security attribute is needed, or 278 * -ENOMEM on memory allocation failure. 279 * @inode_create: 280 * Check permission to create a regular file. 281 * @dir contains inode structure of the parent of the new file. 282 * @dentry contains the dentry structure for the file to be created. 283 * @mode contains the file mode of the file to be created. 284 * Return 0 if permission is granted. 285 * @inode_link: 286 * Check permission before creating a new hard link to a file. 287 * @old_dentry contains the dentry structure for an existing link to the file. 288 * @dir contains the inode structure of the parent directory of the new link. 289 * @new_dentry contains the dentry structure for the new link. 290 * Return 0 if permission is granted. 291 * @inode_unlink: 292 * Check the permission to remove a hard link to a file. 293 * @dir contains the inode structure of parent directory of the file. 294 * @dentry contains the dentry structure for file to be unlinked. 295 * Return 0 if permission is granted. 296 * @inode_symlink: 297 * Check the permission to create a symbolic link to a file. 298 * @dir contains the inode structure of parent directory of the symbolic link. 299 * @dentry contains the dentry structure of the symbolic link. 300 * @old_name contains the pathname of file. 301 * Return 0 if permission is granted. 302 * @inode_mkdir: 303 * Check permissions to create a new directory in the existing directory 304 * associated with inode strcture @dir. 305 * @dir containst the inode structure of parent of the directory to be created. 306 * @dentry contains the dentry structure of new directory. 307 * @mode contains the mode of new directory. 308 * Return 0 if permission is granted. 309 * @inode_rmdir: 310 * Check the permission to remove a directory. 311 * @dir contains the inode structure of parent of the directory to be removed. 312 * @dentry contains the dentry structure of directory to be removed. 313 * Return 0 if permission is granted. 314 * @inode_mknod: 315 * Check permissions when creating a special file (or a socket or a fifo 316 * file created via the mknod system call). Note that if mknod operation 317 * is being done for a regular file, then the create hook will be called 318 * and not this hook. 319 * @dir contains the inode structure of parent of the new file. 320 * @dentry contains the dentry structure of the new file. 321 * @mode contains the mode of the new file. 322 * @dev contains the the device number. 323 * Return 0 if permission is granted. 324 * @inode_rename: 325 * Check for permission to rename a file or directory. 326 * @old_dir contains the inode structure for parent of the old link. 327 * @old_dentry contains the dentry structure of the old link. 328 * @new_dir contains the inode structure for parent of the new link. 329 * @new_dentry contains the dentry structure of the new link. 330 * Return 0 if permission is granted. 331 * @inode_readlink: 332 * Check the permission to read the symbolic link. 333 * @dentry contains the dentry structure for the file link. 334 * Return 0 if permission is granted. 335 * @inode_follow_link: 336 * Check permission to follow a symbolic link when looking up a pathname. 337 * @dentry contains the dentry structure for the link. 338 * @nd contains the nameidata structure for the parent directory. 339 * Return 0 if permission is granted. 340 * @inode_permission: 341 * Check permission before accessing an inode. This hook is called by the 342 * existing Linux permission function, so a security module can use it to 343 * provide additional checking for existing Linux permission checks. 344 * Notice that this hook is called when a file is opened (as well as many 345 * other operations), whereas the file_security_ops permission hook is 346 * called when the actual read/write operations are performed. 347 * @inode contains the inode structure to check. 348 * @mask contains the permission mask. 349 * @nd contains the nameidata (may be NULL). 350 * Return 0 if permission is granted. 351 * @inode_setattr: 352 * Check permission before setting file attributes. Note that the kernel 353 * call to notify_change is performed from several locations, whenever 354 * file attributes change (such as when a file is truncated, chown/chmod 355 * operations, transferring disk quotas, etc). 356 * @dentry contains the dentry structure for the file. 357 * @attr is the iattr structure containing the new file attributes. 358 * Return 0 if permission is granted. 359 * @inode_getattr: 360 * Check permission before obtaining file attributes. 361 * @mnt is the vfsmount where the dentry was looked up 362 * @dentry contains the dentry structure for the file. 363 * Return 0 if permission is granted. 364 * @inode_delete: 365 * @inode contains the inode structure for deleted inode. 366 * This hook is called when a deleted inode is released (i.e. an inode 367 * with no hard links has its use count drop to zero). A security module 368 * can use this hook to release any persistent label associated with the 369 * inode. 370 * @inode_setxattr: 371 * Check permission before setting the extended attributes 372 * @value identified by @name for @dentry. 373 * Return 0 if permission is granted. 374 * @inode_post_setxattr: 375 * Update inode security field after successful setxattr operation. 376 * @value identified by @name for @dentry. 377 * @inode_getxattr: 378 * Check permission before obtaining the extended attributes 379 * identified by @name for @dentry. 380 * Return 0 if permission is granted. 381 * @inode_listxattr: 382 * Check permission before obtaining the list of extended attribute 383 * names for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_removexattr: 386 * Check permission before removing the extended attribute 387 * identified by @name for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_getsecurity: 390 * Copy the extended attribute representation of the security label 391 * associated with @name for @inode into @buffer. @buffer may be 392 * NULL to request the size of the buffer required. @size indicates 393 * the size of @buffer in bytes. Note that @name is the remainder 394 * of the attribute name after the security. prefix has been removed. 395 * @err is the return value from the preceding fs getxattr call, 396 * and can be used by the security module to determine whether it 397 * should try and canonicalize the attribute value. 398 * Return number of bytes used/required on success. 399 * @inode_setsecurity: 400 * Set the security label associated with @name for @inode from the 401 * extended attribute value @value. @size indicates the size of the 402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 403 * Note that @name is the remainder of the attribute name after the 404 * security. prefix has been removed. 405 * Return 0 on success. 406 * @inode_listsecurity: 407 * Copy the extended attribute names for the security labels 408 * associated with @inode into @buffer. The maximum size of @buffer 409 * is specified by @buffer_size. @buffer may be NULL to request 410 * the size of the buffer required. 411 * Returns number of bytes used/required on success. 412 * 413 * Security hooks for file operations 414 * 415 * @file_permission: 416 * Check file permissions before accessing an open file. This hook is 417 * called by various operations that read or write files. A security 418 * module can use this hook to perform additional checking on these 419 * operations, e.g. to revalidate permissions on use to support privilege 420 * bracketing or policy changes. Notice that this hook is used when the 421 * actual read/write operations are performed, whereas the 422 * inode_security_ops hook is called when a file is opened (as well as 423 * many other operations). 424 * Caveat: Although this hook can be used to revalidate permissions for 425 * various system call operations that read or write files, it does not 426 * address the revalidation of permissions for memory-mapped files. 427 * Security modules must handle this separately if they need such 428 * revalidation. 429 * @file contains the file structure being accessed. 430 * @mask contains the requested permissions. 431 * Return 0 if permission is granted. 432 * @file_alloc_security: 433 * Allocate and attach a security structure to the file->f_security field. 434 * The security field is initialized to NULL when the structure is first 435 * created. 436 * @file contains the file structure to secure. 437 * Return 0 if the hook is successful and permission is granted. 438 * @file_free_security: 439 * Deallocate and free any security structures stored in file->f_security. 440 * @file contains the file structure being modified. 441 * @file_ioctl: 442 * @file contains the file structure. 443 * @cmd contains the operation to perform. 444 * @arg contains the operational arguments. 445 * Check permission for an ioctl operation on @file. Note that @arg can 446 * sometimes represents a user space pointer; in other cases, it may be a 447 * simple integer value. When @arg represents a user space pointer, it 448 * should never be used by the security module. 449 * Return 0 if permission is granted. 450 * @file_mmap : 451 * Check permissions for a mmap operation. The @file may be NULL, e.g. 452 * if mapping anonymous memory. 453 * @file contains the file structure for file to map (may be NULL). 454 * @reqprot contains the protection requested by the application. 455 * @prot contains the protection that will be applied by the kernel. 456 * @flags contains the operational flags. 457 * Return 0 if permission is granted. 458 * @file_mprotect: 459 * Check permissions before changing memory access permissions. 460 * @vma contains the memory region to modify. 461 * @reqprot contains the protection requested by the application. 462 * @prot contains the protection that will be applied by the kernel. 463 * Return 0 if permission is granted. 464 * @file_lock: 465 * Check permission before performing file locking operations. 466 * Note: this hook mediates both flock and fcntl style locks. 467 * @file contains the file structure. 468 * @cmd contains the posix-translated lock operation to perform 469 * (e.g. F_RDLCK, F_WRLCK). 470 * Return 0 if permission is granted. 471 * @file_fcntl: 472 * Check permission before allowing the file operation specified by @cmd 473 * from being performed on the file @file. Note that @arg can sometimes 474 * represents a user space pointer; in other cases, it may be a simple 475 * integer value. When @arg represents a user space pointer, it should 476 * never be used by the security module. 477 * @file contains the file structure. 478 * @cmd contains the operation to be performed. 479 * @arg contains the operational arguments. 480 * Return 0 if permission is granted. 481 * @file_set_fowner: 482 * Save owner security information (typically from current->security) in 483 * file->f_security for later use by the send_sigiotask hook. 484 * @file contains the file structure to update. 485 * Return 0 on success. 486 * @file_send_sigiotask: 487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 488 * process @tsk. Note that this hook is sometimes called from interrupt. 489 * Note that the fown_struct, @fown, is never outside the context of a 490 * struct file, so the file structure (and associated security information) 491 * can always be obtained: 492 * (struct file *)((long)fown - offsetof(struct file,f_owner)); 493 * @tsk contains the structure of task receiving signal. 494 * @fown contains the file owner information. 495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 496 * Return 0 if permission is granted. 497 * @file_receive: 498 * This hook allows security modules to control the ability of a process 499 * to receive an open file descriptor via socket IPC. 500 * @file contains the file structure being received. 501 * Return 0 if permission is granted. 502 * 503 * Security hooks for task operations. 504 * 505 * @task_create: 506 * Check permission before creating a child process. See the clone(2) 507 * manual page for definitions of the @clone_flags. 508 * @clone_flags contains the flags indicating what should be shared. 509 * Return 0 if permission is granted. 