at v2.6.17 36 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6#include <linux/capability.h> 7 8#ifdef __KERNEL__ 9 10#include <linux/config.h> 11#include <linux/gfp.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/prio_tree.h> 16#include <linux/fs.h> 17#include <linux/mutex.h> 18 19struct mempolicy; 20struct anon_vma; 21 22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23extern unsigned long max_mapnr; 24#endif 25 26extern unsigned long num_physpages; 27extern void * high_memory; 28extern unsigned long vmalloc_earlyreserve; 29extern int page_cluster; 30 31#ifdef CONFIG_SYSCTL 32extern int sysctl_legacy_va_layout; 33#else 34#define sysctl_legacy_va_layout 0 35#endif 36 37#include <asm/page.h> 38#include <asm/pgtable.h> 39#include <asm/processor.h> 40#include <asm/atomic.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53/* 54 * This struct defines a memory VMM memory area. There is one of these 55 * per VM-area/task. A VM area is any part of the process virtual memory 56 * space that has a special rule for the page-fault handlers (ie a shared 57 * library, the executable area etc). 58 */ 59struct vm_area_struct { 60 struct mm_struct * vm_mm; /* The address space we belong to. */ 61 unsigned long vm_start; /* Our start address within vm_mm. */ 62 unsigned long vm_end; /* The first byte after our end address 63 within vm_mm. */ 64 65 /* linked list of VM areas per task, sorted by address */ 66 struct vm_area_struct *vm_next; 67 68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 69 unsigned long vm_flags; /* Flags, listed below. */ 70 71 struct rb_node vm_rb; 72 73 /* 74 * For areas with an address space and backing store, 75 * linkage into the address_space->i_mmap prio tree, or 76 * linkage to the list of like vmas hanging off its node, or 77 * linkage of vma in the address_space->i_mmap_nonlinear list. 78 */ 79 union { 80 struct { 81 struct list_head list; 82 void *parent; /* aligns with prio_tree_node parent */ 83 struct vm_area_struct *head; 84 } vm_set; 85 86 struct raw_prio_tree_node prio_tree_node; 87 } shared; 88 89 /* 90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 91 * list, after a COW of one of the file pages. A MAP_SHARED vma 92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 93 * or brk vma (with NULL file) can only be in an anon_vma list. 94 */ 95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 97 98 /* Function pointers to deal with this struct. */ 99 struct vm_operations_struct * vm_ops; 100 101 /* Information about our backing store: */ 102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 103 units, *not* PAGE_CACHE_SIZE */ 104 struct file * vm_file; /* File we map to (can be NULL). */ 105 void * vm_private_data; /* was vm_pte (shared mem) */ 106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 107 108#ifndef CONFIG_MMU 109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 110#endif 111#ifdef CONFIG_NUMA 112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 113#endif 114}; 115 116/* 117 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 118 * disabled, then there's a single shared list of VMAs maintained by the 119 * system, and mm's subscribe to these individually 120 */ 121struct vm_list_struct { 122 struct vm_list_struct *next; 123 struct vm_area_struct *vma; 124}; 125 126#ifndef CONFIG_MMU 127extern struct rb_root nommu_vma_tree; 128extern struct rw_semaphore nommu_vma_sem; 129 130extern unsigned int kobjsize(const void *objp); 131#endif 132 133/* 134 * vm_flags.. 135 */ 136#define VM_READ 0x00000001 /* currently active flags */ 137#define VM_WRITE 0x00000002 138#define VM_EXEC 0x00000004 139#define VM_SHARED 0x00000008 140 141/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 142#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 143#define VM_MAYWRITE 0x00000020 144#define VM_MAYEXEC 0x00000040 145#define VM_MAYSHARE 0x00000080 146 147#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 148#define VM_GROWSUP 0x00000200 149#define VM_SHM 0x00000000 /* Means nothing: delete it later */ 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 152 153#define VM_EXECUTABLE 0x00001000 154#define VM_LOCKED 0x00002000 155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 156 157 /* Used by sys_madvise() */ 158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 160 161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 169 170#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 171#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 172#endif 173 174#ifdef CONFIG_STACK_GROWSUP 175#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 176#else 177#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 178#endif 179 180#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 181#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 182#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 183#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 184#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 185 186/* 187 * mapping from the currently active vm_flags protection bits (the 188 * low four bits) to a page protection mask.. 189 */ 190extern pgprot_t protection_map[16]; 191 192 193/* 194 * These are the virtual MM functions - opening of an area, closing and 195 * unmapping it (needed to keep files on disk up-to-date etc), pointer 196 * to the functions called when a no-page or a wp-page exception occurs. 