at v2.6.17 26 kB view raw
1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#ifdef __KERNEL__ 5 6#include <linux/stddef.h> 7#include <linux/prefetch.h> 8#include <asm/system.h> 9 10/* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15#define LIST_POISON1 ((void *) 0x00100100) 16#define LIST_POISON2 ((void *) 0x00200200) 17 18/* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28struct list_head { 29 struct list_head *next, *prev; 30}; 31 32#define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34#define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37static inline void INIT_LIST_HEAD(struct list_head *list) 38{ 39 list->next = list; 40 list->prev = list; 41} 42 43/* 44 * Insert a new entry between two known consecutive entries. 45 * 46 * This is only for internal list manipulation where we know 47 * the prev/next entries already! 48 */ 49static inline void __list_add(struct list_head *new, 50 struct list_head *prev, 51 struct list_head *next) 52{ 53 next->prev = new; 54 new->next = next; 55 new->prev = prev; 56 prev->next = new; 57} 58 59/** 60 * list_add - add a new entry 61 * @new: new entry to be added 62 * @head: list head to add it after 63 * 64 * Insert a new entry after the specified head. 65 * This is good for implementing stacks. 66 */ 67static inline void list_add(struct list_head *new, struct list_head *head) 68{ 69 __list_add(new, head, head->next); 70} 71 72/** 73 * list_add_tail - add a new entry 74 * @new: new entry to be added 75 * @head: list head to add it before 76 * 77 * Insert a new entry before the specified head. 78 * This is useful for implementing queues. 79 */ 80static inline void list_add_tail(struct list_head *new, struct list_head *head) 81{ 82 __list_add(new, head->prev, head); 83} 84 85/* 86 * Insert a new entry between two known consecutive entries. 87 * 88 * This is only for internal list manipulation where we know 89 * the prev/next entries already! 90 */ 91static inline void __list_add_rcu(struct list_head * new, 92 struct list_head * prev, struct list_head * next) 93{ 94 new->next = next; 95 new->prev = prev; 96 smp_wmb(); 97 next->prev = new; 98 prev->next = new; 99} 100 101/** 102 * list_add_rcu - add a new entry to rcu-protected list 103 * @new: new entry to be added 104 * @head: list head to add it after 105 * 106 * Insert a new entry after the specified head. 107 * This is good for implementing stacks. 108 * 109 * The caller must take whatever precautions are necessary 110 * (such as holding appropriate locks) to avoid racing 111 * with another list-mutation primitive, such as list_add_rcu() 112 * or list_del_rcu(), running on this same list. 113 * However, it is perfectly legal to run concurrently with 114 * the _rcu list-traversal primitives, such as 115 * list_for_each_entry_rcu(). 116 */ 117static inline void list_add_rcu(struct list_head *new, struct list_head *head) 118{ 119 __list_add_rcu(new, head, head->next); 120} 121 122/** 123 * list_add_tail_rcu - add a new entry to rcu-protected list 124 * @new: new entry to be added 125 * @head: list head to add it before 126 * 127 * Insert a new entry before the specified head. 128 * This is useful for implementing queues. 129 * 130 * The caller must take whatever precautions are necessary 131 * (such as holding appropriate locks) to avoid racing 132 * with another list-mutation primitive, such as list_add_tail_rcu() 133 * or list_del_rcu(), running on this same list. 134 * However, it is perfectly legal to run concurrently with 135 * the _rcu list-traversal primitives, such as 136 * list_for_each_entry_rcu(). 137 */ 138static inline void list_add_tail_rcu(struct list_head *new, 139 struct list_head *head) 140{ 141 __list_add_rcu(new, head->prev, head); 142} 143 144/* 145 * Delete a list entry by making the prev/next entries 146 * point to each other. 147 * 148 * This is only for internal list manipulation where we know 149 * the prev/next entries already! 150 */ 151static inline void __list_del(struct list_head * prev, struct list_head * next) 152{ 153 next->prev = prev; 154 prev->next = next; 155} 156 157/** 158 * list_del - deletes entry from list. 159 * @entry: the element to delete from the list. 160 * Note: list_empty on entry does not return true after this, the entry is 161 * in an undefined state. 162 */ 163static inline void list_del(struct list_head *entry) 164{ 165 __list_del(entry->prev, entry->next); 166 entry->next = LIST_POISON1; 167 entry->prev = LIST_POISON2; 168} 169 170/** 171 * list_del_rcu - deletes entry from list without re-initialization 172 * @entry: the element to delete from the list. 173 * 174 * Note: list_empty on entry does not return true after this, 175 * the entry is in an undefined state. It is useful for RCU based 176 * lockfree traversal. 