510 * @task_alloc_security: 511 * @p contains the task_struct for child process. 512 * Allocate and attach a security structure to the p->security field. The 513 * security field is initialized to NULL when the task structure is 514 * allocated. 515 * Return 0 if operation was successful. 516 * @task_free_security: 517 * @p contains the task_struct for process. 518 * Deallocate and clear the p->security field. 519 * @task_setuid: 520 * Check permission before setting one or more of the user identity 521 * attributes of the current process. The @flags parameter indicates 522 * which of the set*uid system calls invoked this hook and how to 523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 524 * definitions at the beginning of this file for the @flags values and 525 * their meanings. 526 * @id0 contains a uid. 527 * @id1 contains a uid. 528 * @id2 contains a uid. 529 * @flags contains one of the LSM_SETID_* values. 530 * Return 0 if permission is granted. 531 * @task_post_setuid: 532 * Update the module's state after setting one or more of the user 533 * identity attributes of the current process. The @flags parameter 534 * indicates which of the set*uid system calls invoked this hook. If 535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 536 * parameters are not used. 537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 540 * @flags contains one of the LSM_SETID_* values. 541 * Return 0 on success. 542 * @task_setgid: 543 * Check permission before setting one or more of the group identity 544 * attributes of the current process. The @flags parameter indicates 545 * which of the set*gid system calls invoked this hook and how to 546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 547 * definitions at the beginning of this file for the @flags values and 548 * their meanings. 549 * @id0 contains a gid. 550 * @id1 contains a gid. 551 * @id2 contains a gid. 552 * @flags contains one of the LSM_SETID_* values. 553 * Return 0 if permission is granted. 554 * @task_setpgid: 555 * Check permission before setting the process group identifier of the 556 * process @p to @pgid. 557 * @p contains the task_struct for process being modified. 558 * @pgid contains the new pgid. 559 * Return 0 if permission is granted. 560 * @task_getpgid: 561 * Check permission before getting the process group identifier of the 562 * process @p. 563 * @p contains the task_struct for the process. 564 * Return 0 if permission is granted. 565 * @task_getsid: 566 * Check permission before getting the session identifier of the process 567 * @p. 568 * @p contains the task_struct for the process. 569 * Return 0 if permission is granted. 570 * @task_getsecid: 571 * Retrieve the security identifier of the process @p. 572 * @p contains the task_struct for the process and place is into @secid. 573 * @task_setgroups: 574 * Check permission before setting the supplementary group set of the 575 * current process. 576 * @group_info contains the new group information. 577 * Return 0 if permission is granted. 578 * @task_setnice: 579 * Check permission before setting the nice value of @p to @nice. 580 * @p contains the task_struct of process. 581 * @nice contains the new nice value. 582 * Return 0 if permission is granted. 583 * @task_setioprio 584 * Check permission before setting the ioprio value of @p to @ioprio. 585 * @p contains the task_struct of process. 586 * @ioprio contains the new ioprio value 587 * Return 0 if permission is granted. 588 * @task_getioprio 589 * Check permission before getting the ioprio value of @p. 590 * @p contains the task_struct of process. 591 * Return 0 if permission is granted. 592 * @task_setrlimit: 593 * Check permission before setting the resource limits of the current 594 * process for @resource to @new_rlim. The old resource limit values can 595 * be examined by dereferencing (current->signal->rlim + resource). 596 * @resource contains the resource whose limit is being set. 597 * @new_rlim contains the new limits for @resource. 598 * Return 0 if permission is granted. 599 * @task_setscheduler: 600 * Check permission before setting scheduling policy and/or parameters of 601 * process @p based on @policy and @lp. 602 * @p contains the task_struct for process. 603 * @policy contains the scheduling policy. 604 * @lp contains the scheduling parameters. 605 * Return 0 if permission is granted. 606 * @task_getscheduler: 607 * Check permission before obtaining scheduling information for process 608 * @p. 609 * @p contains the task_struct for process. 610 * Return 0 if permission is granted. 611 * @task_movememory 612 * Check permission before moving memory owned by process @p. 613 * @p contains the task_struct for process. 614 * Return 0 if permission is granted. 615 * @task_kill: 616 * Check permission before sending signal @sig to @p. @info can be NULL, 617 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 618 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 619 * from the kernel and should typically be permitted. 620 * SIGIO signals are handled separately by the send_sigiotask hook in 621 * file_security_ops. 622 * @p contains the task_struct for process. 623 * @info contains the signal information. 624 * @sig contains the signal value. 625 * @secid contains the sid of the process where the signal originated 626 * Return 0 if permission is granted. 627 * @task_wait: 628 * Check permission before allowing a process to reap a child process @p 629 * and collect its status information. 630 * @p contains the task_struct for process. 631 * Return 0 if permission is granted. 632 * @task_prctl: 633 * Check permission before performing a process control operation on the 634 * current process. 635 * @option contains the operation. 636 * @arg2 contains a argument. 637 * @arg3 contains a argument. 638 * @arg4 contains a argument. 639 * @arg5 contains a argument. 640 * Return 0 if permission is granted. 641 * @task_reparent_to_init: 642 * Set the security attributes in @p->security for a kernel thread that 643 * is being reparented to the init task. 644 * @p contains the task_struct for the kernel thread. 645 * @task_to_inode: 646 * Set the security attributes for an inode based on an associated task's 647 * security attributes, e.g. for /proc/pid inodes. 648 * @p contains the task_struct for the task. 649 * @inode contains the inode structure for the inode. 650 * 651 * Security hooks for Netlink messaging. 652 * 653 * @netlink_send: 654 * Save security information for a netlink message so that permission 655 * checking can be performed when the message is processed. The security 656 * information can be saved using the eff_cap field of the 657 * netlink_skb_parms structure. Also may be used to provide fine 658 * grained control over message transmission. 659 * @sk associated sock of task sending the message., 660 * @skb contains the sk_buff structure for the netlink message. 661 * Return 0 if the information was successfully saved and message 662 * is allowed to be transmitted. 663 * @netlink_recv: 664 * Check permission before processing the received netlink message in 665 * @skb. 666 * @skb contains the sk_buff structure for the netlink message. 667 * @cap indicates the capability required 668 * Return 0 if permission is granted. 669 * 670 * Security hooks for Unix domain networking. 671 * 672 * @unix_stream_connect: 673 * Check permissions before establishing a Unix domain stream connection 674 * between @sock and @other. 675 * @sock contains the socket structure. 676 * @other contains the peer socket structure. 677 * Return 0 if permission is granted. 678 * @unix_may_send: 679 * Check permissions before connecting or sending datagrams from @sock to 680 * @other. 681 * @sock contains the socket structure. 682 * @sock contains the peer socket structure. 683 * Return 0 if permission is granted. 684 * 685 * The @unix_stream_connect and @unix_may_send hooks were necessary because 686 * Linux provides an alternative to the conventional file name space for Unix 687 * domain sockets. Whereas binding and connecting to sockets in the file name 688 * space is mediated by the typical file permissions (and caught by the mknod 689 * and permission hooks in inode_security_ops), binding and connecting to 690 * sockets in the abstract name space is completely unmediated. Sufficient 691 * control of Unix domain sockets in the abstract name space isn't possible 692 * using only the socket layer hooks, since we need to know the actual target 693 * socket, which is not looked up until we are inside the af_unix code. 694 * 695 * Security hooks for socket operations. 696 * 697 * @socket_create: 698 * Check permissions prior to creating a new socket. 699 * @family contains the requested protocol family. 700 * @type contains the requested communications type. 701 * @protocol contains the requested protocol. 702 * @kern set to 1 if a kernel socket. 703 * Return 0 if permission is granted. 704 * @socket_post_create: 705 * This hook allows a module to update or allocate a per-socket security 706 * structure. Note that the security field was not added directly to the 707 * socket structure, but rather, the socket security information is stored 708 * in the associated inode. Typically, the inode alloc_security hook will 709 * allocate and and attach security information to 710 * sock->inode->i_security. This hook may be used to update the 711 * sock->inode->i_security field with additional information that wasn't 712 * available when the inode was allocated. 713 * @sock contains the newly created socket structure. 714 * @family contains the requested protocol family. 715 * @type contains the requested communications type. 716 * @protocol contains the requested protocol. 717 * @kern set to 1 if a kernel socket. 718 * @socket_bind: 719 * Check permission before socket protocol layer bind operation is 720 * performed and the socket @sock is bound to the address specified in the 721 * @address parameter. 722 * @sock contains the socket structure. 723 * @address contains the address to bind to. 724 * @addrlen contains the length of address. 725 * Return 0 if permission is granted. 726 * @socket_connect: 727 * Check permission before socket protocol layer connect operation 728 * attempts to connect socket @sock to a remote address, @address. 729 * @sock contains the socket structure. 730 * @address contains the address of remote endpoint. 731 * @addrlen contains the length of address. 732 * Return 0 if permission is granted. 733 * @socket_listen: 734 * Check permission before socket protocol layer listen operation. 735 * @sock contains the socket structure. 736 * @backlog contains the maximum length for the pending connection queue. 737 * Return 0 if permission is granted. 738 * @socket_accept: 739 * Check permission before accepting a new connection. Note that the new 740 * socket, @newsock, has been created and some information copied to it, 741 * but the accept operation has not actually been performed. 742 * @sock contains the listening socket structure. 743 * @newsock contains the newly created server socket for connection. 744 * Return 0 if permission is granted. 745 * @socket_post_accept: 746 * This hook allows a security module to copy security 747 * information into the newly created socket's inode. 748 * @sock contains the listening socket structure. 749 * @newsock contains the newly created server socket for connection. 750 * @socket_sendmsg: 751 * Check permission before transmitting a message to another socket. 752 * @sock contains the socket structure. 753 * @msg contains the message to be transmitted. 754 * @size contains the size of message. 755 * Return 0 if permission is granted. 756 * @socket_recvmsg: 757 * Check permission before receiving a message from a socket. 758 * @sock contains the socket structure. 759 * @msg contains the message structure. 760 * @size contains the size of message structure. 761 * @flags contains the operational flags. 762 * Return 0 if permission is granted. 763 * @socket_getsockname: 764 * Check permission before the local address (name) of the socket object 765 * @sock is retrieved. 766 * @sock contains the socket structure. 