at v2.6.18-rc2 530 lines 17 kB view raw
1#ifndef _ASM_POWERPC_PGTABLE_H 2#define _ASM_POWERPC_PGTABLE_H 3#ifdef __KERNEL__ 4 5#ifndef CONFIG_PPC64 6#include <asm-ppc/pgtable.h> 7#else 8 9/* 10 * This file contains the functions and defines necessary to modify and use 11 * the ppc64 hashed page table. 12 */ 13 14#ifndef __ASSEMBLY__ 15#include <linux/stddef.h> 16#include <asm/processor.h> /* For TASK_SIZE */ 17#include <asm/mmu.h> 18#include <asm/page.h> 19#include <asm/tlbflush.h> 20struct mm_struct; 21#endif /* __ASSEMBLY__ */ 22 23#ifdef CONFIG_PPC_64K_PAGES 24#include <asm/pgtable-64k.h> 25#else 26#include <asm/pgtable-4k.h> 27#endif 28 29#define FIRST_USER_ADDRESS 0 30 31/* 32 * Size of EA range mapped by our pagetables. 33 */ 34#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ 35 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) 36#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) 37 38#if TASK_SIZE_USER64 > PGTABLE_RANGE 39#error TASK_SIZE_USER64 exceeds pagetable range 40#endif 41 42#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) 43#error TASK_SIZE_USER64 exceeds user VSID range 44#endif 45 46/* 47 * Define the address range of the vmalloc VM area. 48 */ 49#define VMALLOC_START ASM_CONST(0xD000000000000000) 50#define VMALLOC_SIZE ASM_CONST(0x80000000000) 51#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) 52 53/* 54 * Define the address range of the imalloc VM area. 55 */ 56#define PHBS_IO_BASE VMALLOC_END 57#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ 58#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) 59 60/* 61 * Region IDs 62 */ 63#define REGION_SHIFT 60UL 64#define REGION_MASK (0xfUL << REGION_SHIFT) 65#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) 66 67#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) 68#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) 69#define USER_REGION_ID (0UL) 70 71/* 72 * Common bits in a linux-style PTE. These match the bits in the 73 * (hardware-defined) PowerPC PTE as closely as possible. Additional 74 * bits may be defined in pgtable-*.h 75 */ 76#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ 77#define _PAGE_USER 0x0002 /* matches one of the PP bits */ 78#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ 79#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ 80#define _PAGE_GUARDED 0x0008 81#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ 82#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ 83#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ 84#define _PAGE_DIRTY 0x0080 /* C: page changed */ 85#define _PAGE_ACCESSED 0x0100 /* R: page referenced */ 86#define _PAGE_RW 0x0200 /* software: user write access allowed */ 87#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ 88#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ 89 90#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) 91 92#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) 93 94/* __pgprot defined in asm-powerpc/page.h */ 95#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) 96 97#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) 98#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) 99#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 100#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 101#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 102#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 103#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) 104#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ 105 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) 106#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) 107 108#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) 109#define HAVE_PAGE_AGP 110 111/* PTEIDX nibble */ 112#define _PTEIDX_SECONDARY 0x8 113#define _PTEIDX_GROUP_IX 0x7 114 115 116/* 117 * POWER4 and newer have per page execute protection, older chips can only 118 * do this on a segment (256MB) basis. 119 * 120 * Also, write permissions imply read permissions. 