177 * 178 * In particular, it means that we can not poison the forward 179 * pointers that may still be used for walking the list. 180 * 181 * The caller must take whatever precautions are necessary 182 * (such as holding appropriate locks) to avoid racing 183 * with another list-mutation primitive, such as list_del_rcu() 184 * or list_add_rcu(), running on this same list. 185 * However, it is perfectly legal to run concurrently with 186 * the _rcu list-traversal primitives, such as 187 * list_for_each_entry_rcu(). 188 * 189 * Note that the caller is not permitted to immediately free 190 * the newly deleted entry. Instead, either synchronize_rcu() 191 * or call_rcu() must be used to defer freeing until an RCU 192 * grace period has elapsed. 193 */ 194static inline void list_del_rcu(struct list_head *entry) 195{ 196 __list_del(entry->prev, entry->next); 197 entry->prev = LIST_POISON2; 198} 199 200/* 201 * list_replace_rcu - replace old entry by new one 202 * @old : the element to be replaced 203 * @new : the new element to insert 204 * 205 * The old entry will be replaced with the new entry atomically. 206 */ 207static inline void list_replace_rcu(struct list_head *old, 208 struct list_head *new) 209{ 210 new->next = old->next; 211 new->prev = old->prev; 212 smp_wmb(); 213 new->next->prev = new; 214 new->prev->next = new; 215 old->prev = LIST_POISON2; 216} 217 218/** 219 * list_del_init - deletes entry from list and reinitialize it. 220 * @entry: the element to delete from the list. 221 */ 222static inline void list_del_init(struct list_head *entry) 223{ 224 __list_del(entry->prev, entry->next); 225 INIT_LIST_HEAD(entry); 226} 227 228/** 229 * list_move - delete from one list and add as another's head 230 * @list: the entry to move 231 * @head: the head that will precede our entry 232 */ 233static inline void list_move(struct list_head *list, struct list_head *head) 234{ 235 __list_del(list->prev, list->next); 236 list_add(list, head); 237} 238 239/** 240 * list_move_tail - delete from one list and add as another's tail 241 * @list: the entry to move 242 * @head: the head that will follow our entry 243 */ 244static inline void list_move_tail(struct list_head *list, 245 struct list_head *head) 246{ 247 __list_del(list->prev, list->next); 248 list_add_tail(list, head); 249} 250 251/** 252 * list_empty - tests whether a list is empty 253 * @head: the list to test. 254 */ 255static inline int list_empty(const struct list_head *head) 256{ 257 return head->next == head; 258} 259 260/** 261 * list_empty_careful - tests whether a list is 262 * empty _and_ checks that no other CPU might be 263 * in the process of still modifying either member 264 * 265 * NOTE: using list_empty_careful() without synchronization 266 * can only be safe if the only activity that can happen 267 * to the list entry is list_del_init(). Eg. it cannot be used 268 * if another CPU could re-list_add() it. 269 * 270 * @head: the list to test. 271 */ 272static inline int list_empty_careful(const struct list_head *head) 273{ 274 struct list_head *next = head->next; 275 return (next == head) && (next == head->prev); 276} 277 278static inline void __list_splice(struct list_head *list, 279 struct list_head *head) 280{ 281 struct list_head *first = list->next; 282 struct list_head *last = list->prev; 283 struct list_head *at = head->next; 284 285 first->prev = head; 286 head->next = first; 287 288 last->next = at; 289 at->prev = last; 290} 291 292/** 293 * list_splice - join two lists 294 * @list: the new list to add. 295 * @head: the place to add it in the first list. 296 */ 297static inline void list_splice(struct list_head *list, struct list_head *head) 298{ 299 if (!list_empty(list)) 300 __list_splice(list, head); 301} 302 303/** 304 * list_splice_init - join two lists and reinitialise the emptied list. 305 * @list: the new list to add. 306 * @head: the place to add it in the first list. 307 * 308 * The list at @list is reinitialised 309 */ 310static inline void list_splice_init(struct list_head *list, 311 struct list_head *head) 312{ 313 if (!list_empty(list)) { 314 __list_splice(list, head); 315 INIT_LIST_HEAD(list); 316 } 317} 318 319/** 320 * list_entry - get the struct for this entry 321 * @ptr: the &struct list_head pointer. 322 * @type: the type of the struct this is embedded in. 323 * @member: the name of the list_struct within the struct. 