197 */ 198struct vm_operations_struct { 199 void (*open)(struct vm_area_struct * area); 200 void (*close)(struct vm_area_struct * area); 201 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 202 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 203#ifdef CONFIG_NUMA 204 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 205 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 206 unsigned long addr); 207#endif 208}; 209 210struct mmu_gather; 211struct inode; 212 213/* 214 * Each physical page in the system has a struct page associated with 215 * it to keep track of whatever it is we are using the page for at the 216 * moment. Note that we have no way to track which tasks are using 217 * a page. 218 */ 219struct page { 220 unsigned long flags; /* Atomic flags, some possibly 221 * updated asynchronously */ 222 atomic_t _count; /* Usage count, see below. */ 223 atomic_t _mapcount; /* Count of ptes mapped in mms, 224 * to show when page is mapped 225 * & limit reverse map searches. 226 */ 227 union { 228 struct { 229 unsigned long private; /* Mapping-private opaque data: 230 * usually used for buffer_heads 231 * if PagePrivate set; used for 232 * swp_entry_t if PageSwapCache; 233 * indicates order in the buddy 234 * system if PG_buddy is set. 235 */ 236 struct address_space *mapping; /* If low bit clear, points to 237 * inode address_space, or NULL. 238 * If page mapped as anonymous 239 * memory, low bit is set, and 240 * it points to anon_vma object: 241 * see PAGE_MAPPING_ANON below. 242 */ 243 }; 244#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 245 spinlock_t ptl; 246#endif 247 }; 248 pgoff_t index; /* Our offset within mapping. */ 249 struct list_head lru; /* Pageout list, eg. active_list 250 * protected by zone->lru_lock ! 251 */ 252 /* 253 * On machines where all RAM is mapped into kernel address space, 254 * we can simply calculate the virtual address. On machines with 255 * highmem some memory is mapped into kernel virtual memory 256 * dynamically, so we need a place to store that address. 257 * Note that this field could be 16 bits on x86 ... ;) 258 * 259 * Architectures with slow multiplication can define 260 * WANT_PAGE_VIRTUAL in asm/page.h 261 */ 262#if defined(WANT_PAGE_VIRTUAL) 263 void *virtual; /* Kernel virtual address (NULL if 264 not kmapped, ie. highmem) */ 265#endif /* WANT_PAGE_VIRTUAL */ 266}; 267 268#define page_private(page) ((page)->private) 269#define set_page_private(page, v) ((page)->private = (v)) 270 271/* 272 * FIXME: take this include out, include page-flags.h in 273 * files which need it (119 of them) 274 */ 275#include <linux/page-flags.h> 276 277/* 278 * Methods to modify the page usage count. 279 * 280 * What counts for a page usage: 281 * - cache mapping (page->mapping) 282 * - private data (page->private) 283 * - page mapped in a task's page tables, each mapping 284 * is counted separately 285 * 286 * Also, many kernel routines increase the page count before a critical 287 * routine so they can be sure the page doesn't go away from under them. 288 */ 289 290/* 291 * Drop a ref, return true if the logical refcount fell to zero (the page has 292 * no users) 293 */ 294static inline int put_page_testzero(struct page *page) 295{ 296 BUG_ON(atomic_read(&page->_count) == 0); 297 return atomic_dec_and_test(&page->_count); 298} 299 300/* 301 * Try to grab a ref unless the page has a refcount of zero, return false if 302 * that is the case. 303 */ 304static inline int get_page_unless_zero(struct page *page) 305{ 306 return atomic_inc_not_zero(&page->_count); 307} 308 309extern void FASTCALL(__page_cache_release(struct page *)); 310 311static inline int page_count(struct page *page) 312{ 313 if (unlikely(PageCompound(page))) 314 page = (struct page *)page_private(page); 315 return atomic_read(&page->_count); 316} 317 318static inline void get_page(struct page *page) 319{ 320 if (unlikely(PageCompound(page))) 321 page = (struct page *)page_private(page); 322 atomic_inc(&page->_count); 323} 324 325/* 326 * Setup the page count before being freed into the page allocator for 327 * the first time (boot or memory hotplug) 328 */ 329static inline void init_page_count(struct page *page) 330{ 331 atomic_set(&page->_count, 1); 332} 333 334void put_page(struct page *page); 335 336void split_page(struct page *page, unsigned int order); 337 338/* 339 * Multiple processes may "see" the same page. E.g. for untouched 340 * mappings of /dev/null, all processes see the same page full of 341 * zeroes, and text pages of executables and shared libraries have 342 * only one copy in memory, at most, normally. 343 * 344 * For the non-reserved pages, page_count(page) denotes a reference count. 