767 * Return 0 if permission is granted. 768 * @socket_getpeername: 769 * Check permission before the remote address (name) of a socket object 770 * @sock is retrieved. 771 * @sock contains the socket structure. 772 * Return 0 if permission is granted. 773 * @socket_getsockopt: 774 * Check permissions before retrieving the options associated with socket 775 * @sock. 776 * @sock contains the socket structure. 777 * @level contains the protocol level to retrieve option from. 778 * @optname contains the name of option to retrieve. 779 * Return 0 if permission is granted. 780 * @socket_setsockopt: 781 * Check permissions before setting the options associated with socket 782 * @sock. 783 * @sock contains the socket structure. 784 * @level contains the protocol level to set options for. 785 * @optname contains the name of the option to set. 786 * Return 0 if permission is granted. 787 * @socket_shutdown: 788 * Checks permission before all or part of a connection on the socket 789 * @sock is shut down. 790 * @sock contains the socket structure. 791 * @how contains the flag indicating how future sends and receives are handled. 792 * Return 0 if permission is granted. 793 * @socket_sock_rcv_skb: 794 * Check permissions on incoming network packets. This hook is distinct 795 * from Netfilter's IP input hooks since it is the first time that the 796 * incoming sk_buff @skb has been associated with a particular socket, @sk. 797 * @sk contains the sock (not socket) associated with the incoming sk_buff. 798 * @skb contains the incoming network data. 799 * @socket_getpeersec: 800 * This hook allows the security module to provide peer socket security 801 * state to userspace via getsockopt SO_GETPEERSEC. 802 * @sock is the local socket. 803 * @optval userspace memory where the security state is to be copied. 804 * @optlen userspace int where the module should copy the actual length 805 * of the security state. 806 * @len as input is the maximum length to copy to userspace provided 807 * by the caller. 808 * Return 0 if all is well, otherwise, typical getsockopt return 809 * values. 810 * @sk_alloc_security: 811 * Allocate and attach a security structure to the sk->sk_security field, 812 * which is used to copy security attributes between local stream sockets. 813 * @sk_free_security: 814 * Deallocate security structure. 815 * @sk_getsid: 816 * Retrieve the LSM-specific sid for the sock to enable caching of network 817 * authorizations. 818 * 819 * Security hooks for XFRM operations. 820 * 821 * @xfrm_policy_alloc_security: 822 * @xp contains the xfrm_policy being added to Security Policy Database 823 * used by the XFRM system. 824 * @sec_ctx contains the security context information being provided by 825 * the user-level policy update program (e.g., setkey). 826 * Allocate a security structure to the xp->security field. 827 * The security field is initialized to NULL when the xfrm_policy is 828 * allocated. 829 * Return 0 if operation was successful (memory to allocate, legal context) 830 * @xfrm_policy_clone_security: 831 * @old contains an existing xfrm_policy in the SPD. 832 * @new contains a new xfrm_policy being cloned from old. 833 * Allocate a security structure to the new->security field 834 * that contains the information from the old->security field. 835 * Return 0 if operation was successful (memory to allocate). 836 * @xfrm_policy_free_security: 837 * @xp contains the xfrm_policy 838 * Deallocate xp->security. 839 * @xfrm_policy_delete_security: 840 * @xp contains the xfrm_policy. 841 * Authorize deletion of xp->security. 842 * @xfrm_state_alloc_security: 843 * @x contains the xfrm_state being added to the Security Association 844 * Database by the XFRM system. 845 * @sec_ctx contains the security context information being provided by 846 * the user-level SA generation program (e.g., setkey or racoon). 847 * Allocate a security structure to the x->security field. The 848 * security field is initialized to NULL when the xfrm_state is 849 * allocated. 850 * Return 0 if operation was successful (memory to allocate, legal context). 851 * @xfrm_state_free_security: 852 * @x contains the xfrm_state. 853 * Deallocate x->security. 854 * @xfrm_state_delete_security: 855 * @x contains the xfrm_state. 856 * Authorize deletion of x->security. 857 * @xfrm_policy_lookup: 858 * @xp contains the xfrm_policy for which the access control is being 859 * checked. 860 * @sk_sid contains the sock security label that is used to authorize 861 * access to the policy xp. 862 * @dir contains the direction of the flow (input or output). 863 * Check permission when a sock selects a xfrm_policy for processing 864 * XFRMs on a packet. The hook is called when selecting either a 865 * per-socket policy or a generic xfrm policy. 866 * Return 0 if permission is granted. 867 * 868 * Security hooks affecting all Key Management operations 869 * 870 * @key_alloc: 871 * Permit allocation of a key and assign security data. Note that key does 872 * not have a serial number assigned at this point. 873 * @key points to the key. 874 * @flags is the allocation flags 875 * Return 0 if permission is granted, -ve error otherwise. 876 * @key_free: 877 * Notification of destruction; free security data. 878 * @key points to the key. 879 * No return value. 880 * @key_permission: 881 * See whether a specific operational right is granted to a process on a 882 * key. 883 * @key_ref refers to the key (key pointer + possession attribute bit). 884 * @context points to the process to provide the context against which to 885 * evaluate the security data on the key. 886 * @perm describes the combination of permissions required of this key. 887 * Return 1 if permission granted, 0 if permission denied and -ve it the 888 * normal permissions model should be effected. 889 * 890 * Security hooks affecting all System V IPC operations. 891 * 892 * @ipc_permission: 893 * Check permissions for access to IPC 894 * @ipcp contains the kernel IPC permission structure 895 * @flag contains the desired (requested) permission set 896 * Return 0 if permission is granted. 897 * 898 * Security hooks for individual messages held in System V IPC message queues 899 * @msg_msg_alloc_security: 900 * Allocate and attach a security structure to the msg->security field. 901 * The security field is initialized to NULL when the structure is first 902 * created. 903 * @msg contains the message structure to be modified. 904 * Return 0 if operation was successful and permission is granted. 905 * @msg_msg_free_security: 906 * Deallocate the security structure for this message. 907 * @msg contains the message structure to be modified. 908 * 909 * Security hooks for System V IPC Message Queues 910 * 911 * @msg_queue_alloc_security: 912 * Allocate and attach a security structure to the 913 * msq->q_perm.security field. The security field is initialized to 914 * NULL when the structure is first created. 915 * @msq contains the message queue structure to be modified. 916 * Return 0 if operation was successful and permission is granted. 917 * @msg_queue_free_security: 918 * Deallocate security structure for this message queue. 919 * @msq contains the message queue structure to be modified. 920 * @msg_queue_associate: 921 * Check permission when a message queue is requested through the 922 * msgget system call. This hook is only called when returning the 923 * message queue identifier for an existing message queue, not when a 924 * new message queue is created. 925 * @msq contains the message queue to act upon. 926 * @msqflg contains the operation control flags. 927 * Return 0 if permission is granted. 928 * @msg_queue_msgctl: 929 * Check permission when a message control operation specified by @cmd 930 * is to be performed on the message queue @msq. 931 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 932 * @msq contains the message queue to act upon. May be NULL. 933 * @cmd contains the operation to be performed. 934 * Return 0 if permission is granted. 935 * @msg_queue_msgsnd: 936 * Check permission before a message, @msg, is enqueued on the message 937 * queue, @msq. 938 * @msq contains the message queue to send message to. 939 * @msg contains the message to be enqueued. 940 * @msqflg contains operational flags. 941 * Return 0 if permission is granted. 942 * @msg_queue_msgrcv: 943 * Check permission before a message, @msg, is removed from the message 944 * queue, @msq. The @target task structure contains a pointer to the 945 * process that will be receiving the message (not equal to the current 946 * process when inline receives are being performed). 947 * @msq contains the message queue to retrieve message from. 948 * @msg contains the message destination. 949 * @target contains the task structure for recipient process. 950 * @type contains the type of message requested. 951 * @mode contains the operational flags. 952 * Return 0 if permission is granted. 953 * 954 * Security hooks for System V Shared Memory Segments 955 * 956 * @shm_alloc_security: 957 * Allocate and attach a security structure to the shp->shm_perm.security 958 * field. The security field is initialized to NULL when the structure is 959 * first created. 960 * @shp contains the shared memory structure to be modified. 961 * Return 0 if operation was successful and permission is granted. 962 * @shm_free_security: 963 * Deallocate the security struct for this memory segment. 964 * @shp contains the shared memory structure to be modified. 965 * @shm_associate: 966 * Check permission when a shared memory region is requested through the 967 * shmget system call. This hook is only called when returning the shared 968 * memory region identifier for an existing region, not when a new shared 969 * memory region is created. 970 * @shp contains the shared memory structure to be modified. 971 * @shmflg contains the operation control flags. 972 * Return 0 if permission is granted. 973 * @shm_shmctl: 974 * Check permission when a shared memory control operation specified by 975 * @cmd is to be performed on the shared memory region @shp. 976 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 977 * @shp contains shared memory structure to be modified. 978 * @cmd contains the operation to be performed. 979 * Return 0 if permission is granted. 980 * @shm_shmat: 981 * Check permissions prior to allowing the shmat system call to attach the 982 * shared memory segment @shp to the data segment of the calling process. 983 * The attaching address is specified by @shmaddr. 984 * @shp contains the shared memory structure to be modified. 985 * @shmaddr contains the address to attach memory region to. 986 * @shmflg contains the operational flags. 987 * Return 0 if permission is granted. 988 * 989 * Security hooks for System V Semaphores 990 * 991 * @sem_alloc_security: 992 * Allocate and attach a security structure to the sma->sem_perm.security 993 * field. The security field is initialized to NULL when the structure is 994 * first created. 995 * @sma contains the semaphore structure 996 * Return 0 if operation was successful and permission is granted. 997 * @sem_free_security: 998 * deallocate security struct for this semaphore 999 * @sma contains the semaphore structure. 1000 * @sem_associate: 1001 * Check permission when a semaphore is requested through the semget 1002 * system call. This hook is only called when returning the semaphore 1003 * identifier for an existing semaphore, not when a new one must be 1004 * created. 1005 * @sma contains the semaphore structure. 1006 * @semflg contains the operation control flags. 1007 * Return 0 if permission is granted. 1008 * @sem_semctl: 1009 * Check permission when a semaphore operation specified by @cmd is to be 1010 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1011 * IPC_INFO or SEM_INFO. 1012 * @sma contains the semaphore structure. May be NULL. 1013 * @cmd contains the operation to be performed. 1014 * Return 0 if permission is granted. 1015 * @sem_semop 1016 * Check permissions before performing operations on members of the 1017 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1018 * may be modified. 1019 * @sma contains the semaphore structure. 