121 * This is the closest we can get.. 122 * 123 * Note due to the way vm flags are laid out, the bits are XWR 124 */ 125#define __P000 PAGE_NONE 126#define __P001 PAGE_READONLY 127#define __P010 PAGE_COPY 128#define __P011 PAGE_COPY 129#define __P100 PAGE_READONLY_X 130#define __P101 PAGE_READONLY_X 131#define __P110 PAGE_COPY_X 132#define __P111 PAGE_COPY_X 133 134#define __S000 PAGE_NONE 135#define __S001 PAGE_READONLY 136#define __S010 PAGE_SHARED 137#define __S011 PAGE_SHARED 138#define __S100 PAGE_READONLY_X 139#define __S101 PAGE_READONLY_X 140#define __S110 PAGE_SHARED_X 141#define __S111 PAGE_SHARED_X 142 143#ifndef __ASSEMBLY__ 144 145/* 146 * ZERO_PAGE is a global shared page that is always zero: used 147 * for zero-mapped memory areas etc.. 148 */ 149extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 150#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 151#endif /* __ASSEMBLY__ */ 152 153#ifdef CONFIG_HUGETLB_PAGE 154 155#define HAVE_ARCH_UNMAPPED_AREA 156#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 157 158#endif 159 160#ifndef __ASSEMBLY__ 161 162/* 163 * Conversion functions: convert a page and protection to a page entry, 164 * and a page entry and page directory to the page they refer to. 165 * 166 * mk_pte takes a (struct page *) as input 167 */ 168#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 169 170static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 171{ 172 pte_t pte; 173 174 175 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); 176 return pte; 177} 178 179#define pte_modify(_pte, newprot) \ 180 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) 181 182#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) 183#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 184 185/* pte_clear moved to later in this file */ 186 187#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) 188#define pte_page(x) pfn_to_page(pte_pfn(x)) 189 190#define PMD_BAD_BITS (PTE_TABLE_SIZE-1) 191#define PUD_BAD_BITS (PMD_TABLE_SIZE-1) 192 193#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) 194#define pmd_none(pmd) (!pmd_val(pmd)) 195#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ 196 || (pmd_val(pmd) & PMD_BAD_BITS)) 197#define pmd_present(pmd) (pmd_val(pmd) != 0) 198#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) 199#define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) 200#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) 201 202#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) 203#define pud_none(pud) (!pud_val(pud)) 204#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ 205 || (pud_val(pud) & PUD_BAD_BITS)) 206#define pud_present(pud) (pud_val(pud) != 0) 207#define pud_clear(pudp) (pud_val(*(pudp)) = 0) 208#define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS) 209 210#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) 211 212/* 213 * Find an entry in a page-table-directory. We combine the address region 214 * (the high order N bits) and the pgd portion of the address. 215 */ 216/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ 217#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) 218 219#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 220 221#define pmd_offset(pudp,addr) \ 222 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 223 224#define pte_offset_kernel(dir,addr) \ 225 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) 226 227#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 228#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) 229#define pte_unmap(pte) do { } while(0) 230#define pte_unmap_nested(pte) do { } while(0) 231 232/* to find an entry in a kernel page-table-directory */ 233/* This now only contains the vmalloc pages */ 234#define pgd_offset_k(address) pgd_offset(&init_mm, address) 235 236/* 237 * The following only work if pte_present() is true. 238 * Undefined behaviour if not.. 239 */ 240static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} 241static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} 242static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} 243static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} 244static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} 245static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} 246 247static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 248static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 249 250static inline pte_t pte_rdprotect(pte_t pte) { 251 pte_val(pte) &= ~_PAGE_USER; return pte; } 252static inline pte_t pte_exprotect(pte_t pte) { 253 pte_val(pte) &= ~_PAGE_EXEC; return pte; } 254static inline pte_t pte_wrprotect(pte_t pte) { 255 