345 * page_count() == 0 means the page is free. page->lru is then used for 346 * freelist management in the buddy allocator. 347 * page_count() == 1 means the page is used for exactly one purpose 348 * (e.g. a private data page of one process). 349 * 350 * A page may be used for kmalloc() or anyone else who does a 351 * __get_free_page(). In this case the page_count() is at least 1, and 352 * all other fields are unused but should be 0 or NULL. The 353 * management of this page is the responsibility of the one who uses 354 * it. 355 * 356 * The other pages (we may call them "process pages") are completely 357 * managed by the Linux memory manager: I/O, buffers, swapping etc. 358 * The following discussion applies only to them. 359 * 360 * A page may belong to an inode's memory mapping. In this case, 361 * page->mapping is the pointer to the inode, and page->index is the 362 * file offset of the page, in units of PAGE_CACHE_SIZE. 363 * 364 * A page contains an opaque `private' member, which belongs to the 365 * page's address_space. Usually, this is the address of a circular 366 * list of the page's disk buffers. 367 * 368 * For pages belonging to inodes, the page_count() is the number of 369 * attaches, plus 1 if `private' contains something, plus one for 370 * the page cache itself. 371 * 372 * Instead of keeping dirty/clean pages in per address-space lists, we instead 373 * now tag pages as dirty/under writeback in the radix tree. 374 * 375 * There is also a per-mapping radix tree mapping index to the page 376 * in memory if present. The tree is rooted at mapping->root. 377 * 378 * All process pages can do I/O: 379 * - inode pages may need to be read from disk, 380 * - inode pages which have been modified and are MAP_SHARED may need 381 * to be written to disk, 382 * - private pages which have been modified may need to be swapped out 383 * to swap space and (later) to be read back into memory. 384 */ 385 386/* 387 * The zone field is never updated after free_area_init_core() 388 * sets it, so none of the operations on it need to be atomic. 389 */ 390 391 392/* 393 * page->flags layout: 394 * 395 * There are three possibilities for how page->flags get 396 * laid out. The first is for the normal case, without 397 * sparsemem. The second is for sparsemem when there is 398 * plenty of space for node and section. The last is when 399 * we have run out of space and have to fall back to an 400 * alternate (slower) way of determining the node. 401 * 402 * No sparsemem: | NODE | ZONE | ... | FLAGS | 403 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 404 * no space for node: | SECTION | ZONE | ... | FLAGS | 405 */ 406#ifdef CONFIG_SPARSEMEM 407#define SECTIONS_WIDTH SECTIONS_SHIFT 408#else 409#define SECTIONS_WIDTH 0 410#endif 411 412#define ZONES_WIDTH ZONES_SHIFT 413 414#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 415#define NODES_WIDTH NODES_SHIFT 416#else 417#define NODES_WIDTH 0 418#endif 419 420/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 421#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 422#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 423#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 424 425/* 426 * We are going to use the flags for the page to node mapping if its in 427 * there. This includes the case where there is no node, so it is implicit. 428 */ 429#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 430 431#ifndef PFN_SECTION_SHIFT 432#define PFN_SECTION_SHIFT 0 433#endif 434 435/* 436 * Define the bit shifts to access each section. For non-existant 437 * sections we define the shift as 0; that plus a 0 mask ensures 438 * the compiler will optimise away reference to them. 439 */ 440#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 441#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 442#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 443 444/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 445#if FLAGS_HAS_NODE 446#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 447#else 448#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 449#endif 450#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 451 452#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 453#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 454#endif 455 456#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 457#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 458#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 459#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 460 461static inline unsigned long page_zonenum(struct page *page) 462{ 463 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 464} 465 466struct zone; 467extern struct zone *zone_table[]; 468 469static inline struct zone *page_zone(struct page *page) 470{ 471 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 472 ZONETABLE_MASK]; 473} 474 475static inline unsigned long page_to_nid(struct page *page) 476{ 477 if (FLAGS_HAS_NODE) 478 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 479 else 480 return page_zone(page)->zone_pgdat->node_id; 481} 482static inline unsigned long