1020 * @sops contains the operations to perform. 1021 * @nsops contains the number of operations to perform. 1022 * @alter contains the flag indicating whether changes are to be made. 1023 * Return 0 if permission is granted. 1024 * 1025 * @ptrace: 1026 * Check permission before allowing the @parent process to trace the 1027 * @child process. 1028 * Security modules may also want to perform a process tracing check 1029 * during an execve in the set_security or apply_creds hooks of 1030 * binprm_security_ops if the process is being traced and its security 1031 * attributes would be changed by the execve. 1032 * @parent contains the task_struct structure for parent process. 1033 * @child contains the task_struct structure for child process. 1034 * Return 0 if permission is granted. 1035 * @capget: 1036 * Get the @effective, @inheritable, and @permitted capability sets for 1037 * the @target process. The hook may also perform permission checking to 1038 * determine if the current process is allowed to see the capability sets 1039 * of the @target process. 1040 * @target contains the task_struct structure for target process. 1041 * @effective contains the effective capability set. 1042 * @inheritable contains the inheritable capability set. 1043 * @permitted contains the permitted capability set. 1044 * Return 0 if the capability sets were successfully obtained. 1045 * @capset_check: 1046 * Check permission before setting the @effective, @inheritable, and 1047 * @permitted capability sets for the @target process. 1048 * Caveat: @target is also set to current if a set of processes is 1049 * specified (i.e. all processes other than current and init or a 1050 * particular process group). Hence, the capset_set hook may need to 1051 * revalidate permission to the actual target process. 1052 * @target contains the task_struct structure for target process. 1053 * @effective contains the effective capability set. 1054 * @inheritable contains the inheritable capability set. 1055 * @permitted contains the permitted capability set. 1056 * Return 0 if permission is granted. 1057 * @capset_set: 1058 * Set the @effective, @inheritable, and @permitted capability sets for 1059 * the @target process. Since capset_check cannot always check permission 1060 * to the real @target process, this hook may also perform permission 1061 * checking to determine if the current process is allowed to set the 1062 * capability sets of the @target process. However, this hook has no way 1063 * of returning an error due to the structure of the sys_capset code. 1064 * @target contains the task_struct structure for target process. 1065 * @effective contains the effective capability set. 1066 * @inheritable contains the inheritable capability set. 1067 * @permitted contains the permitted capability set. 1068 * @capable: 1069 * Check whether the @tsk process has the @cap capability. 1070 * @tsk contains the task_struct for the process. 1071 * @cap contains the capability <include/linux/capability.h>. 1072 * Return 0 if the capability is granted for @tsk. 1073 * @acct: 1074 * Check permission before enabling or disabling process accounting. If 1075 * accounting is being enabled, then @file refers to the open file used to 1076 * store accounting records. If accounting is being disabled, then @file 1077 * is NULL. 1078 * @file contains the file structure for the accounting file (may be NULL). 1079 * Return 0 if permission is granted. 1080 * @sysctl: 1081 * Check permission before accessing the @table sysctl variable in the 1082 * manner specified by @op. 1083 * @table contains the ctl_table structure for the sysctl variable. 1084 * @op contains the operation (001 = search, 002 = write, 004 = read). 1085 * Return 0 if permission is granted. 1086 * @syslog: 1087 * Check permission before accessing the kernel message ring or changing 1088 * logging to the console. 1089 * See the syslog(2) manual page for an explanation of the @type values. 1090 * @type contains the type of action. 1091 * Return 0 if permission is granted. 1092 * @settime: 1093 * Check permission to change the system time. 1094 * struct timespec and timezone are defined in include/linux/time.h 1095 * @ts contains new time 1096 * @tz contains new timezone 1097 * Return 0 if permission is granted. 1098 * @vm_enough_memory: 1099 * Check permissions for allocating a new virtual mapping. 1100 * @pages contains the number of pages. 1101 * Return 0 if permission is granted. 1102 * 1103 * @register_security: 1104 * allow module stacking. 1105 * @name contains the name of the security module being stacked. 1106 * @ops contains a pointer to the struct security_operations of the module to stack. 1107 * @unregister_security: 1108 * remove a stacked module. 1109 * @name contains the name of the security module being unstacked. 1110 * @ops contains a pointer to the struct security_operations of the module to unstack. 1111 * 1112 * This is the main security structure. 1113 */ 1114struct security_operations { 1115 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1116 int (*capget) (struct task_struct * target, 1117 kernel_cap_t * effective, 1118 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1119 int (*capset_check) (struct task_struct * target, 1120 kernel_cap_t * effective, 1121 kernel_cap_t * inheritable, 1122 kernel_cap_t * permitted); 1123 void (*capset_set) (struct task_struct * target, 1124 kernel_cap_t * effective, 1125 kernel_cap_t * inheritable, 1126 kernel_cap_t * permitted); 1127 int (*capable) (struct task_struct * tsk, int cap); 1128 int (*acct) (struct file * file); 1129 int (*sysctl) (struct ctl_table * table, int op); 1130 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1131 int (*quota_on) (struct dentry * dentry); 1132 int (*syslog) (int type); 1133 int (*settime) (struct timespec *ts, struct timezone *tz); 1134 int (*vm_enough_memory) (long pages); 1135 1136 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1137 void (*bprm_free_security) (struct linux_binprm * bprm); 1138 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1139 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1140 int (*bprm_set_security) (struct linux_binprm * bprm); 1141 int (*bprm_check_security) (struct linux_binprm * bprm); 1142 int (*bprm_secureexec) (struct linux_binprm * bprm); 1143 1144 int (*sb_alloc_security) (struct super_block * sb); 1145 void (*sb_free_security) (struct super_block * sb); 1146 int (*sb_copy_data)(struct file_system_type *type, 1147 void *orig, void *copy); 1148 int (*sb_kern_mount) (struct super_block *sb, void *data); 1149 int (*sb_statfs) (struct dentry *dentry); 1150 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1151 char *type, unsigned long flags, void *data); 1152 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1153 int (*sb_umount) (struct vfsmount * mnt, int flags); 1154 void (*sb_umount_close) (struct vfsmount * mnt); 1155 void (*sb_umount_busy) (struct vfsmount * mnt); 1156 void (*sb_post_remount) (struct vfsmount * mnt, 1157 unsigned long flags, void *data); 1158 void (*sb_post_mountroot) (void); 1159 void (*sb_post_addmount) (struct vfsmount * mnt, 1160 struct nameidata * mountpoint_nd); 1161 int (*sb_pivotroot) (struct nameidata * old_nd, 1162 struct nameidata * new_nd); 1163 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1164 struct nameidata * new_nd); 1165 1166 int (*inode_alloc_security) (struct inode *inode); 1167 void (*inode_free_security) (struct inode *inode); 1168 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1169 char **name, void **value, size_t *len); 1170 int (*inode_create) (struct inode *dir, 1171 struct dentry *dentry, int mode); 1172 int (*inode_link) (struct dentry *old_dentry, 1173 struct inode *dir, struct dentry *new_dentry); 1174 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1175 int (*inode_symlink) (struct inode *dir, 1176 struct dentry *dentry, const char *old_name); 1177 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1178 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1179 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1180 int mode, dev_t dev); 1181 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1182 struct inode *new_dir, struct dentry *new_dentry); 1183 int (*inode_readlink) (struct dentry *dentry); 1184 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1185 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1186 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1187 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1188 void (*inode_delete) (struct inode *inode); 1189 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1190 size_t size, int flags); 1191 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1192 size_t size, int flags); 1193 int (*inode_getxattr) (struct dentry *dentry, char *name); 1194 int (*inode_listxattr) (struct dentry *dentry); 1195 int (*inode_removexattr) (struct dentry *dentry, char *name); 1196 const char *(*inode_xattr_getsuffix) (void); 1197 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1198 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1199 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1200 1201 int (*file_permission) (struct file * file, int mask); 1202 int (*file_alloc_security) (struct file * file); 1203 void (*file_free_security) (struct file * file); 1204 int (*file_ioctl) (struct file * file, unsigned int cmd, 1205 unsigned long arg); 1206 int (*file_mmap) (struct file * file, 1207 unsigned long reqprot, 1208 unsigned long prot, unsigned long flags); 1209 int (*file_mprotect) (struct vm_area_struct * vma, 1210 unsigned long reqprot, 1211 unsigned long prot); 1212 int (*file_lock) (struct file * file, unsigned int cmd); 1213 int (*file_fcntl) (struct file * file, unsigned int cmd, 1214 unsigned long arg); 1215 int (*file_set_fowner) (struct file * file); 1216 int (*file_send_sigiotask) (struct task_struct * tsk, 1217 struct fown_struct * fown, int sig); 1218 int (*file_receive) (struct file * file); 1219 1220 int (*task_create) (unsigned long clone_flags); 1221 int (*task_alloc_security) (struct task_struct * p); 1222 void (*task_free_security) (struct task_struct * p); 1223 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1224 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1225 uid_t old_euid, uid_t old_suid, int flags); 1226 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1227 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1228 int (*task_getpgid) (struct task_struct * p); 1229 int (*task_getsid) (struct task_struct * p); 1230 void (*task_getsecid) (struct task_struct * p, u32 * secid); 1231 int (*task_setgroups) (struct group_info *group_info); 1232 int (*task_setnice) (struct task_struct * p, int nice); 1233 int (*task_setioprio) (struct task_struct * p, int ioprio); 1234 int (*task_getioprio) (struct task_struct * p); 1235 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1236 int (*task_setscheduler) (struct task_struct * p, int policy, 1237 struct sched_param * lp); 1238 int (*task_getscheduler) (struct task_struct * p); 1239 int (*task_movememory) (struct task_struct * p); 1240 int (*task_kill) (struct task_struct * p, 1241 struct siginfo * info, int sig, u32 secid); 1242 int (*task_wait) (struct task_struct * p); 1243 int (*task_prctl) (int option, unsigned long arg2, 1244 unsigned long arg3, unsigned long arg4, 1245 unsigned long arg5); 1246 void (*task_reparent_to_init) (struct task_struct * p); 1247 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1248 1249 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1250 1251 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1252 void (*msg_msg_free_security) (struct msg_msg * msg); 1253 1254 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1255 void (*msg_queue_free_security) (struct msg_queue * msq); 1256 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1257 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1258 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1259 struct msg_msg * msg, int msqflg); 1260 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1261 struct msg_msg * msg, 1262 struct task_struct * target, 