at v2.6.17 632 lines 15 kB view raw
1/* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11#include <linux/mm.h> 12#include <linux/module.h> 13#include <linux/highmem.h> 14#include <linux/slab.h> 15#include <linux/spinlock.h> 16#include <linux/interrupt.h> 17 18#include <linux/vmalloc.h> 19 20#include <asm/uaccess.h> 21#include <asm/tlbflush.h> 22 23 24DEFINE_RWLOCK(vmlist_lock); 25struct vm_struct *vmlist; 26 27static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 28{ 29 pte_t *pte; 30 31 pte = pte_offset_kernel(pmd, addr); 32 do { 33 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 34 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 35 } while (pte++, addr += PAGE_SIZE, addr != end); 36} 37 38static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 39 unsigned long end) 40{ 41 pmd_t *pmd; 42 unsigned long next; 43 44 pmd = pmd_offset(pud, addr); 45 do { 46 next = pmd_addr_end(addr, end); 47 if (pmd_none_or_clear_bad(pmd)) 48 continue; 49 vunmap_pte_range(pmd, addr, next); 50 } while (pmd++, addr = next, addr != end); 51} 52 53static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 54 unsigned long end) 55{ 56 pud_t *pud; 57 unsigned long next; 58 59 pud = pud_offset(pgd, addr); 60 do { 61 next = pud_addr_end(addr, end); 62 if (pud_none_or_clear_bad(pud)) 63 continue; 64 vunmap_pmd_range(pud, addr, next); 65 } while (pud++, addr = next, addr != end); 66} 67 68void unmap_vm_area(struct vm_struct *area) 69{ 70 pgd_t *pgd; 71 unsigned long next; 72 unsigned long addr = (unsigned long) area->addr; 73 unsigned long end = addr + area->size; 74 75 BUG_ON(addr >= end); 76 pgd = pgd_offset_k(addr); 77 flush_cache_vunmap(addr, end); 78 do { 79 next = pgd_addr_end(addr, end); 80 if (pgd_none_or_clear_bad(pgd)) 81 continue; 82 vunmap_pud_range(pgd, addr, next); 83 } while (pgd++, addr = next, addr != end); 84 flush_tlb_kernel_range((unsigned long) area->addr, end); 85} 86 87static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 88 unsigned long end, pgprot_t prot, struct page ***pages) 89{ 90 pte_t *pte; 91 92 pte = pte_alloc_kernel(pmd, addr); 93 if (!pte) 94 return -ENOMEM; 95 do { 96 struct page *page = **pages; 97 WARN_ON(!pte_none(*pte)); 98 if (!page) 99 return -ENOMEM; 100 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 101 (*pages)++; 102 } while (pte++, addr += PAGE_SIZE, addr != end); 103 return 0; 104} 105 106static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 107 unsigned long end, pgprot_t prot, struct page ***pages) 108{ 109 pmd_t *pmd; 110 unsigned long next; 111 112 pmd = pmd_alloc(&init_mm, pud, addr); 113 if (!pmd) 114 return -ENOMEM; 115 do { 116 next = pmd_addr_end(addr, end); 117 if (vmap_pte_range(pmd, addr, next, prot, pages)) 118 return -ENOMEM; 119 } while (pmd++, addr = next, addr != end); 120 return 0; 121} 122 123static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 124 unsigned long end, pgprot_t prot, struct page ***pages) 125{ 126 pud_t *pud; 127 unsigned long next; 128 129 pud = pud_alloc(&init_mm, pgd, addr); 130 if (!pud) 131 return -ENOMEM; 132 do { 133 next = pud_addr_end(addr, end); 134 if (vmap_pmd_range(pud, addr, next, prot, pages)) 135 return -ENOMEM; 136 } while (pud++, addr = next, addr != end); 137 return 0; 138} 139 140int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 141{ 142 pgd_t *pgd; 143 unsigned long next; 144 unsigned long addr = (unsigned long) area->addr; 145 unsigned long end = addr + area->size - PAGE_SIZE; 146 int err; 147 148 BUG_ON(addr >= end); 149 pgd = pgd_offset_k(addr); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 flush_cache_vmap((unsigned long) area->addr, end); 157 return err; 158} 159 160struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 161 unsigned long start, unsigned long end, int node) 162{ 163 struct vm_struct **p, *tmp, *area; 164 unsigned