pte_val(pte) &= ~(_PAGE_RW); return pte; } 256static inline pte_t pte_mkclean(pte_t pte) { 257 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } 258static inline pte_t pte_mkold(pte_t pte) { 259 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 260static inline pte_t pte_mkread(pte_t pte) { 261 pte_val(pte) |= _PAGE_USER; return pte; } 262static inline pte_t pte_mkexec(pte_t pte) { 263 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 264static inline pte_t pte_mkwrite(pte_t pte) { 265 pte_val(pte) |= _PAGE_RW; return pte; } 266static inline pte_t pte_mkdirty(pte_t pte) { 267 pte_val(pte) |= _PAGE_DIRTY; return pte; } 268static inline pte_t pte_mkyoung(pte_t pte) { 269 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 270static inline pte_t pte_mkhuge(pte_t pte) { 271 return pte; } 272 273/* Atomic PTE updates */ 274static inline unsigned long pte_update(pte_t *p, unsigned long clr) 275{ 276 unsigned long old, tmp; 277 278 __asm__ __volatile__( 279 "1: ldarx %0,0,%3 # pte_update\n\ 280 andi. %1,%0,%6\n\ 281 bne- 1b \n\ 282 andc %1,%0,%4 \n\ 283 stdcx. %1,0,%3 \n\ 284 bne- 1b" 285 : "=&r" (old), "=&r" (tmp), "=m" (*p) 286 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) 287 : "cc" ); 288 return old; 289} 290 291/* PTE updating functions, this function puts the PTE in the 292 * batch, doesn't actually triggers the hash flush immediately, 293 * you need to call flush_tlb_pending() to do that. 294 * Pass -1 for "normal" size (4K or 64K) 295 */ 296extern void hpte_update(struct mm_struct *mm, unsigned long addr, 297 pte_t *ptep, unsigned long pte, int huge); 298 299static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 300 unsigned long addr, pte_t *ptep) 301{ 302 unsigned long old; 303 304 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) 305 return 0; 306 old = pte_update(ptep, _PAGE_ACCESSED); 307 if (old & _PAGE_HASHPTE) { 308 hpte_update(mm, addr, ptep, old, 0); 309 flush_tlb_pending(); 310 } 311 return (old & _PAGE_ACCESSED) != 0; 312} 313#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 314#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 315({ \ 316 int __r; \ 317 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 318 __r; \ 319}) 320 321/* 322 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the 323 * moment we always flush but we need to fix hpte_update and test if the 324 * optimisation is worth it. 325 */ 326static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, 327 unsigned long addr, pte_t *ptep) 328{ 329 unsigned long old; 330 331 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) 332 return 0; 333 old = pte_update(ptep, _PAGE_DIRTY); 334 if (old & _PAGE_HASHPTE) 335 hpte_update(mm, addr, ptep, old, 0); 336 return (old & _PAGE_DIRTY) != 0; 337} 338#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 339#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ 340({ \ 341 int __r; \ 342 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ 343 __r; \ 344}) 345 346#define __HAVE_ARCH_PTEP_SET_WRPROTECT 347static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 348 pte_t *ptep) 349{ 350 unsigned long old; 351 352 if ((pte_val(*ptep) & _PAGE_RW) == 0) 353 return; 354 old = pte_update(ptep, _PAGE_RW); 355 if (old & _PAGE_HASHPTE) 356 hpte_update(mm, addr, ptep, old, 0); 357} 358 359/* 360 * We currently remove entries from the hashtable regardless of whether 361 * the entry was young or dirty. The generic routines only flush if the 362 * entry was young or dirty which is not good enough. 363 * 364 * We should be more intelligent about this but for the moment we override 365 * these functions and force a tlb flush unconditionally 366 */ 367#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 368#define ptep_clear_flush_young(__vma, __address, __ptep) \ 369({ \ 370 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ 371 __ptep); \ 372 __young; \ 373}) 374 375#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH 376#define ptep_clear_flush_dirty(__vma, __address, __ptep) \ 377({ \ 378 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ 379 __ptep); \ 380 flush_tlb_page(__vma, __address); \ 381 __dirty; \ 382}) 383 384#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 385static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 386 unsigned long addr, pte_t *ptep) 387{ 388 unsigned long old = pte_update(ptep, ~0UL); 389 390 if (old & _PAGE_HASHPTE) 391 hpte_update(mm, addr, ptep, old, 0); 392 return __pte(old); 393} 394 395static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 396 pte_t * ptep) 397{ 398 unsigned long old = pte_update(ptep, ~0UL); 399 400 if (old & _PAGE_HASHPTE) 401 hpte_update(mm, addr, ptep, old, 0); 402} 403 404/* 405 * set_pte stores a linux PTE into the linux page table. 