page_to_section(struct page *page) 483{ 484 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 485} 486 487static inline void set_page_zone(struct page *page, unsigned long zone) 488{ 489 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 490 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 491} 492static inline void set_page_node(struct page *page, unsigned long node) 493{ 494 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 495 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 496} 497static inline void set_page_section(struct page *page, unsigned long section) 498{ 499 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 500 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 501} 502 503static inline void set_page_links(struct page *page, unsigned long zone, 504 unsigned long node, unsigned long pfn) 505{ 506 set_page_zone(page, zone); 507 set_page_node(page, node); 508 set_page_section(page, pfn_to_section_nr(pfn)); 509} 510 511#ifndef CONFIG_DISCONTIGMEM 512/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 513extern struct page *mem_map; 514#endif 515 516static __always_inline void *lowmem_page_address(struct page *page) 517{ 518 return __va(page_to_pfn(page) << PAGE_SHIFT); 519} 520 521#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 522#define HASHED_PAGE_VIRTUAL 523#endif 524 525#if defined(WANT_PAGE_VIRTUAL) 526#define page_address(page) ((page)->virtual) 527#define set_page_address(page, address) \ 528 do { \ 529 (page)->virtual = (address); \ 530 } while(0) 531#define page_address_init() do { } while(0) 532#endif 533 534#if defined(HASHED_PAGE_VIRTUAL) 535void *page_address(struct page *page); 536void set_page_address(struct page *page, void *virtual); 537void page_address_init(void); 538#endif 539 540#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 541#define page_address(page) lowmem_page_address(page) 542#define set_page_address(page, address) do { } while(0) 543#define page_address_init() do { } while(0) 544#endif 545 546/* 547 * On an anonymous page mapped into a user virtual memory area, 548 * page->mapping points to its anon_vma, not to a struct address_space; 549 * with the PAGE_MAPPING_ANON bit set to distinguish it. 550 * 551 * Please note that, confusingly, "page_mapping" refers to the inode 552 * address_space which maps the page from disk; whereas "page_mapped" 553 * refers to user virtual address space into which the page is mapped. 554 */ 555#define PAGE_MAPPING_ANON 1 556 557extern struct address_space swapper_space; 558static inline struct address_space *page_mapping(struct page *page) 559{ 560 struct address_space *mapping = page->mapping; 561 562 if (unlikely(PageSwapCache(page))) 563 mapping = &swapper_space; 564 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 565 mapping = NULL; 566 return mapping; 567} 568 569static inline int PageAnon(struct page *page) 570{ 571 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 572} 573 574/* 575 * Return the pagecache index of the passed page. Regular pagecache pages 576 * use ->index whereas swapcache pages use ->private 577 */ 578static inline pgoff_t page_index(struct page *page) 579{ 580 if (unlikely(PageSwapCache(page))) 581 return page_private(page); 582 return page->index; 583} 584 585/* 586 * The atomic page->_mapcount, like _count, starts from -1: 587 * so that transitions both from it and to it can be tracked, 588 * using atomic_inc_and_test and atomic_add_negative(-1). 589 */ 590static inline void reset_page_mapcount(struct page *page) 591{ 592 atomic_set(&(page)->_mapcount, -1); 593} 594 595static inline int page_mapcount(struct page *page) 596{ 597 return atomic_read(&(page)->_mapcount) + 1; 598} 599 600/* 601 * Return true if this page is mapped into pagetables. 602 */ 603static inline int page_mapped(struct page *page) 604{ 605 return atomic_read(&(page)->_mapcount) >= 0; 606} 607 608/* 609 * Error return values for the *_nopage functions 610 */ 611#define NOPAGE_SIGBUS (NULL) 612#define NOPAGE_OOM ((struct page *) (-1)) 613 614/* 615 * Different kinds of faults, as returned by handle_mm_fault(). 616 * Used to decide whether a process gets delivered SIGBUS or 617 * just gets major/minor fault counters bumped up. 618 */ 619#define VM_FAULT_OOM 0x00 620#define VM_FAULT_SIGBUS 0x01 621#define VM_FAULT_MINOR 0x02 622#define VM_FAULT_MAJOR 0x03 623 624/* 625 * Special case for get_user_pages. 626 * Must be in a distinct bit from the above VM_FAULT_ flags. 