324 */ 325#define list_entry(ptr, type, member) \ 326 container_of(ptr, type, member) 327 328/** 329 * list_for_each - iterate over a list 330 * @pos: the &struct list_head to use as a loop counter. 331 * @head: the head for your list. 332 */ 333#define list_for_each(pos, head) \ 334 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 335 pos = pos->next) 336 337/** 338 * __list_for_each - iterate over a list 339 * @pos: the &struct list_head to use as a loop counter. 340 * @head: the head for your list. 341 * 342 * This variant differs from list_for_each() in that it's the 343 * simplest possible list iteration code, no prefetching is done. 344 * Use this for code that knows the list to be very short (empty 345 * or 1 entry) most of the time. 346 */ 347#define __list_for_each(pos, head) \ 348 for (pos = (head)->next; pos != (head); pos = pos->next) 349 350/** 351 * list_for_each_prev - iterate over a list backwards 352 * @pos: the &struct list_head to use as a loop counter. 353 * @head: the head for your list. 354 */ 355#define list_for_each_prev(pos, head) \ 356 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 357 pos = pos->prev) 358 359/** 360 * list_for_each_safe - iterate over a list safe against removal of list entry 361 * @pos: the &struct list_head to use as a loop counter. 362 * @n: another &struct list_head to use as temporary storage 363 * @head: the head for your list. 364 */ 365#define list_for_each_safe(pos, n, head) \ 366 for (pos = (head)->next, n = pos->next; pos != (head); \ 367 pos = n, n = pos->next) 368 369/** 370 * list_for_each_entry - iterate over list of given type 371 * @pos: the type * to use as a loop counter. 372 * @head: the head for your list. 373 * @member: the name of the list_struct within the struct. 374 */ 375#define list_for_each_entry(pos, head, member) \ 376 for (pos = list_entry((head)->next, typeof(*pos), member); \ 377 prefetch(pos->member.next), &pos->member != (head); \ 378 pos = list_entry(pos->member.next, typeof(*pos), member)) 379 380/** 381 * list_for_each_entry_reverse - iterate backwards over list of given type. 382 * @pos: the type * to use as a loop counter. 383 * @head: the head for your list. 384 * @member: the name of the list_struct within the struct. 385 */ 386#define list_for_each_entry_reverse(pos, head, member) \ 387 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 388 prefetch(pos->member.prev), &pos->member != (head); \ 389 pos = list_entry(pos->member.prev, typeof(*pos), member)) 390 391/** 392 * list_prepare_entry - prepare a pos entry for use as a start point in 393 * list_for_each_entry_continue 394 * @pos: the type * to use as a start point 395 * @head: the head of the list 396 * @member: the name of the list_struct within the struct. 397 */ 398#define list_prepare_entry(pos, head, member) \ 399 ((pos) ? : list_entry(head, typeof(*pos), member)) 400 401/** 402 * list_for_each_entry_continue - iterate over list of given type 403 * continuing after existing point 404 * @pos: the type * to use as a loop counter. 405 * @head: the head for your list. 406 * @member: the name of the list_struct within the struct. 407 */ 408#define list_for_each_entry_continue(pos, head, member) \ 409 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 410 prefetch(pos->member.next), &pos->member != (head); \ 411 pos = list_entry(pos->member.next, typeof(*pos), member)) 412 413/** 414 * list_for_each_entry_from - iterate over list of given type 415 * continuing from existing point 416 * @pos: the type * to use as a loop counter. 417 * @head: the head for your list. 418 * @member: the name of the list_struct within the struct. 419 */ 420#define list_for_each_entry_from(pos, head, member) \ 421 for (; prefetch(pos->member.next), &pos->member != (head); \ 422 pos = list_entry(pos->member.next, typeof(*pos), member)) 423 424/** 425 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 426 * @pos: the type * to use as a loop counter. 427 * @n: another type * to use as temporary storage 428 * @head: the head for your list. 429 * @member: the name of the list_struct within the struct. 430 */ 431#define list_for_each_entry_safe(pos, n, head, member) \ 432 for (pos = list_entry((head)->next, typeof(*pos), member), \ 433 n = list_entry(pos->member.next, typeof(*pos), member); \ 434 &pos->member != (head); \ 435 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 436 437/** 438 * list_for_each_entry_safe_continue - iterate over list of given type 439 * continuing after existing point safe against removal of list entry 440 * @pos: the type * to use as a loop counter. 