406 */ 407static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 408 pte_t *ptep, pte_t pte) 409{ 410 if (pte_present(*ptep)) { 411 pte_clear(mm, addr, ptep); 412 flush_tlb_pending(); 413 } 414 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); 415 *ptep = pte; 416} 417 418/* Set the dirty and/or accessed bits atomically in a linux PTE, this 419 * function doesn't need to flush the hash entry 420 */ 421#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 422static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) 423{ 424 unsigned long bits = pte_val(entry) & 425 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 426 unsigned long old, tmp; 427 428 __asm__ __volatile__( 429 "1: ldarx %0,0,%4\n\ 430 andi. %1,%0,%6\n\ 431 bne- 1b \n\ 432 or %0,%3,%0\n\ 433 stdcx. %0,0,%4\n\ 434 bne- 1b" 435 :"=&r" (old), "=&r" (tmp), "=m" (*ptep) 436 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) 437 :"cc"); 438} 439#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 440 do { \ 441 __ptep_set_access_flags(__ptep, __entry, __dirty); \ 442 flush_tlb_page_nohash(__vma, __address); \ 443 } while(0) 444 445/* 446 * Macro to mark a page protection value as "uncacheable". 447 */ 448#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) 449 450struct file; 451extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 452 unsigned long size, pgprot_t vma_prot); 453#define __HAVE_PHYS_MEM_ACCESS_PROT 454 455#define __HAVE_ARCH_PTE_SAME 456#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) 457 458#define pte_ERROR(e) \ 459 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 460#define pmd_ERROR(e) \ 461 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 462#define pgd_ERROR(e) \ 463 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 464 465extern pgd_t swapper_pg_dir[]; 466 467extern void paging_init(void); 468 469/* 470 * This gets called at the end of handling a page fault, when 471 * the kernel has put a new PTE into the page table for the process. 472 * We use it to put a corresponding HPTE into the hash table 473 * ahead of time, instead of waiting for the inevitable extra 474 * hash-table miss exception. 475 */ 476struct vm_area_struct; 477extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); 478 479/* Encode and de-code a swap entry */ 480#define __swp_type(entry) (((entry).val >> 1) & 0x3f) 481#define __swp_offset(entry) ((entry).val >> 8) 482#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) 483#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) 484#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) 485#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) 486#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) 487#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) 488 489/* 490 * kern_addr_valid is intended to indicate whether an address is a valid 491 * kernel address. Most 32-bit archs define it as always true (like this) 492 * but most 64-bit archs actually perform a test. What should we do here? 493 * The only use is in fs/ncpfs/dir.c 494 */ 495#define kern_addr_valid(addr) (1) 496 497#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 498 remap_pfn_range(vma, vaddr, pfn, size, prot) 499 500void pgtable_cache_init(void); 501 502/* 503 * find_linux_pte returns the address of a linux pte for a given 504 * effective address and directory. If not found, it returns zero. 505 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) 506{ 507 pgd_t *pg; 508 pud_t *pu; 509 pmd_t *pm; 510 pte_t *pt = NULL; 511 512 pg = pgdir + pgd_index(ea); 513 if (!pgd_none(*pg)) { 514 pu = pud_offset(pg, ea); 515 if (!pud_none(*pu)) { 516 pm = pmd_offset(pu, ea); 517 if (pmd_present(*pm)) 518 pt = pte_offset_kernel(pm, ea); 519 } 520 } 521 return pt; 522} 523 524#include <asm-generic/pgtable.h> 525 526#endif /* __ASSEMBLY__ */ 527 528#endif /* CONFIG_PPC64 */ 529#endif /* __KERNEL__ */ 530#endif /* _ASM_POWERPC_PGTABLE_H */