long align = 1; 165 unsigned long addr; 166 167 if (flags & VM_IOREMAP) { 168 int bit = fls(size); 169 170 if (bit > IOREMAP_MAX_ORDER) 171 bit = IOREMAP_MAX_ORDER; 172 else if (bit < PAGE_SHIFT) 173 bit = PAGE_SHIFT; 174 175 align = 1ul << bit; 176 } 177 addr = ALIGN(start, align); 178 size = PAGE_ALIGN(size); 179 180 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node); 181 if (unlikely(!area)) 182 return NULL; 183 184 if (unlikely(!size)) { 185 kfree (area); 186 return NULL; 187 } 188 189 /* 190 * We always allocate a guard page. 191 */ 192 size += PAGE_SIZE; 193 194 write_lock(&vmlist_lock); 195 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 196 if ((unsigned long)tmp->addr < addr) { 197 if((unsigned long)tmp->addr + tmp->size >= addr) 198 addr = ALIGN(tmp->size + 199 (unsigned long)tmp->addr, align); 200 continue; 201 } 202 if ((size + addr) < addr) 203 goto out; 204 if (size + addr <= (unsigned long)tmp->addr) 205 goto found; 206 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 207 if (addr > end - size) 208 goto out; 209 } 210 211found: 212 area->next = *p; 213 *p = area; 214 215 area->flags = flags; 216 area->addr = (void *)addr; 217 area->size = size; 218 area->pages = NULL; 219 area->nr_pages = 0; 220 area->phys_addr = 0; 221 write_unlock(&vmlist_lock); 222 223 return area; 224 225out: 226 write_unlock(&vmlist_lock); 227 kfree(area); 228 if (printk_ratelimit()) 229 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 230 return NULL; 231} 232 233struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 234 unsigned long start, unsigned long end) 235{ 236 return __get_vm_area_node(size, flags, start, end, -1); 237} 238 239/** 240 * get_vm_area - reserve a contingous kernel virtual area 241 * 242 * @size: size of the area 243 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 244 * 245 * Search an area of @size in the kernel virtual mapping area, 246 * and reserved it for out purposes. Returns the area descriptor 247 * on success or %NULL on failure. 248 */ 249struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 250{ 251 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 252} 253 254struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node) 255{ 256 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node); 257} 258 259/* Caller must hold vmlist_lock */ 260struct vm_struct *__remove_vm_area(void *addr) 261{ 262 struct vm_struct **p, *tmp; 263 264 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 265 if (tmp->addr == addr) 266 goto found; 267 } 268 return NULL; 269 270found: 271 unmap_vm_area(tmp); 272 *p = tmp->next; 273 274 /* 275 * Remove the guard page. 276 */ 277 tmp->size -= PAGE_SIZE; 278 return tmp; 279} 280 281/** 282 * remove_vm_area - find and remove a contingous kernel virtual area 283 * 284 * @addr: base address 285 * 286 * Search for the kernel VM area starting at @addr, and remove it. 287 * This function returns the found VM area, but using it is NOT safe 288 * on SMP machines, except for its size or flags. 289 */ 290struct vm_struct *remove_vm_area(void *addr) 291{ 292 struct vm_struct *v; 293 write_lock(&vmlist_lock); 294 v = __remove_vm_area(addr); 295 write_unlock(&vmlist_lock); 296 return v; 297} 298 299void __vunmap(void *addr, int deallocate_pages) 300{ 301 struct vm_struct *area; 302 303 if (!addr) 304 return; 305 306 if ((PAGE_SIZE-1) & (unsigned long)addr) { 307 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 308 WARN_ON(1); 309 return; 310 } 311 312 area = remove_vm_area(addr); 313 if (unlikely(!area)) { 314 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 315 addr); 316 WARN_ON(1); 317 return; 318 } 319 320 if (deallocate_pages) { 321 int i; 322 323 for (i = 0; i < area->nr_pages; i++) { 324 BUG_ON(!area->pages[i]); 325 __free_page(area->pages[i]); 326 } 327 328 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) 329 vfree(area->pages); 330 else 331 kfree(area->pages); 332 } 333 334 kfree(area); 335 return; 336} 337 338/** 339 * vfree - release memory allocated by vmalloc() 340 * 341 * @addr: memory base address 342 * 343 * Free the virtually contiguous memory area starting at @addr, as 344 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 345 * NULL, no operation is performed. 