441 * @n: another type * to use as temporary storage 442 * @head: the head for your list. 443 * @member: the name of the list_struct within the struct. 444 */ 445#define list_for_each_entry_safe_continue(pos, n, head, member) \ 446 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 447 n = list_entry(pos->member.next, typeof(*pos), member); \ 448 &pos->member != (head); \ 449 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 450 451/** 452 * list_for_each_entry_safe_from - iterate over list of given type 453 * from existing point safe against removal of list entry 454 * @pos: the type * to use as a loop counter. 455 * @n: another type * to use as temporary storage 456 * @head: the head for your list. 457 * @member: the name of the list_struct within the struct. 458 */ 459#define list_for_each_entry_safe_from(pos, n, head, member) \ 460 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 461 &pos->member != (head); \ 462 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 463 464/** 465 * list_for_each_entry_safe_reverse - iterate backwards over list of given type safe against 466 * removal of list entry 467 * @pos: the type * to use as a loop counter. 468 * @n: another type * to use as temporary storage 469 * @head: the head for your list. 470 * @member: the name of the list_struct within the struct. 471 */ 472#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 473 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 474 n = list_entry(pos->member.prev, typeof(*pos), member); \ 475 &pos->member != (head); \ 476 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 477 478/** 479 * list_for_each_rcu - iterate over an rcu-protected list 480 * @pos: the &struct list_head to use as a loop counter. 481 * @head: the head for your list. 482 * 483 * This list-traversal primitive may safely run concurrently with 484 * the _rcu list-mutation primitives such as list_add_rcu() 485 * as long as the traversal is guarded by rcu_read_lock(). 486 */ 487#define list_for_each_rcu(pos, head) \ 488 for (pos = (head)->next; \ 489 prefetch(rcu_dereference(pos)->next), pos != (head); \ 490 pos = pos->next) 491 492#define __list_for_each_rcu(pos, head) \ 493 for (pos = (head)->next; \ 494 rcu_dereference(pos) != (head); \ 495 pos = pos->next) 496 497/** 498 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 499 * against removal of list entry 500 * @pos: the &struct list_head to use as a loop counter. 501 * @n: another &struct list_head to use as temporary storage 502 * @head: the head for your list. 503 * 504 * This list-traversal primitive may safely run concurrently with 505 * the _rcu list-mutation primitives such as list_add_rcu() 506 * as long as the traversal is guarded by rcu_read_lock(). 507 */ 508#define list_for_each_safe_rcu(pos, n, head) \ 509 for (pos = (head)->next; \ 510 n = rcu_dereference(pos)->next, pos != (head); \ 511 pos = n) 512 513/** 514 * list_for_each_entry_rcu - iterate over rcu list of given type 515 * @pos: the type * to use as a loop counter. 516 * @head: the head for your list. 517 * @member: the name of the list_struct within the struct. 518 * 519 * This list-traversal primitive may safely run concurrently with 520 * the _rcu list-mutation primitives such as list_add_rcu() 521 * as long as the traversal is guarded by rcu_read_lock(). 522 */ 523#define list_for_each_entry_rcu(pos, head, member) \ 524 for (pos = list_entry((head)->next, typeof(*pos), member); \ 525 prefetch(rcu_dereference(pos)->member.next), \ 526 &pos->member != (head); \ 527 pos = list_entry(pos->member.next, typeof(*pos), member)) 528 529 530/** 531 * list_for_each_continue_rcu - iterate over an rcu-protected list 532 * continuing after existing point. 533 * @pos: the &struct list_head to use as a loop counter. 534 * @head: the head for your list. 535 * 536 * This list-traversal primitive may safely run concurrently with 537 * the _rcu list-mutation primitives such as list_add_rcu() 538 * as long as the traversal is guarded by rcu_read_lock(). 539 */ 540#define list_for_each_continue_rcu(pos, head) \ 541 for ((pos) = (pos)->next; \ 542 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 543 (pos) = (pos)->next) 544 545/* 546 * Double linked lists with a single pointer list head. 547 * Mostly useful for hash tables where the two pointer list head is 548 * too wasteful. 549 * You lose the ability to access the tail in O(1). 