627 */ 628#define VM_FAULT_WRITE 0x10 629 630#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 631 632extern void show_free_areas(void); 633 634#ifdef CONFIG_SHMEM 635struct page *shmem_nopage(struct vm_area_struct *vma, 636 unsigned long address, int *type); 637int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 638struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 639 unsigned long addr); 640int shmem_lock(struct file *file, int lock, struct user_struct *user); 641#else 642#define shmem_nopage filemap_nopage 643 644static inline int shmem_lock(struct file *file, int lock, 645 struct user_struct *user) 646{ 647 return 0; 648} 649 650static inline int shmem_set_policy(struct vm_area_struct *vma, 651 struct mempolicy *new) 652{ 653 return 0; 654} 655 656static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 657 unsigned long addr) 658{ 659 return NULL; 660} 661#endif 662struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 663extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); 664 665int shmem_zero_setup(struct vm_area_struct *); 666 667#ifndef CONFIG_MMU 668extern unsigned long shmem_get_unmapped_area(struct file *file, 669 unsigned long addr, 670 unsigned long len, 671 unsigned long pgoff, 672 unsigned long flags); 673#endif 674 675static inline int can_do_mlock(void) 676{ 677 if (capable(CAP_IPC_LOCK)) 678 return 1; 679 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 680 return 1; 681 return 0; 682} 683extern int user_shm_lock(size_t, struct user_struct *); 684extern void user_shm_unlock(size_t, struct user_struct *); 685 686/* 687 * Parameter block passed down to zap_pte_range in exceptional cases. 688 */ 689struct zap_details { 690 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 691 struct address_space *check_mapping; /* Check page->mapping if set */ 692 pgoff_t first_index; /* Lowest page->index to unmap */ 693 pgoff_t last_index; /* Highest page->index to unmap */ 694 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 695 unsigned long truncate_count; /* Compare vm_truncate_count */ 696}; 697 698struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 699unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 700 unsigned long size, struct zap_details *); 701unsigned long unmap_vmas(struct mmu_gather **tlb, 702 struct vm_area_struct *start_vma, unsigned long start_addr, 703 unsigned long end_addr, unsigned long *nr_accounted, 704 struct zap_details *); 705void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 706 unsigned long end, unsigned long floor, unsigned long ceiling); 707void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 708 unsigned long floor, unsigned long ceiling); 709int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 710 struct vm_area_struct *vma); 711int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 712 unsigned long size, pgprot_t prot); 713void unmap_mapping_range(struct address_space *mapping, 714 loff_t const holebegin, loff_t const holelen, int even_cows); 715 716static inline void unmap_shared_mapping_range(struct address_space *mapping, 717 loff_t const holebegin, loff_t const holelen) 718{ 719 unmap_mapping_range(mapping, holebegin, holelen, 0); 720} 721 722extern int vmtruncate(struct inode * inode, loff_t offset); 723extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 724extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 725extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 726 727#ifdef CONFIG_MMU 728extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 729 unsigned long address, int write_access); 730 731static inline int handle_mm_fault(struct mm_struct *mm, 732 struct vm_area_struct *vma, unsigned long address, 733 int write_access) 734{ 735 return __handle_mm_fault(mm, vma, address, write_access) & 736 (~VM_FAULT_WRITE); 737} 738#else 739static inline int handle_mm_fault(struct mm_struct *mm, 740 struct vm_area_struct *vma, unsigned long address, 741 int write_access) 742{ 743 /* should never happen if there's no MMU */ 744 BUG(); 745 return VM_FAULT_SIGBUS; 746} 747#endif 748 749extern int make_pages_present(unsigned long addr, unsigned long end); 750extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 751void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 752 753int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 754 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 755void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 756 757int __set_page_dirty_buffers(struct page *page); 758int __set_page_dirty_nobuffers(struct page *page); 759int redirty_page_for_writepage(struct writeback_control *wbc, 760 struct page *page); 761int FASTCALL(set_page_dirty(struct page *page)); 762int set_page_dirty_lock(struct page *page); 763int clear_page_dirty_for_io(struct page *page); 764 765extern unsigned long do_mremap(unsigned long addr, 766 unsigned long old_len, unsigned long new_len, 767 unsigned long flags, unsigned long new_addr); 768 769/* 770 * Prototype to add a shrinker callback for ageable caches. 771 * 772 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 773 * scan `nr_to_scan' objects, attempting to free them. 774 * 775 * The callback must return the number of objects which remain in the cache. 776 * 777 * The callback will be passed nr_to_scan == 0 when the VM is querying the 778 * cache size, so a fastpath for that case is appropriate. 