346 * 347 * Must not be called in interrupt context. 348 */ 349void vfree(void *addr) 350{ 351 BUG_ON(in_interrupt()); 352 __vunmap(addr, 1); 353} 354EXPORT_SYMBOL(vfree); 355 356/** 357 * vunmap - release virtual mapping obtained by vmap() 358 * 359 * @addr: memory base address 360 * 361 * Free the virtually contiguous memory area starting at @addr, 362 * which was created from the page array passed to vmap(). 363 * 364 * Must not be called in interrupt context. 365 */ 366void vunmap(void *addr) 367{ 368 BUG_ON(in_interrupt()); 369 __vunmap(addr, 0); 370} 371EXPORT_SYMBOL(vunmap); 372 373/** 374 * vmap - map an array of pages into virtually contiguous space 375 * 376 * @pages: array of page pointers 377 * @count: number of pages to map 378 * @flags: vm_area->flags 379 * @prot: page protection for the mapping 380 * 381 * Maps @count pages from @pages into contiguous kernel virtual 382 * space. 383 */ 384void *vmap(struct page **pages, unsigned int count, 385 unsigned long flags, pgprot_t prot) 386{ 387 struct vm_struct *area; 388 389 if (count > num_physpages) 390 return NULL; 391 392 area = get_vm_area((count << PAGE_SHIFT), flags); 393 if (!area) 394 return NULL; 395 if (map_vm_area(area, prot, &pages)) { 396 vunmap(area->addr); 397 return NULL; 398 } 399 400 return area->addr; 401} 402EXPORT_SYMBOL(vmap); 403 404void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 405 pgprot_t prot, int node) 406{ 407 struct page **pages; 408 unsigned int nr_pages, array_size, i; 409 410 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 411 array_size = (nr_pages * sizeof(struct page *)); 412 413 area->nr_pages = nr_pages; 414 /* Please note that the recursion is strictly bounded. */ 415 if (array_size > PAGE_SIZE) 416 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 417 else 418 pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node); 419 area->pages = pages; 420 if (!area->pages) { 421 remove_vm_area(area->addr); 422 kfree(area); 423 return NULL; 424 } 425 memset(area->pages, 0, array_size); 426 427 for (i = 0; i < area->nr_pages; i++) { 428 if (node < 0) 429 area->pages[i] = alloc_page(gfp_mask); 430 else 431 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 432 if (unlikely(!area->pages[i])) { 433 /* Successfully allocated i pages, free them in __vunmap() */ 434 area->nr_pages = i; 435 goto fail; 436 } 437 } 438 439 if (map_vm_area(area, prot, &pages)) 440 goto fail; 441 return area->addr; 442 443fail: 444 vfree(area->addr); 445 return NULL; 446} 447 448void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 449{ 450 return __vmalloc_area_node(area, gfp_mask, prot, -1); 451} 452 453/** 454 * __vmalloc_node - allocate virtually contiguous memory 455 * 456 * @size: allocation size 457 * @gfp_mask: flags for the page level allocator 458 * @prot: protection mask for the allocated pages 459 * @node: node to use for allocation or -1 460 * 461 * Allocate enough pages to cover @size from the page level 462 * allocator with @gfp_mask flags. Map them into contiguous 463 * kernel virtual space, using a pagetable protection of @prot. 464 */ 465void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 466 int node) 467{ 468 struct vm_struct *area; 469 470 size = PAGE_ALIGN(size); 471 if (!size || (size >> PAGE_SHIFT) > num_physpages) 472 return NULL; 473 474 area = get_vm_area_node(size, VM_ALLOC, node); 475 if (!area) 476 return NULL; 477 478 return __vmalloc_area_node(area, gfp_mask, prot, node); 479} 480EXPORT_SYMBOL(__vmalloc_node); 481 482void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 483{ 484 return __vmalloc_node(size, gfp_mask, prot, -1); 485} 486EXPORT_SYMBOL(__vmalloc); 487 488/** 489 * vmalloc - allocate virtually contiguous memory 490 * 491 * @size: allocation size 492 * 493 * Allocate enough pages to cover @size from the page level 494 * allocator and map them into contiguous kernel virtual space. 