550 */ 551 552struct hlist_head { 553 struct hlist_node *first; 554}; 555 556struct hlist_node { 557 struct hlist_node *next, **pprev; 558}; 559 560#define HLIST_HEAD_INIT { .first = NULL } 561#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 562#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 563static inline void INIT_HLIST_NODE(struct hlist_node *h) 564{ 565 h->next = NULL; 566 h->pprev = NULL; 567} 568 569static inline int hlist_unhashed(const struct hlist_node *h) 570{ 571 return !h->pprev; 572} 573 574static inline int hlist_empty(const struct hlist_head *h) 575{ 576 return !h->first; 577} 578 579static inline void __hlist_del(struct hlist_node *n) 580{ 581 struct hlist_node *next = n->next; 582 struct hlist_node **pprev = n->pprev; 583 *pprev = next; 584 if (next) 585 next->pprev = pprev; 586} 587 588static inline void hlist_del(struct hlist_node *n) 589{ 590 __hlist_del(n); 591 n->next = LIST_POISON1; 592 n->pprev = LIST_POISON2; 593} 594 595/** 596 * hlist_del_rcu - deletes entry from hash list without re-initialization 597 * @n: the element to delete from the hash list. 598 * 599 * Note: list_unhashed() on entry does not return true after this, 600 * the entry is in an undefined state. It is useful for RCU based 601 * lockfree traversal. 602 * 603 * In particular, it means that we can not poison the forward 604 * pointers that may still be used for walking the hash list. 605 * 606 * The caller must take whatever precautions are necessary 607 * (such as holding appropriate locks) to avoid racing 608 * with another list-mutation primitive, such as hlist_add_head_rcu() 609 * or hlist_del_rcu(), running on this same list. 610 * However, it is perfectly legal to run concurrently with 611 * the _rcu list-traversal primitives, such as 612 * hlist_for_each_entry(). 613 */ 614static inline void hlist_del_rcu(struct hlist_node *n) 615{ 616 __hlist_del(n); 617 n->pprev = LIST_POISON2; 618} 619 620static inline void hlist_del_init(struct hlist_node *n) 621{ 622 if (!hlist_unhashed(n)) { 623 __hlist_del(n); 624 INIT_HLIST_NODE(n); 625 } 626} 627 628/* 629 * hlist_replace_rcu - replace old entry by new one 630 * @old : the element to be replaced 631 * @new : the new element to insert 632 * 633 * The old entry will be replaced with the new entry atomically. 634 */ 635static inline void hlist_replace_rcu(struct hlist_node *old, 636 struct hlist_node *new) 637{ 638 struct hlist_node *next = old->next; 639 640 new->next = next; 641 new->pprev = old->pprev; 642 smp_wmb(); 643 if (next) 644 new->next->pprev = &new->next; 645 *new->pprev = new; 646 old->pprev = LIST_POISON2; 647} 648 649static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 650{ 651 struct hlist_node *first = h->first; 652 n->next = first; 653 if (first) 654 first->pprev = &n->next; 655 h->first = n; 656 n->pprev = &h->first; 657} 658 659 660/** 661 * hlist_add_head_rcu - adds the specified element to the specified hlist, 662 * while permitting racing traversals. 663 * @n: the element to add to the hash list. 664 * @h: the list to add to. 665 * 666 * The caller must take whatever precautions are necessary 667 * (such as holding appropriate locks) to avoid racing 668 * with another list-mutation primitive, such as hlist_add_head_rcu() 669 * or hlist_del_rcu(), running on this same list. 670 * However, it is perfectly legal to run concurrently with 671 * the _rcu list-traversal primitives, such as 672 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 673 * problems on Alpha CPUs. Regardless of the type of CPU, the 674 * list-traversal primitive must be guarded by rcu_read_lock(). 675 */ 676static inline void hlist_add_head_rcu(struct hlist_node *n, 677 struct hlist_head *h) 678{ 679 struct hlist_node *first = h->first; 680 n->next = first; 681 n->pprev = &h->first; 682 smp_wmb(); 683 if (first) 684 first->pprev = &n->next; 685 h->first = n; 686} 687 688/* next must be != NULL */ 689static inline void hlist_add_before(struct hlist_node *n, 690 struct hlist_node *next) 691{ 692 n->pprev = next->pprev; 693 n->next = next; 694 next->pprev = &n->next; 695 *(n->pprev) = n; 696} 697 698static inline void hlist_add_after(struct hlist_node *n, 699 struct hlist_node *next) 700{ 701 next->next = n->next; 702 n->next = next; 703 next->pprev = &n->next; 704 705 if(next->next) 706 next->next->pprev = &next->next; 707} 708 709/** 710 * hlist_add_before_rcu - adds the specified element to the specified hlist 711 * before the specified node while permitting racing traversals. 712 * @n: the new element to add to the hash list. 713 * @next: the existing element to add the new element before. 