779 */ 780typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 781 782/* 783 * Add an aging callback. The int is the number of 'seeks' it takes 784 * to recreate one of the objects that these functions age. 785 */ 786 787#define DEFAULT_SEEKS 2 788struct shrinker; 789extern struct shrinker *set_shrinker(int, shrinker_t); 790extern void remove_shrinker(struct shrinker *shrinker); 791 792extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 793 794int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 795int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 796int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 797int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 798 799/* 800 * The following ifdef needed to get the 4level-fixup.h header to work. 801 * Remove it when 4level-fixup.h has been removed. 802 */ 803#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 804static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 805{ 806 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 807 NULL: pud_offset(pgd, address); 808} 809 810static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 811{ 812 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 813 NULL: pmd_offset(pud, address); 814} 815#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 816 817#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 818/* 819 * We tuck a spinlock to guard each pagetable page into its struct page, 820 * at page->private, with BUILD_BUG_ON to make sure that this will not 821 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 822 * When freeing, reset page->mapping so free_pages_check won't complain. 823 */ 824#define __pte_lockptr(page) &((page)->ptl) 825#define pte_lock_init(_page) do { \ 826 spin_lock_init(__pte_lockptr(_page)); \ 827} while (0) 828#define pte_lock_deinit(page) ((page)->mapping = NULL) 829#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 830#else 831/* 832 * We use mm->page_table_lock to guard all pagetable pages of the mm. 833 */ 834#define pte_lock_init(page) do {} while (0) 835#define pte_lock_deinit(page) do {} while (0) 836#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 837#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 838 839#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 840({ \ 841 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 842 pte_t *__pte = pte_offset_map(pmd, address); \ 843 *(ptlp) = __ptl; \ 844 spin_lock(__ptl); \ 845 __pte; \ 846}) 847 848#define pte_unmap_unlock(pte, ptl) do { \ 849 spin_unlock(ptl); \ 850 pte_unmap(pte); \ 851} while (0) 852 853#define pte_alloc_map(mm, pmd, address) \ 854 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 855 NULL: pte_offset_map(pmd, address)) 856 857#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 858 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 859 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 860 861#define pte_alloc_kernel(pmd, address) \ 862 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 863 NULL: pte_offset_kernel(pmd, address)) 864 865extern void free_area_init(unsigned long * zones_size); 866extern void free_area_init_node(int nid, pg_data_t *pgdat, 867 unsigned long * zones_size, unsigned long zone_start_pfn, 868 unsigned long *zholes_size); 869extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 870extern void setup_per_zone_pages_min(void); 871extern void mem_init(void); 872extern void show_mem(void); 873extern void si_meminfo(struct sysinfo * val); 874extern void si_meminfo_node(struct sysinfo *val, int nid); 875 876#ifdef CONFIG_NUMA 877extern void setup_per_cpu_pageset(void); 878#else 879static inline void setup_per_cpu_pageset(void) {} 880#endif 881 882/* prio_tree.c */ 883void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 884void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 885void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 886struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 887 struct prio_tree_iter *iter); 888 889#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 890 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 891 (vma = vma_prio_tree_next(vma, iter)); ) 892 893static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 894 struct list_head *list) 895{ 896 vma->shared.vm_set.parent = NULL; 897 list_add_tail(&vma->shared.vm_set.list, list); 898} 899 900/* mmap.c */ 901extern int __vm_enough_memory(long pages, int cap_sys_admin); 902extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 903 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 904extern struct vm_area_struct *vma_merge(struct mm_struct *, 905 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 906 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 907 struct mempolicy *); 908extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 909extern int split_vma(struct mm_struct *, 910 struct vm_area_struct *, unsigned long addr, int new_below); 911extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 912extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 913 struct rb_node **, struct rb_node *); 914extern void unlink_file_vma(struct vm_area_struct *); 915extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 916 unsigned long addr, unsigned long len, pgoff_t pgoff); 917extern void exit_mmap(struct mm_struct *); 918extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 919 920extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 921 922extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 923 unsigned long len, unsigned long prot, 924 unsigned long flag, unsigned long pgoff); 925 926static inline unsigned long do_mmap(struct file *file, unsigned long addr, 927 unsigned long len, unsigned long prot, 928 unsigned long flag, unsigned long offset) 929{ 930 unsigned long ret = -EINVAL; 931 if ((offset + PAGE_ALIGN(len)) < offset) 932 goto out; 933 if (!