1263 long type, int mode); 1264 1265 int (*shm_alloc_security) (struct shmid_kernel * shp); 1266 void (*shm_free_security) (struct shmid_kernel * shp); 1267 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1268 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1269 int (*shm_shmat) (struct shmid_kernel * shp, 1270 char __user *shmaddr, int shmflg); 1271 1272 int (*sem_alloc_security) (struct sem_array * sma); 1273 void (*sem_free_security) (struct sem_array * sma); 1274 int (*sem_associate) (struct sem_array * sma, int semflg); 1275 int (*sem_semctl) (struct sem_array * sma, int cmd); 1276 int (*sem_semop) (struct sem_array * sma, 1277 struct sembuf * sops, unsigned nsops, int alter); 1278 1279 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1280 int (*netlink_recv) (struct sk_buff * skb, int cap); 1281 1282 /* allow module stacking */ 1283 int (*register_security) (const char *name, 1284 struct security_operations *ops); 1285 int (*unregister_security) (const char *name, 1286 struct security_operations *ops); 1287 1288 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1289 1290 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1291 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1292 1293#ifdef CONFIG_SECURITY_NETWORK 1294 int (*unix_stream_connect) (struct socket * sock, 1295 struct socket * other, struct sock * newsk); 1296 int (*unix_may_send) (struct socket * sock, struct socket * other); 1297 1298 int (*socket_create) (int family, int type, int protocol, int kern); 1299 void (*socket_post_create) (struct socket * sock, int family, 1300 int type, int protocol, int kern); 1301 int (*socket_bind) (struct socket * sock, 1302 struct sockaddr * address, int addrlen); 1303 int (*socket_connect) (struct socket * sock, 1304 struct sockaddr * address, int addrlen); 1305 int (*socket_listen) (struct socket * sock, int backlog); 1306 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1307 void (*socket_post_accept) (struct socket * sock, 1308 struct socket * newsock); 1309 int (*socket_sendmsg) (struct socket * sock, 1310 struct msghdr * msg, int size); 1311 int (*socket_recvmsg) (struct socket * sock, 1312 struct msghdr * msg, int size, int flags); 1313 int (*socket_getsockname) (struct socket * sock); 1314 int (*socket_getpeername) (struct socket * sock); 1315 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1316 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1317 int (*socket_shutdown) (struct socket * sock, int how); 1318 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1319 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1320 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen); 1321 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1322 void (*sk_free_security) (struct sock *sk); 1323 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir); 1324#endif /* CONFIG_SECURITY_NETWORK */ 1325 1326#ifdef CONFIG_SECURITY_NETWORK_XFRM 1327 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx); 1328 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1329 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1330 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1331 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 1332 void (*xfrm_state_free_security) (struct xfrm_state *x); 1333 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1334 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir); 1335#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1336 1337 /* key management security hooks */ 1338#ifdef CONFIG_KEYS 1339 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1340 void (*key_free)(struct key *key); 1341 int (*key_permission)(key_ref_t key_ref, 1342 struct task_struct *context, 1343 key_perm_t perm); 1344 1345#endif /* CONFIG_KEYS */ 1346 1347}; 1348 1349/* global variables */ 1350extern struct security_operations *security_ops; 1351 1352/* inline stuff */ 1353static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1354{ 1355 return security_ops->ptrace (parent, child); 1356} 1357 1358static inline int security_capget (struct task_struct *target, 1359 kernel_cap_t *effective, 1360 kernel_cap_t *inheritable, 1361 kernel_cap_t *permitted) 1362{ 1363 return security_ops->capget (target, effective, inheritable, permitted); 1364} 1365 1366static inline int security_capset_check (struct task_struct *target, 1367 kernel_cap_t *effective, 1368 kernel_cap_t *inheritable, 1369 kernel_cap_t *permitted) 1370{ 1371 return security_ops->capset_check (target, effective, inheritable, permitted); 1372} 1373 1374static inline void security_capset_set (struct task_struct *target, 1375 kernel_cap_t *effective, 1376 kernel_cap_t *inheritable, 1377 kernel_cap_t *permitted) 1378{ 1379 security_ops->capset_set (target, effective, inheritable, permitted); 1380} 1381 1382static inline int security_capable(struct task_struct *tsk, int cap) 1383{ 1384 return security_ops->capable(tsk, cap); 1385} 1386 1387static inline int security_acct (struct file *file) 1388{ 1389 return security_ops->acct (file); 1390} 1391 1392static inline int security_sysctl(struct ctl_table *table, int op) 1393{ 1394 return security_ops->sysctl(table, op); 1395} 1396 1397static inline int security_quotactl (int cmds, int type, int id, 1398 struct super_block *sb) 1399{ 1400 return security_ops->quotactl (cmds, type, id, sb); 1401} 1402 1403static inline int security_quota_on (struct dentry * dentry) 1404{ 1405 return security_ops->quota_on (dentry); 1406} 1407 1408static inline int security_syslog(int type) 1409{ 1410 return security_ops->syslog(type); 1411} 1412 1413static inline int security_settime(struct timespec *ts, struct timezone *tz) 1414{ 1415 return security_ops->settime(ts, tz); 1416} 1417 1418 1419static inline int security_vm_enough_memory(long pages) 1420{ 1421 return security_ops->vm_enough_memory(pages); 1422} 1423 1424static inline int security_bprm_alloc (struct linux_binprm *bprm) 1425{ 1426 return security_ops->bprm_alloc_security (bprm); 1427} 1428static inline void security_bprm_free (struct linux_binprm *bprm) 1429{ 1430 security_ops->bprm_free_security (bprm); 1431} 1432static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1433{ 1434 security_ops->bprm_apply_creds (bprm, unsafe); 1435} 1436static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1437{ 1438 security_ops->bprm_post_apply_creds (bprm); 1439} 1440static inline int security_bprm_set (struct linux_binprm *bprm) 1441{ 1442 return security_ops->bprm_set_security (bprm); 1443} 1444 1445static inline int security_bprm_check (struct linux_binprm *bprm) 1446{ 1447 return security_ops->bprm_check_security (bprm); 1448} 1449 1450static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1451{ 1452 return security_ops->bprm_secureexec (bprm); 1453} 1454 1455static inline int security_sb_alloc (struct super_block *sb) 1456{ 1457 return security_ops->sb_alloc_security (sb); 1458} 1459 1460static inline void security_sb_free (struct super_block *sb) 1461{ 1462 security_ops->sb_free_security (sb); 1463} 1464 1465static inline int security_sb_copy_data (struct file_system_type *type, 1466 void *orig, void *copy) 1467{ 1468 return security_ops->sb_copy_data (type, orig, copy); 1469} 1470 1471static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1472{ 1473 return security_ops->sb_kern_mount (sb, data); 1474} 1475 1476static inline int security_sb_statfs (struct dentry *dentry) 1477{ 1478 return security_ops->sb_statfs (dentry); 1479} 1480 1481static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1482 char *type, unsigned long flags, 1483 void *data) 1484{ 1485 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1486} 1487 1488static inline int security_sb_check_sb (struct vfsmount *mnt, 1489 struct nameidata *nd) 1490{ 1491 return security_ops->sb_check_sb (mnt, nd); 1492} 1493 1494static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1495{ 1496 return security_ops->sb_umount (mnt, flags); 1497} 1498 1499static inline void security_sb_umount_close (struct vfsmount *mnt) 1500{ 1501 security_ops->sb_umount_close (mnt); 1502} 1503 1504static inline void security_sb_umount_busy (struct vfsmount *mnt) 1505{ 1506 security_ops->sb_umount_busy (mnt); 1507} 1508 1509static inline void security_sb_post_remount (struct vfsmount *mnt, 1510 unsigned long flags, void *data) 1511{ 1512 security_ops->sb_post_remount (mnt, flags, data); 1513} 1514 1515static inline void security_sb_post_mountroot (void) 1516{ 1517 security_ops->sb_post_mountroot (); 1518} 1519 1520static inline void security_sb_post_addmount (struct vfsmount *mnt, 1521 struct nameidata *mountpoint_nd) 1522{ 1523 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1524} 1525 1526static inline int security_sb_pivotroot (struct nameidata *old_nd, 1527 struct nameidata *new_nd) 1528{ 1529 return security_ops->sb_pivotroot (old_nd, new_nd); 1530} 1531 1532static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1533 struct nameidata *new_nd) 1534{ 1535 security_ops->sb_post_pivotroot (old_nd, new_nd); 1536} 1537 1538static inline int security_inode_alloc (struct inode *inode) 1539{ 1540 return security_ops->inode_alloc_security (inode); 1541} 1542 1543static inline void security_inode_free (struct inode *inode) 1544{ 1545 security_ops->inode_free_security (inode); 1546} 1547 1548static inline int security_inode_init_security (struct inode *inode, 1549 struct inode *dir, 1550 char **name, 1551 void **value, 1552 size_t *len) 1553{ 1554 if (unlikely (IS_PRIVATE (inode))) 1555 return -EOPNOTSUPP; 1556 return security_ops->inode_init_security (inode, dir, name, value, len); 1557} 1558 1559static inline int security_inode_create (struct inode *dir, 1560 struct dentry *dentry, 1561 int mode) 1562{ 1563 if (unlikely (IS_PRIVATE (dir))) 1564 return 0; 1565 return security_ops->inode_create (dir, dentry, mode); 1566} 1567 1568static inline int security_inode_link (struct dentry *old_dentry, 1569 struct inode *dir, 1570 struct dentry *new_dentry) 1571{ 1572 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1573 return 0; 1574 return security_ops->inode_link (old_dentry, dir, new_dentry); 1575} 1576 1577static inline int security_inode_unlink (struct inode *dir, 1578 struct dentry *dentry) 1579{ 1580 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1581 return 0; 1582 return security_ops->inode_unlink (dir, dentry); 1583} 1584 1585static inline int security_inode_symlink (struct inode *dir, 1586 struct dentry *dentry, 1587 const char *old_name) 1588{ 1589 if (unlikely (IS_PRIVATE (dir))) 1590 return 0; 1591 return security_ops->inode_symlink (dir, dentry, old_name); 1592} 1593 1594static inline int security_inode_mkdir (struct inode *dir, 1595 struct dentry *dentry, 1596 int mode) 1597{ 1598 if (unlikely (IS_PRIVATE (dir))) 1599 return 0; 1600 return security_ops->inode_mkdir (dir, dentry, mode); 1601} 1602 1603static inline int security_inode_rmdir (struct inode *dir, 1604 struct dentry *dentry) 1605{ 1606 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1607 return 0; 1608 return security_ops->inode_rmdir (dir, dentry); 1609} 1610 1611static inline int security_inode_mknod (struct inode *dir, 1612 struct dentry *dentry, 1613 int mode, dev_t dev) 1614{ 1615 if (unlikely (IS_PRIVATE (dir))) 1616 return 0; 1617 return security_ops->inode_mknod (dir, dentry, mode, dev); 1618} 1619 1620static inline int security_inode_rename (struct inode *old_dir, 1621 struct dentry *old_dentry, 1622 struct inode *new_dir, 1623 struct dentry *new_dentry) 1624{ 1625 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1626 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1627 return 0; 1628 return security_ops->inode_rename (old_dir, old_dentry, 1629 new_dir, new_dentry); 1630} 1631 1632static inline int security_inode_readlink (struct dentry *dentry) 1633{ 1634 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1635 return 0; 1636 return security_ops->inode_readlink (dentry); 1637} 1638 1639static inline int security_inode_follow_link (struct dentry *dentry, 1640 struct nameidata *nd) 1641{ 1642 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1643 return 0; 1644 return security_ops->inode_follow_link (dentry, nd); 1645} 1646 1647static inline int security_inode_permission (struct inode *inode, int mask, 1648 struct nameidata *nd) 1649{ 1650 if (unlikely (IS_PRIVATE (inode))) 1651 return 0; 1652 return security_ops->inode_permission (inode, mask, nd); 1653} 1654 1655static inline int security_inode_setattr (struct dentry *dentry, 1656 struct iattr *attr) 1657{ 1658 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1659 return 0; 1660 return security_ops->inode_setattr (dentry, attr); 1661} 1662 1663static inline int security_inode_getattr (struct vfsmount *mnt, 1664 struct dentry *dentry) 1665{ 1666 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1667 return 0; 1668 return security_ops->inode_getattr (mnt, dentry); 1669} 1670 1671static inline void security_inode_delete (struct inode *inode) 1672{ 1673 if (unlikely (IS_PRIVATE (inode))) 1674 return; 1675 security_ops->inode_delete (inode); 1676} 1677 1678static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1679 void *value, size_t size, int flags) 1680{ 1681 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1682 return 0; 1683 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1684} 1685 1686static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1687 void *value, size_t size, int flags) 1688{ 1689 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1690 return; 1691 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1692} 1693 1694static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1695{ 1696 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1697 return 0; 1698 return security_ops->inode_getxattr (dentry, name); 1699} 1700 1701static inline int security_inode_listxattr (struct dentry *dentry) 1702{ 1703 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1704 return 0; 1705 return security_ops->inode_listxattr (dentry); 1706} 1707 1708static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1709{ 1710 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1711 return 0; 1712 return security_ops->inode_removexattr (dentry, name); 1713} 1714 1715static inline const char *security_inode_xattr_getsuffix(void) 1716{ 1717 return security_ops->inode_xattr_getsuffix(); 1718} 1719 1720static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1721{ 1722 if (unlikely (IS_PRIVATE (inode))) 1723 return 0; 1724 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1725} 1726 1727static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1728{ 1729 if (unlikely (IS_PRIVATE (inode))) 1730 return 0; 1731 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1732} 1733 1734static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1735{ 1736 if (unlikely (IS_PRIVATE (inode))) 1737 return 0; 1738 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1739} 1740 1741static inline int security_file_permission (struct file *file, int mask) 1742{ 1743 return security_ops->file_permission (file, mask); 1744} 1745 1746static inline int security_file_alloc (struct file *file) 1747{ 1748 return security_ops->file_alloc_security (file); 1749} 1750 1751static inline void security_file_free (struct file *file) 1752{ 1753 security_ops->file_free_security (file); 1754} 1755 1756static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1757 unsigned long arg) 1758{ 1759 return security_ops->file_ioctl (file, cmd, arg); 1760} 1761 1762static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1763 unsigned long prot, 1764 unsigned long flags) 1765{ 1766 return security_ops->file_mmap (file, reqprot, prot, flags); 1767} 1768 1769static inline int security_file_mprotect (struct vm_area_struct *vma, 1770 unsigned long reqprot, 1771 unsigned long prot) 1772{ 1773 return security_ops->file_mprotect (vma, reqprot, prot); 1774} 1775 1776static inline int security_file_lock (struct file *file, unsigned int cmd) 1777{ 1778 return security_ops->file_lock (file, cmd); 1779} 1780 1781static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1782 unsigned long arg) 1783{ 1784 return security_ops->file_fcntl (file, cmd, arg); 1785} 1786 1787static inline int security_file_set_fowner (struct file *file) 1788{ 1789 return security_ops->file_set_fowner (file); 1790} 1791 1792static inline int security_file_send_sigiotask (struct task_struct *tsk, 1793 struct fown_struct *fown, 1794 int sig) 1795{ 1796 return security_ops->file_send_sigiotask (tsk, fown, sig); 1797} 1798 1799static inline int security_file_receive (struct file *file) 1800{ 1801 return security_ops->file_receive (file); 1802} 1803 1804static inline int security_task_create (unsigned long clone_flags) 1805{ 1806 return security_ops->task_create (clone_flags); 1807} 1808 1809static inline int security_task_alloc (struct task_struct *p) 1810{ 1811 return security_ops->task_alloc_security (p); 1812} 1813 1814static inline void security_task_free (struct task_struct *p) 1815{ 1816 security_ops->task_free_security (p); 1817} 1818 1819static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1820 int flags) 1821{ 1822 return security_ops->task_setuid (id0, id1, id2, flags); 1823} 1824 1825static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1826 uid_t old_suid, int flags) 1827{ 1828 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1829} 1830 1831static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1832 int flags) 1833{ 1834 return security_ops->task_setgid (id0, id1, id2, flags); 1835} 1836 1837static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1838{ 1839 return security_ops->task_setpgid (p, pgid); 1840} 1841 1842static inline int security_task_getpgid (struct task_struct *p) 1843{ 1844 return security_ops->task_getpgid (p); 1845} 1846 1847static inline int security_task_getsid (struct task_struct *p) 1848{ 1849 return security_ops->task_getsid (p); 1850} 1851 1852static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 1853{ 1854 security_ops->task_getsecid (p, secid); 1855} 1856 1857static inline int security_task_setgroups (struct group_info *group_info) 1858{ 1859 return security_ops->task_setgroups (group_info); 1860} 1861 1862static inline int security_task_setnice (struct task_struct *p, int nice) 1863{ 1864 return security_ops->task_setnice (p, nice); 1865} 1866 1867static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1868{ 1869 return security_ops->task_setioprio (p, ioprio); 1870} 1871 1872static inline int security_task_getioprio (struct task_struct *p) 1873{ 1874 return security_ops->task_getioprio (p); 1875} 1876 1877static inline int security_task_setrlimit (unsigned int resource, 1878 struct rlimit *new_rlim) 1879{ 1880 return security_ops->task_setrlimit (resource, new_rlim); 1881} 1882 1883static inline int security_task_setscheduler (struct task_struct *p, 1884 int policy, 1885 struct sched_param *lp) 1886{ 1887 return security_ops->task_setscheduler (p, policy, lp); 1888} 1889 1890static inline int security_task_getscheduler (struct task_struct *p) 1891{ 1892 return security_ops->task_getscheduler (p); 1893} 1894 1895static inline int security_task_movememory (struct task_struct *p) 1896{ 1897 return security_ops->task_movememory (p); 1898} 1899 1900static inline int security_task_kill (struct task_struct *p, 1901 struct siginfo *info, int sig, 1902 u32 secid) 1903{ 1904 return security_ops->task_kill (p, info, sig, secid); 1905} 1906 1907static inline int security_task_wait (struct task_struct *p) 1908{ 1909 return security_ops->task_wait (p); 1910} 1911 1912static inline int security_task_prctl (int option, unsigned long arg2, 1913 unsigned long arg3, 1914 unsigned long arg4, 1915 unsigned long arg5) 1916{ 1917 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1918} 1919 1920static inline void security_task_reparent_to_init (struct task_struct *p) 1921{ 1922 security_ops->task_reparent_to_init (p); 1923} 1924 1925static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1926{ 1927 security_ops->task_to_inode(p, inode); 1928} 1929 1930static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1931 short flag) 1932{ 1933 return security_ops->ipc_permission (ipcp, flag); 1934} 1935 1936static inline int security_msg_msg_alloc (struct msg_msg * msg) 1937{ 1938 return security_ops->msg_msg_alloc_security (msg); 1939} 1940 1941static inline void security_msg_msg_free (struct msg_msg * msg) 1942{ 1943 security_ops->msg_msg_free_security(msg); 1944} 1945 1946static inline int security_msg_queue_alloc (struct msg_queue *msq) 1947{ 1948 return security_ops->msg_queue_alloc_security (msq); 1949} 1950 1951static inline void security_msg_queue_free (struct msg_queue *msq) 1952{ 1953 security_ops->msg_queue_free_security (msq); 1954} 1955 1956static inline int security_msg_queue_associate (struct msg_queue * msq, 1957 int msqflg) 1958{ 1959 return security_ops->msg_queue_associate (msq, msqflg); 1960} 1961 1962static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 1963{ 1964 return security_ops->msg_queue_msgctl (msq, cmd); 1965} 1966 1967static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 1968 struct msg_msg * msg, int msqflg) 1969{ 1970 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 1971} 1972 1973static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 1974 struct msg_msg * msg, 1975 struct task_struct * target, 1976 long type, int mode) 1977{ 1978 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 1979} 1980 1981static inline int security_shm_alloc (struct shmid_kernel *shp) 1982{ 1983 return security_ops->shm_alloc_security (shp); 1984} 1985 1986static inline void security_shm_free (struct shmid_kernel *shp) 1987{ 1988 security_ops->shm_free_security (shp); 1989} 1990 1991static inline int security_shm_associate (struct shmid_kernel * shp, 1992 int shmflg) 1993{ 1994 return security_ops->shm_associate(shp, shmflg); 1995} 1996 1997static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 1998{ 1999 return security_ops->shm_shmctl (shp, cmd); 2000} 2001 2002static inline int security_shm_shmat (struct shmid_kernel * shp, 2003 char __user *shmaddr, int shmflg) 2004{ 2005 return security_ops->shm_shmat(shp, shmaddr, shmflg); 2006} 2007 2008static inline int security_sem_alloc (struct sem_array *sma) 2009{ 2010 return security_ops->sem_alloc_security (sma); 2011} 2012 2013static inline void security_sem_free (struct sem_array *sma) 2014{ 2015 security_ops->sem_free_security (sma); 2016} 2017 2018static inline int security_sem_associate (struct sem_array * sma, int semflg) 2019{ 2020 return security_ops->sem_associate (sma, semflg); 2021} 2022 2023static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2024{ 2025 return security_ops->sem_semctl(sma, cmd); 2026} 2027 2028static inline int security_sem_semop (struct sem_array * sma, 2029 struct sembuf * sops, unsigned nsops, 2030 int alter) 2031{ 2032 return security_ops->sem_semop(sma, sops, nsops, alter); 2033} 2034 2035static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2036{ 2037 if (unlikely (inode && IS_PRIVATE (inode))) 2038 return; 2039 security_ops->d_instantiate (dentry, inode); 2040} 2041 2042static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2043{ 2044 return security_ops->getprocattr(p, name, value, size); 2045} 2046 2047static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2048{ 2049 return security_ops->setprocattr(p, name, value, size); 2050} 2051 2052static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2053{ 2054 return security_ops->netlink_send(sk, skb); 2055} 2056 2057static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2058{ 2059 return security_ops->netlink_recv(skb, cap); 2060} 2061 2062/* prototypes */ 2063extern int security_init (void); 2064extern int register_security (struct security_operations *ops); 2065extern int unregister_security (struct security_operations *ops); 2066extern int mod_reg_security (const char *name, struct security_operations *ops); 2067extern int mod_unreg_security (const char *name, struct security_operations *ops); 2068extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2069 struct dentry *parent, void *data, 2070 struct file_operations *fops); 2071extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2072extern void