714 * 715 * The caller must take whatever precautions are necessary 716 * (such as holding appropriate locks) to avoid racing 717 * with another list-mutation primitive, such as hlist_add_head_rcu() 718 * or hlist_del_rcu(), running on this same list. 719 * However, it is perfectly legal to run concurrently with 720 * the _rcu list-traversal primitives, such as 721 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 722 * problems on Alpha CPUs. 723 */ 724static inline void hlist_add_before_rcu(struct hlist_node *n, 725 struct hlist_node *next) 726{ 727 n->pprev = next->pprev; 728 n->next = next; 729 smp_wmb(); 730 next->pprev = &n->next; 731 *(n->pprev) = n; 732} 733 734/** 735 * hlist_add_after_rcu - adds the specified element to the specified hlist 736 * after the specified node while permitting racing traversals. 737 * @prev: the existing element to add the new element after. 738 * @n: the new element to add to the hash list. 739 * 740 * The caller must take whatever precautions are necessary 741 * (such as holding appropriate locks) to avoid racing 742 * with another list-mutation primitive, such as hlist_add_head_rcu() 743 * or hlist_del_rcu(), running on this same list. 744 * However, it is perfectly legal to run concurrently with 745 * the _rcu list-traversal primitives, such as 746 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 747 * problems on Alpha CPUs. 748 */ 749static inline void hlist_add_after_rcu(struct hlist_node *prev, 750 struct hlist_node *n) 751{ 752 n->next = prev->next; 753 n->pprev = &prev->next; 754 smp_wmb(); 755 prev->next = n; 756 if (n->next) 757 n->next->pprev = &n->next; 758} 759 760#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 761 762#define hlist_for_each(pos, head) \ 763 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 764 pos = pos->next) 765 766#define hlist_for_each_safe(pos, n, head) \ 767 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 768 pos = n) 769 770/** 771 * hlist_for_each_entry - iterate over list of given type 772 * @tpos: the type * to use as a loop counter. 773 * @pos: the &struct hlist_node to use as a loop counter. 774 * @head: the head for your list. 775 * @member: the name of the hlist_node within the struct. 776 */ 777#define hlist_for_each_entry(tpos, pos, head, member) \ 778 for (pos = (head)->first; \ 779 pos && ({ prefetch(pos->next); 1;}) && \ 780 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 781 pos = pos->next) 782 783/** 784 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 785 * @tpos: the type * to use as a loop counter. 786 * @pos: the &struct hlist_node to use as a loop counter. 787 * @member: the name of the hlist_node within the struct. 788 */ 789#define hlist_for_each_entry_continue(tpos, pos, member) \ 790 for (pos = (pos)->next; \ 791 pos && ({ prefetch(pos->next); 1;}) && \ 792 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 793 pos = pos->next) 794 795/** 796 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 797 * @tpos: the type * to use as a loop counter. 798 * @pos: the &struct hlist_node to use as a loop counter. 799 * @member: the name of the hlist_node within the struct. 800 */ 801#define hlist_for_each_entry_from(tpos, pos, member) \ 802 for (; pos && ({ prefetch(pos->next); 1;}) && \ 803 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 804 pos = pos->next) 805 806/** 807 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 808 * @tpos: the type * to use as a loop counter. 809 * @pos: the &struct hlist_node to use as a loop counter. 810 * @n: another &struct hlist_node to use as temporary storage 811 * @head: the head for your list. 812 * @member: the name of the hlist_node within the struct. 813 */ 814#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 815 for (pos = (head)->first; \ 816 pos && ({ n = pos->next; 1; }) && \ 817 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 818 pos = n) 819 820/** 821 * hlist_for_each_entry_rcu - iterate over rcu list of given type 822 * @tpos: the type * to use as a loop counter. 823 * @pos: the &struct hlist_node to use as a loop counter. 824 * @head: the head for your list. 825 * @member: the name of the hlist_node within the struct. 826 * 827 * This list-traversal primitive may safely run concurrently with 828 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 829 * as long as the traversal is guarded by rcu_read_lock(). 830 */ 831#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 832 for (pos = (head)->first; \ 833 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 834 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 835 pos = pos->next) 836 837#else 838#warning "don't include kernel headers in userspace" 839#endif /* __KERNEL__ */ 840#endif