(offset & ~PAGE_MASK)) 934 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 935out: 936 return ret; 937} 938 939extern int do_munmap(struct mm_struct *, unsigned long, size_t); 940 941extern unsigned long do_brk(unsigned long, unsigned long); 942 943/* filemap.c */ 944extern unsigned long page_unuse(struct page *); 945extern void truncate_inode_pages(struct address_space *, loff_t); 946extern void truncate_inode_pages_range(struct address_space *, 947 loff_t lstart, loff_t lend); 948 949/* generic vm_area_ops exported for stackable file systems */ 950extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 951extern int filemap_populate(struct vm_area_struct *, unsigned long, 952 unsigned long, pgprot_t, unsigned long, int); 953 954/* mm/page-writeback.c */ 955int write_one_page(struct page *page, int wait); 956 957/* readahead.c */ 958#define VM_MAX_READAHEAD 128 /* kbytes */ 959#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 960#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 961 * turning readahead off */ 962 963int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 964 pgoff_t offset, unsigned long nr_to_read); 965int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 966 pgoff_t offset, unsigned long nr_to_read); 967unsigned long page_cache_readahead(struct address_space *mapping, 968 struct file_ra_state *ra, 969 struct file *filp, 970 pgoff_t offset, 971 unsigned long size); 972void handle_ra_miss(struct address_space *mapping, 973 struct file_ra_state *ra, pgoff_t offset); 974unsigned long max_sane_readahead(unsigned long nr); 975 976/* Do stack extension */ 977extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 978#ifdef CONFIG_IA64 979extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 980#endif 981 982/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 983extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 984extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 985 struct vm_area_struct **pprev); 986 987/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 988 NULL if none. Assume start_addr < end_addr. */ 989static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 990{ 991 struct vm_area_struct * vma = find_vma(mm,start_addr); 992 993 if (vma && end_addr <= vma->vm_start) 994 vma = NULL; 995 return vma; 996} 997 998static inline unsigned long vma_pages(struct vm_area_struct *vma) 999{ 1000 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1001} 1002 1003struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1004struct page *vmalloc_to_page(void *addr); 1005unsigned long vmalloc_to_pfn(void *addr); 1006int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1007 unsigned long pfn, unsigned long size, pgprot_t); 1008int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1009 1010struct page *follow_page(struct vm_area_struct *, unsigned long address, 1011 unsigned int foll_flags); 1012#define FOLL_WRITE 0x01 /* check pte is writable */ 1013#define FOLL_TOUCH 0x02 /* mark page accessed */ 1014#define FOLL_GET 0x04 /* do get_page on page */ 1015#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1016 1017#ifdef CONFIG_PROC_FS 1018void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1019#else 1020static inline void vm_stat_account(struct mm_struct *mm, 1021 unsigned long flags, struct file *file, long pages) 1022{ 1023} 1024#endif /* CONFIG_PROC_FS */ 1025 1026#ifndef CONFIG_DEBUG_PAGEALLOC 1027static inline void 1028kernel_map_pages(struct page *page, int numpages, int enable) 1029{ 1030 if (!PageHighMem(page) && !enable) 1031 mutex_debug_check_no_locks_freed(page_address(page), 1032 numpages * PAGE_SIZE); 1033} 1034#endif 1035 1036extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1037#ifdef __HAVE_ARCH_GATE_AREA 1038int in_gate_area_no_task(unsigned long addr); 1039int in_gate_area(struct task_struct *task, unsigned long addr); 1040#else 1041int in_gate_area_no_task(unsigned long addr); 1042#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1043#endif /* __HAVE_ARCH_GATE_AREA */ 1044 1045/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 1046#define OOM_DISABLE -17 1047 1048int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1049 void __user *, size_t *, loff_t *); 1050unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1051 unsigned long lru_pages); 1052void drop_pagecache(void); 1053void drop_slab(void); 1054 1055#ifndef CONFIG_MMU 1056#define randomize_va_space 0 1057#else 1058extern int randomize_va_space; 1059#endif 1060 1061#endif /* __KERNEL__ */ 1062#endif /* _LINUX_MM_H */