securityfs_remove(struct dentry *dentry); 2073 2074 2075#else /* CONFIG_SECURITY */ 2076 2077/* 2078 * This is the default capabilities functionality. Most of these functions 2079 * are just stubbed out, but a few must call the proper capable code. 2080 */ 2081 2082static inline int security_init(void) 2083{ 2084 return 0; 2085} 2086 2087static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2088{ 2089 return cap_ptrace (parent, child); 2090} 2091 2092static inline int security_capget (struct task_struct *target, 2093 kernel_cap_t *effective, 2094 kernel_cap_t *inheritable, 2095 kernel_cap_t *permitted) 2096{ 2097 return cap_capget (target, effective, inheritable, permitted); 2098} 2099 2100static inline int security_capset_check (struct task_struct *target, 2101 kernel_cap_t *effective, 2102 kernel_cap_t *inheritable, 2103 kernel_cap_t *permitted) 2104{ 2105 return cap_capset_check (target, effective, inheritable, permitted); 2106} 2107 2108static inline void security_capset_set (struct task_struct *target, 2109 kernel_cap_t *effective, 2110 kernel_cap_t *inheritable, 2111 kernel_cap_t *permitted) 2112{ 2113 cap_capset_set (target, effective, inheritable, permitted); 2114} 2115 2116static inline int security_capable(struct task_struct *tsk, int cap) 2117{ 2118 return cap_capable(tsk, cap); 2119} 2120 2121static inline int security_acct (struct file *file) 2122{ 2123 return 0; 2124} 2125 2126static inline int security_sysctl(struct ctl_table *table, int op) 2127{ 2128 return 0; 2129} 2130 2131static inline int security_quotactl (int cmds, int type, int id, 2132 struct super_block * sb) 2133{ 2134 return 0; 2135} 2136 2137static inline int security_quota_on (struct dentry * dentry) 2138{ 2139 return 0; 2140} 2141 2142static inline int security_syslog(int type) 2143{ 2144 return cap_syslog(type); 2145} 2146 2147static inline int security_settime(struct timespec *ts, struct timezone *tz) 2148{ 2149 return cap_settime(ts, tz); 2150} 2151 2152static inline int security_vm_enough_memory(long pages) 2153{ 2154 return cap_vm_enough_memory(pages); 2155} 2156 2157static inline int security_bprm_alloc (struct linux_binprm *bprm) 2158{ 2159 return 0; 2160} 2161 2162static inline void security_bprm_free (struct linux_binprm *bprm) 2163{ } 2164 2165static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2166{ 2167 cap_bprm_apply_creds (bprm, unsafe); 2168} 2169 2170static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2171{ 2172 return; 2173} 2174 2175static inline int security_bprm_set (struct linux_binprm *bprm) 2176{ 2177 return cap_bprm_set_security (bprm); 2178} 2179 2180static inline int security_bprm_check (struct linux_binprm *bprm) 2181{ 2182 return 0; 2183} 2184 2185static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2186{ 2187 return cap_bprm_secureexec(bprm); 2188} 2189 2190static inline int security_sb_alloc (struct super_block *sb) 2191{ 2192 return 0; 2193} 2194 2195static inline void security_sb_free (struct super_block *sb) 2196{ } 2197 2198static inline int security_sb_copy_data (struct file_system_type *type, 2199 void *orig, void *copy) 2200{ 2201 return 0; 2202} 2203 2204static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2205{ 2206 return 0; 2207} 2208 2209static inline int security_sb_statfs (struct dentry *dentry) 2210{ 2211 return 0; 2212} 2213 2214static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2215 char *type, unsigned long flags, 2216 void *data) 2217{ 2218 return 0; 2219} 2220 2221static inline int security_sb_check_sb (struct vfsmount *mnt, 2222 struct nameidata *nd) 2223{ 2224 return 0; 2225} 2226 2227static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2228{ 2229 return 0; 2230} 2231 2232static inline void security_sb_umount_close (struct vfsmount *mnt) 2233{ } 2234 2235static inline void security_sb_umount_busy (struct vfsmount *mnt) 2236{ } 2237 2238static inline void security_sb_post_remount (struct vfsmount *mnt, 2239 unsigned long flags, void *data) 2240{ } 2241 2242static inline void security_sb_post_mountroot (void) 2243{ } 2244 2245static inline void security_sb_post_addmount (struct vfsmount *mnt, 2246 struct nameidata *mountpoint_nd) 2247{ } 2248 2249static inline int security_sb_pivotroot (struct nameidata *old_nd, 2250 struct nameidata *new_nd) 2251{ 2252 return 0; 2253} 2254 2255static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2256 struct nameidata *new_nd) 2257{ } 2258 2259static inline int security_inode_alloc (struct inode *inode) 2260{ 2261 return 0; 2262} 2263 2264static inline void security_inode_free (struct inode *inode) 2265{ } 2266 2267static inline int security_inode_init_security (struct inode *inode, 2268 struct inode *dir, 2269 char **name, 2270 void **value, 2271 size_t *len) 2272{ 2273 return -EOPNOTSUPP; 2274} 2275 2276static inline int security_inode_create (struct inode *dir, 2277 struct dentry *dentry, 2278 int mode) 2279{ 2280 return 0; 2281} 2282 2283static inline int security_inode_link (struct dentry *old_dentry, 2284 struct inode *dir, 2285 struct dentry *new_dentry) 2286{ 2287 return 0; 2288} 2289 2290static inline int security_inode_unlink (struct inode *dir, 2291 struct dentry *dentry) 2292{ 2293 return 0; 2294} 2295 2296static inline int security_inode_symlink (struct inode *dir, 2297 struct dentry *dentry, 2298 const char *old_name) 2299{ 2300 return 0; 2301} 2302 2303static inline int security_inode_mkdir (struct inode *dir, 2304 struct dentry *dentry, 2305 int mode) 2306{ 2307 return 0; 2308} 2309 2310static inline int security_inode_rmdir (struct inode *dir, 2311 struct dentry *dentry) 2312{ 2313 return 0; 2314} 2315 2316static inline int security_inode_mknod (struct inode *dir, 2317 struct dentry *dentry, 2318 int mode, dev_t dev) 2319{ 2320 return 0; 2321} 2322 2323static inline int security_inode_rename (struct inode *old_dir, 2324 struct dentry *old_dentry, 2325 struct inode *new_dir, 2326 struct dentry *new_dentry) 2327{ 2328 return 0; 2329} 2330 2331static inline int security_inode_readlink (struct dentry *dentry) 2332{ 2333 return 0; 2334} 2335 2336static inline int security_inode_follow_link (struct dentry *dentry, 2337 struct nameidata *nd) 2338{ 2339 return 0; 2340} 2341 2342static inline int security_inode_permission (struct inode *inode, int mask, 2343 struct nameidata *nd) 2344{ 2345 return 0; 2346} 2347 2348static inline int security_inode_setattr (struct dentry *dentry, 2349 struct iattr *attr) 2350{ 2351 return 0; 2352} 2353 2354static inline int security_inode_getattr (struct vfsmount *mnt, 2355 struct dentry *dentry) 2356{ 2357 return 0; 2358} 2359 2360static inline void security_inode_delete (struct inode *inode) 2361{ } 2362 2363static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2364 void *value, size_t size, int flags) 2365{ 2366 return cap_inode_setxattr(dentry, name, value, size, flags); 2367} 2368 2369static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2370 void *value, size_t size, int flags) 2371{ } 2372 2373static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2374{ 2375 return 0; 2376} 2377 2378static inline int security_inode_listxattr (struct dentry *dentry) 2379{ 2380 return 0; 2381} 2382 2383static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2384{ 2385 return cap_inode_removexattr(dentry, name); 2386} 2387 2388static inline const char *security_inode_xattr_getsuffix (void) 2389{ 2390 return NULL ; 2391} 2392 2393static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2394{ 2395 return -EOPNOTSUPP; 2396} 2397 2398static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2399{ 2400 return -EOPNOTSUPP; 2401} 2402 2403static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2404{ 2405 return 0; 2406} 2407 2408static inline int security_file_permission (struct file *file, int mask) 2409{ 2410 return 0; 2411} 2412 2413static inline int security_file_alloc (struct file *file) 2414{ 2415 return 0; 2416} 2417 2418static inline void security_file_free (struct file *file) 2419{ } 2420 2421static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2422 unsigned long arg) 2423{ 2424 return 0; 2425} 2426 2427static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2428 unsigned long prot, 2429 unsigned long flags) 2430{ 2431 return 0; 2432} 2433 2434static inline int security_file_mprotect (struct vm_area_struct *vma, 2435 unsigned long reqprot, 2436 unsigned long prot) 2437{ 2438 return 0; 2439} 2440 2441static inline int security_file_lock (struct file *file, unsigned int cmd) 2442{ 2443 return 0; 2444} 2445 2446static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2447 unsigned long arg) 2448{ 2449 return 0; 2450} 2451 2452static inline int security_file_set_fowner (struct file *file) 2453{ 2454 return 0; 2455} 2456 2457static inline int security_file_send_sigiotask (struct task_struct *tsk, 2458 struct fown_struct *fown, 2459 int sig) 2460{ 2461 return 0; 2462} 2463 2464static inline int security_file_receive (struct file *file) 2465{ 2466 return 0; 2467} 2468 2469static inline int security_task_create (unsigned long clone_flags) 2470{ 2471 return 0; 2472} 2473 2474static inline int security_task_alloc (struct task_struct *p) 2475{ 2476 return 0; 2477} 2478 2479static inline void security_task_free (struct task_struct *p) 2480{ } 2481 2482static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2483 int flags) 2484{ 2485 return 0; 2486} 2487 2488static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2489 uid_t old_suid, int flags) 2490{ 2491 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2492} 2493 2494static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2495 int flags) 2496{ 2497 return 0; 2498} 2499 2500static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2501{ 2502 return 0; 2503} 2504 2505static inline int security_task_getpgid (struct task_struct *p) 2506{ 2507 return 0; 2508} 2509 2510static inline int security_task_getsid (struct task_struct *p) 2511{ 2512 return 0; 2513} 2514 2515static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 2516{ } 2517 2518static inline int security_task_setgroups (struct group_info *group_info) 2519{ 2520 return 0; 2521} 2522 2523static inline int security_task_setnice (struct task_struct *p, int nice) 2524{ 2525 return 0; 2526} 2527 2528static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2529{ 2530 return 0; 2531} 2532 2533static inline int security_task_getioprio (struct task_struct *p) 2534{ 2535 return 0; 2536} 2537 2538static inline int security_task_setrlimit (unsigned int resource, 2539 struct rlimit *new_rlim) 2540{ 2541 return 0; 2542} 2543 2544static inline int security_task_setscheduler (struct task_struct *p, 2545 int policy, 2546 struct sched_param *lp) 2547{ 2548 return 0; 2549} 2550 2551static inline int security_task_getscheduler (struct task_struct *p) 2552{ 2553 return 0; 2554} 2555 2556static inline int security_task_movememory (struct task_struct *p) 2557{ 2558 return 0; 2559} 2560 2561static inline int security_task_kill (struct task_struct *p, 2562 struct siginfo *info, int sig, 2563 u32 secid) 2564{ 2565 return 0; 2566} 2567 2568static inline int security_task_wait (struct task_struct *p) 2569{ 2570 return 0; 2571} 2572 2573static inline int security_task_prctl (int option, unsigned long arg2, 2574 unsigned long arg3, 2575 unsigned long arg4, 2576 unsigned long arg5) 2577{ 2578 return 0; 2579} 2580 2581static inline void security_task_reparent_to_init (struct task_struct *p) 2582{ 2583 cap_task_reparent_to_init (p); 2584} 2585 2586static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2587{ } 2588 2589static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2590 short flag) 2591{ 2592 return 0; 2593} 2594 2595static inline int security_msg_msg_alloc (struct msg_msg * msg) 2596{ 2597 return 0; 2598} 2599 2600static inline void security_msg_msg_free (struct msg_msg * msg) 2601{ } 2602 2603static inline int security_msg_queue_alloc (struct msg_queue *msq) 2604{ 2605 return 0; 2606} 2607 2608static inline void security_msg_queue_free (struct msg_queue *msq) 2609{ } 2610 2611static inline int security_msg_queue_associate (struct msg_queue * msq, 2612 int msqflg) 2613{ 2614 return 0; 