495 * 496 * For tight cotrol over page level allocator and protection flags 497 * use __vmalloc() instead. 498 */ 499void *vmalloc(unsigned long size) 500{ 501 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 502} 503EXPORT_SYMBOL(vmalloc); 504 505/** 506 * vmalloc_node - allocate memory on a specific node 507 * 508 * @size: allocation size 509 * @node: numa node 510 * 511 * Allocate enough pages to cover @size from the page level 512 * allocator and map them into contiguous kernel virtual space. 513 * 514 * For tight cotrol over page level allocator and protection flags 515 * use __vmalloc() instead. 516 */ 517void *vmalloc_node(unsigned long size, int node) 518{ 519 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 520} 521EXPORT_SYMBOL(vmalloc_node); 522 523#ifndef PAGE_KERNEL_EXEC 524# define PAGE_KERNEL_EXEC PAGE_KERNEL 525#endif 526 527/** 528 * vmalloc_exec - allocate virtually contiguous, executable memory 529 * 530 * @size: allocation size 531 * 532 * Kernel-internal function to allocate enough pages to cover @size 533 * the page level allocator and map them into contiguous and 534 * executable kernel virtual space. 535 * 536 * For tight cotrol over page level allocator and protection flags 537 * use __vmalloc() instead. 538 */ 539 540void *vmalloc_exec(unsigned long size) 541{ 542 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 543} 544 545/** 546 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 547 * 548 * @size: allocation size 549 * 550 * Allocate enough 32bit PA addressable pages to cover @size from the 551 * page level allocator and map them into contiguous kernel virtual space. 552 */ 553void *vmalloc_32(unsigned long size) 554{ 555 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 556} 557EXPORT_SYMBOL(vmalloc_32); 558 559long vread(char *buf, char *addr, unsigned long count) 560{ 561 struct vm_struct *tmp; 562 char *vaddr, *buf_start = buf; 563 unsigned long n; 564 565 /* Don't allow overflow */ 566 if ((unsigned long) addr + count < count) 567 count = -(unsigned long) addr; 568 569 read_lock(&vmlist_lock); 570 for (tmp = vmlist; tmp; tmp = tmp->next) { 571 vaddr = (char *) tmp->addr; 572 if (addr >= vaddr + tmp->size - PAGE_SIZE) 573 continue; 574 while (addr < vaddr) { 575 if (count == 0) 576 goto finished; 577 *buf = '\0'; 578 buf++; 579 addr++; 580 count--; 581 } 582 n = vaddr + tmp->size - PAGE_SIZE - addr; 583 do { 584 if (count == 0) 585 goto finished; 586 *buf = *addr; 587 buf++; 588 addr++; 589 count--; 590 } while (--n > 0); 591 } 592finished: 593 read_unlock(&vmlist_lock); 594 return buf - buf_start; 595} 596 597long vwrite(char *buf, char *addr, unsigned long count) 598{ 599 struct vm_struct *tmp; 600 char *vaddr, *buf_start = buf; 601 unsigned long n; 602 603 /* Don't allow overflow */ 604 if ((unsigned long) addr + count < count) 605 count = -(unsigned long) addr; 606 607 read_lock(&vmlist_lock); 608 for (tmp = vmlist; tmp; tmp = tmp->next) { 609 vaddr = (char *) tmp->addr; 610 if (addr >= vaddr + tmp->size - PAGE_SIZE) 611 continue; 612 while (addr < vaddr) { 613 if (count == 0) 614 goto finished; 615 buf++; 616 addr++; 617 count--; 618 } 619 n = vaddr + tmp->size - PAGE_SIZE - addr; 620 do { 621 if (count == 0) 622 goto finished; 623 *addr = *buf; 624 buf++; 625 addr++; 626 count--; 627 } while (--n > 0); 628 } 629finished: 630 read_unlock(&vmlist_lock); 631 return buf - buf_start; 632}