2615} 2616 2617static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2618{ 2619 return 0; 2620} 2621 2622static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2623 struct msg_msg * msg, int msqflg) 2624{ 2625 return 0; 2626} 2627 2628static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2629 struct msg_msg * msg, 2630 struct task_struct * target, 2631 long type, int mode) 2632{ 2633 return 0; 2634} 2635 2636static inline int security_shm_alloc (struct shmid_kernel *shp) 2637{ 2638 return 0; 2639} 2640 2641static inline void security_shm_free (struct shmid_kernel *shp) 2642{ } 2643 2644static inline int security_shm_associate (struct shmid_kernel * shp, 2645 int shmflg) 2646{ 2647 return 0; 2648} 2649 2650static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2651{ 2652 return 0; 2653} 2654 2655static inline int security_shm_shmat (struct shmid_kernel * shp, 2656 char __user *shmaddr, int shmflg) 2657{ 2658 return 0; 2659} 2660 2661static inline int security_sem_alloc (struct sem_array *sma) 2662{ 2663 return 0; 2664} 2665 2666static inline void security_sem_free (struct sem_array *sma) 2667{ } 2668 2669static inline int security_sem_associate (struct sem_array * sma, int semflg) 2670{ 2671 return 0; 2672} 2673 2674static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2675{ 2676 return 0; 2677} 2678 2679static inline int security_sem_semop (struct sem_array * sma, 2680 struct sembuf * sops, unsigned nsops, 2681 int alter) 2682{ 2683 return 0; 2684} 2685 2686static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2687{ } 2688 2689static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) 2690{ 2691 return -EINVAL; 2692} 2693 2694static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2695{ 2696 return -EINVAL; 2697} 2698 2699static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2700{ 2701 return cap_netlink_send (sk, skb); 2702} 2703 2704static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2705{ 2706 return cap_netlink_recv (skb, cap); 2707} 2708 2709static inline struct dentry *securityfs_create_dir(const char *name, 2710 struct dentry *parent) 2711{ 2712 return ERR_PTR(-ENODEV); 2713} 2714 2715static inline struct dentry *securityfs_create_file(const char *name, 2716 mode_t mode, 2717 struct dentry *parent, 2718 void *data, 2719 struct file_operations *fops) 2720{ 2721 return ERR_PTR(-ENODEV); 2722} 2723 2724static inline void securityfs_remove(struct dentry *dentry) 2725{ 2726} 2727 2728#endif /* CONFIG_SECURITY */ 2729 2730#ifdef CONFIG_SECURITY_NETWORK 2731static inline int security_unix_stream_connect(struct socket * sock, 2732 struct socket * other, 2733 struct sock * newsk) 2734{ 2735 return security_ops->unix_stream_connect(sock, other, newsk); 2736} 2737 2738 2739static inline int security_unix_may_send(struct socket * sock, 2740 struct socket * other) 2741{ 2742 return security_ops->unix_may_send(sock, other); 2743} 2744 2745static inline int security_socket_create (int family, int type, 2746 int protocol, int kern) 2747{ 2748 return security_ops->socket_create(family, type, protocol, kern); 2749} 2750 2751static inline void security_socket_post_create(struct socket * sock, 2752 int family, 2753 int type, 2754 int protocol, int kern) 2755{ 2756 security_ops->socket_post_create(sock, family, type, 2757 protocol, kern); 2758} 2759 2760static inline int security_socket_bind(struct socket * sock, 2761 struct sockaddr * address, 2762 int addrlen) 2763{ 2764 return security_ops->socket_bind(sock, address, addrlen); 2765} 2766 2767static inline int security_socket_connect(struct socket * sock, 2768 struct sockaddr * address, 2769 int addrlen) 2770{ 2771 return security_ops->socket_connect(sock, address, addrlen); 2772} 2773 2774static inline int security_socket_listen(struct socket * sock, int backlog) 2775{ 2776 return security_ops->socket_listen(sock, backlog); 2777} 2778 2779static inline int security_socket_accept(struct socket * sock, 2780 struct socket * newsock) 2781{ 2782 return security_ops->socket_accept(sock, newsock); 2783} 2784 2785static inline void security_socket_post_accept(struct socket * sock, 2786 struct socket * newsock) 2787{ 2788 security_ops->socket_post_accept(sock, newsock); 2789} 2790 2791static inline int security_socket_sendmsg(struct socket * sock, 2792 struct msghdr * msg, int size) 2793{ 2794 return security_ops->socket_sendmsg(sock, msg, size); 2795} 2796 2797static inline int security_socket_recvmsg(struct socket * sock, 2798 struct msghdr * msg, int size, 2799 int flags) 2800{ 2801 return security_ops->socket_recvmsg(sock, msg, size, flags); 2802} 2803 2804static inline int security_socket_getsockname(struct socket * sock) 2805{ 2806 return security_ops->socket_getsockname(sock); 2807} 2808 2809static inline int security_socket_getpeername(struct socket * sock) 2810{ 2811 return security_ops->socket_getpeername(sock); 2812} 2813 2814static inline int security_socket_getsockopt(struct socket * sock, 2815 int level, int optname) 2816{ 2817 return security_ops->socket_getsockopt(sock, level, optname); 2818} 2819 2820static inline int security_socket_setsockopt(struct socket * sock, 2821 int level, int optname) 2822{ 2823 return security_ops->socket_setsockopt(sock, level, optname); 2824} 2825 2826static inline int security_socket_shutdown(struct socket * sock, int how) 2827{ 2828 return security_ops->socket_shutdown(sock, how); 2829} 2830 2831static inline int security_sock_rcv_skb (struct sock * sk, 2832 struct sk_buff * skb) 2833{ 2834 return security_ops->socket_sock_rcv_skb (sk, skb); 2835} 2836 2837static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2838 int __user *optlen, unsigned len) 2839{ 2840 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2841} 2842 2843static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2844 u32 *seclen) 2845{ 2846 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen); 2847} 2848 2849static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2850{ 2851 return security_ops->sk_alloc_security(sk, family, priority); 2852} 2853 2854static inline void security_sk_free(struct sock *sk) 2855{ 2856 return security_ops->sk_free_security(sk); 2857} 2858 2859static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2860{ 2861 return security_ops->sk_getsid(sk, fl, dir); 2862} 2863#else /* CONFIG_SECURITY_NETWORK */ 2864static inline int security_unix_stream_connect(struct socket * sock, 2865 struct socket * other, 2866 struct sock * newsk) 2867{ 2868 return 0; 2869} 2870 2871static inline int security_unix_may_send(struct socket * sock, 2872 struct socket * other) 2873{ 2874 return 0; 2875} 2876 2877static inline int security_socket_create (int family, int type, 2878 int protocol, int kern) 2879{ 2880 return 0; 2881} 2882 2883static inline void security_socket_post_create(struct socket * sock, 2884 int family, 2885 int type, 2886 int protocol, int kern) 2887{ 2888} 2889 2890static inline int security_socket_bind(struct socket * sock, 2891 struct sockaddr * address, 2892 int addrlen) 2893{ 2894 return 0; 2895} 2896 2897static inline int security_socket_connect(struct socket * sock, 2898 struct sockaddr * address, 2899 int addrlen) 2900{ 2901 return 0; 2902} 2903 2904static inline int security_socket_listen(struct socket * sock, int backlog) 2905{ 2906 return 0; 2907} 2908 2909static inline int security_socket_accept(struct socket * sock, 2910 struct socket * newsock) 2911{ 2912 return 0; 2913} 2914 2915static inline void security_socket_post_accept(struct socket * sock, 2916 struct socket * newsock) 2917{ 2918} 2919 2920static inline int security_socket_sendmsg(struct socket * sock, 2921 struct msghdr * msg, int size) 2922{ 2923 return 0; 2924} 2925 2926static inline int security_socket_recvmsg(struct socket * sock, 2927 struct msghdr * msg, int size, 2928 int flags) 2929{ 2930 return 0; 2931} 2932 2933static inline int security_socket_getsockname(struct socket * sock) 2934{ 2935 return 0; 2936} 2937 2938static inline int security_socket_getpeername(struct socket * sock) 2939{ 2940 return 0; 2941} 2942 2943static inline int security_socket_getsockopt(struct socket * sock, 2944 int level, int optname) 2945{ 2946 return 0; 2947} 2948 2949static inline int security_socket_setsockopt(struct socket * sock, 2950 int level, int optname) 2951{ 2952 return 0; 2953} 2954 2955static inline int security_socket_shutdown(struct socket * sock, int how) 2956{ 2957 return 0; 2958} 2959static inline int security_sock_rcv_skb (struct sock * sk, 2960 struct sk_buff * skb) 2961{ 2962 return 0; 2963} 2964 2965static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2966 int __user *optlen, unsigned len) 2967{ 2968 return -ENOPROTOOPT; 2969} 2970 2971static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, 2972 u32 *seclen) 2973{ 2974 return -ENOPROTOOPT; 2975} 2976 2977static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2978{ 2979 return 0; 2980} 2981 2982static inline void security_sk_free(struct sock *sk) 2983{ 2984} 2985 2986static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) 2987{ 2988 return 0; 2989} 2990#endif /* CONFIG_SECURITY_NETWORK */ 2991 2992#ifdef CONFIG_SECURITY_NETWORK_XFRM 2993static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 2994{ 2995 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 2996} 2997 2998static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 2999{ 3000 return security_ops->xfrm_policy_clone_security(old, new); 3001} 3002 3003static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3004{ 3005 security_ops->xfrm_policy_free_security(xp); 3006} 3007 3008static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3009{ 3010 return security_ops->xfrm_policy_delete_security(xp); 3011} 3012 3013static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 3014{ 3015 return security_ops->xfrm_state_alloc_security(x, sec_ctx); 3016} 3017 3018static inline int security_xfrm_state_delete(struct xfrm_state *x) 3019{ 3020 return security_ops->xfrm_state_delete_security(x); 3021} 3022 3023static inline void security_xfrm_state_free(struct xfrm_state *x) 3024{ 3025 security_ops->xfrm_state_free_security(x); 3026} 3027 3028static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 3029{ 3030 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir); 3031} 3032#else /* CONFIG_SECURITY_NETWORK_XFRM */ 3033static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3034{ 3035 return 0; 3036} 3037 3038static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3039{ 3040 return 0; 3041} 3042 3043static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3044{ 3045} 3046 3047static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3048{ 3049 return 0; 3050} 3051 3052static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 3053{ 3054 return 0; 3055} 3056 3057static inline void security_xfrm_state_free(struct xfrm_state *x) 3058{ 3059} 3060 3061static inline int security_xfrm_state_delete(struct xfrm_state *x) 3062{ 3063 return 0; 3064} 3065 3066static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) 3067{ 3068 return 0; 3069} 3070#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3071 3072#ifdef CONFIG_KEYS 3073#ifdef CONFIG_SECURITY 3074static inline int security_key_alloc(struct key *key, 3075 struct task_struct *tsk, 3076 unsigned long flags) 3077{ 3078 return security_ops->key_alloc(key, tsk, flags); 3079} 3080 3081static inline void security_key_free(struct key *key) 3082{ 3083 security_ops->key_free(key); 3084} 3085 3086static inline int security_key_permission(key_ref_t key_ref, 3087 struct task_struct *context, 3088 key_perm_t perm) 3089{ 3090 return security_ops->key_permission(key_ref, context, perm); 3091} 3092 3093#else 3094 3095static inline int security_key_alloc(struct key *key, 3096 struct task_struct *tsk, 3097 unsigned long flags) 3098{ 3099 return 0; 3100} 3101 3102static inline void security_key_free(struct key *key) 3103{ 3104} 3105 3106static inline int security_key_permission(key_ref_t key_ref, 3107 struct task_struct *context, 3108 key_perm_t perm) 3109{ 3110 return 0; 3111} 3112 3113#endif 3114#endif /* CONFIG_KEYS */ 3115 3116#endif /* ! __LINUX_SECURITY_H */ 3117