at v2.6.17 714 lines 20 kB view raw
1#ifndef _ASM_IA64_PROCESSOR_H 2#define _ASM_IA64_PROCESSOR_H 3 4/* 5 * Copyright (C) 1998-2004 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Stephane Eranian <eranian@hpl.hp.com> 8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 10 * 11 * 11/24/98 S.Eranian added ia64_set_iva() 12 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API 13 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support 14 */ 15 16#include <linux/config.h> 17 18#include <asm/intrinsics.h> 19#include <asm/kregs.h> 20#include <asm/ptrace.h> 21#include <asm/ustack.h> 22 23#define IA64_NUM_DBG_REGS 8 24/* 25 * Limits for PMC and PMD are set to less than maximum architected values 26 * but should be sufficient for a while 27 */ 28#define IA64_NUM_PMC_REGS 64 29#define IA64_NUM_PMD_REGS 64 30 31#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) 32#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) 33 34/* 35 * TASK_SIZE really is a mis-named. It really is the maximum user 36 * space address (plus one). On IA-64, there are five regions of 2TB 37 * each (assuming 8KB page size), for a total of 8TB of user virtual 38 * address space. 39 */ 40#define TASK_SIZE (current->thread.task_size) 41 42/* 43 * This decides where the kernel will search for a free chunk of vm 44 * space during mmap's. 45 */ 46#define TASK_UNMAPPED_BASE (current->thread.map_base) 47 48#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ 49#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ 50#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ 51#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ 52#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ 53#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration 54 sync at ctx sw */ 55#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ 56#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ 57 58#define IA64_THREAD_UAC_SHIFT 3 59#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) 60#define IA64_THREAD_FPEMU_SHIFT 6 61#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) 62 63 64/* 65 * This shift should be large enough to be able to represent 1000000000/itc_freq with good 66 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits 67 * (this will give enough slack to represent 10 seconds worth of time as a scaled number). 68 */ 69#define IA64_NSEC_PER_CYC_SHIFT 30 70 71#ifndef __ASSEMBLY__ 72 73#include <linux/cache.h> 74#include <linux/compiler.h> 75#include <linux/threads.h> 76#include <linux/types.h> 77 78#include <asm/fpu.h> 79#include <asm/page.h> 80#include <asm/percpu.h> 81#include <asm/rse.h> 82#include <asm/unwind.h> 83#include <asm/atomic.h> 84#ifdef CONFIG_NUMA 85#include <asm/nodedata.h> 86#endif 87 88/* like above but expressed as bitfields for more efficient access: */ 89struct ia64_psr { 90 __u64 reserved0 : 1; 91 __u64 be : 1; 92 __u64 up : 1; 93 __u64 ac : 1; 94 __u64 mfl : 1; 95 __u64 mfh : 1; 96 __u64 reserved1 : 7; 97 __u64 ic : 1; 98 __u64 i : 1; 99 __u64 pk : 1; 100 __u64 reserved2 : 1; 101 __u64 dt : 1; 102 __u64 dfl : 1; 103 __u64 dfh : 1; 104 __u64 sp : 1; 105 __u64 pp : 1; 106 __u64 di : 1; 107 __u64 si : 1; 108 __u64 db : 1; 109 __u64 lp : 1; 110 __u64 tb : 1; 111 __u64 rt : 1; 112 __u64 reserved3 : 4; 113 __u64 cpl : 2; 114 __u64 is : 1; 115 __u64 mc : 1; 116 __u64 it : 1; 117 __u64 id : 1; 118 __u64 da : 1; 119 __u64 dd : 1; 120 __u64 ss : 1; 121 __u64 ri : 2; 122 __u64 ed : 1; 123 __u64 bn : 1; 124 __u64 reserved4 : 19; 125}; 126 127/* 128 * CPU type, hardware bug flags, and per-CPU state. Frequently used 129 * state comes earlier: 130 */ 131struct cpuinfo_ia64 { 132 __u32 softirq_pending; 133 __u64 itm_delta; /* # of clock cycles between clock ticks */ 134 __u64 itm_next; /* interval timer mask value to use for next clock tick */ 135 __u64 nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ 136 __u64 unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ 137 __u64 unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ 138 __u64 itc_freq; /* frequency of ITC counter */ 139 __u64 proc_freq; /* frequency of processor */ 140 __u64 cyc_per_usec; /* itc_freq/1000000 */ 141 __u64 ptce_base; 142 __u32 ptce_count[2]; 143 __u32 ptce_stride[2]; 144 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ 145 146#ifdef CONFIG_SMP 147 __u64 loops_per_jiffy; 148 int cpu; 149 __u32 socket_id; /* physical processor socket id */ 150 __u16 core_id; /* core id */ 151 __u16 thread_id; /* thread id */ 152 __u16 num_log; /* Total number of logical processors on 153 * this socket that were successfully booted */ 154 __u8 cores_per_socket; /* Cores per processor socket */ 155 __u8 threads_per_core; /* Threads per core */ 156#endif 157 158 /* CPUID-derived information: */ 159 __u64 ppn; 160 __u64 features; 161 __u8 number; 162 __u8 revision; 163 __u8 model; 164 __u8 family; 165 __u8 archrev; 166 char vendor[16]; 167 168#ifdef CONFIG_NUMA 169 struct ia64_node_data *node_data; 170#endif 171}; 172 173DECLARE_PER_CPU(struct cpuinfo_ia64, cpu_info); 174 175/* 176 * The "local" data variable. It refers to the per-CPU data of the currently executing 177 * CPU, much like "current" points to the per-task data of the currently executing task. 178 * Do not use the address of local_cpu_data, since it will be different from 179 * cpu_data(smp_processor_id())! 180 */ 181#define local_cpu_data (&__ia64_per_cpu_var(cpu_info)) 182#define cpu_data(cpu) (&per_cpu(cpu_info, cpu)) 183 184extern void print_cpu_info (struct cpuinfo_ia64 *); 185 186typedef struct { 187 unsigned long seg; 188} mm_segment_t; 189 190#define SET_UNALIGN_CTL(task,value) \ 191({ \ 192 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ 193 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 194 0; \ 195}) 196#define GET_UNALIGN_CTL(task,addr) \ 197({ \ 198 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ 199 (int __user *) (addr)); \ 200}) 201 202#define SET_FPEMU_CTL(task,value) \ 203({ \ 204 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ 205 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 206 0; \ 207}) 208#define GET_FPEMU_CTL(task,addr) \ 209({ \ 210 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ 211 (int __user *) (addr)); \ 212}) 213 214#ifdef CONFIG_IA32_SUPPORT 215struct desc_struct { 216 unsigned int a, b; 217}; 218 219#define desc_empty(desc) (!((desc)->a + (desc)->b)) 220#define desc_equal(desc1, desc2) (((desc1)->a == (desc2)->a) && ((desc1)->b == (desc2)->b)) 221 222#define GDT_ENTRY_TLS_ENTRIES 3 223#define GDT_ENTRY_TLS_MIN 6 224#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) 225 226#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES * 8) 227 228struct partial_page_list; 229#endif 230 231struct thread_struct { 232 __u32 flags; /* various thread flags (see IA64_THREAD_*) */ 233 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ 234 __u8 on_ustack; /* executing on user-stacks? */ 235 __u8 pad[3]; 236 __u64 ksp; /* kernel stack pointer */ 237 __u64 map_base; /* base address for get_unmapped_area() */ 238 __u64 task_size; /* limit for task size */ 239 __u64 rbs_bot; /* the base address for the RBS */ 240 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ 241 242#ifdef CONFIG_IA32_SUPPORT 243 __u64 eflag; /* IA32 EFLAGS reg */ 244 __u64 fsr; /* IA32 floating pt status reg */ 245 __u64 fcr; /* IA32 floating pt control reg */ 246 __u64 fir; /* IA32 fp except. instr. reg */ 247 __u64 fdr; /* IA32 fp except. data reg */ 248 __u64 old_k1; /* old value of ar.k1 */ 249 __u64 old_iob; /* old IOBase value */ 250 struct partial_page_list *ppl; /* partial page list for 4K page size issue */ 251 /* cached TLS descriptors. */ 252 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 253 254# define INIT_THREAD_IA32 .eflag = 0, \ 255 .fsr = 0, \ 256 .fcr = 0x17800000037fULL, \ 257 .fir = 0, \ 258 .fdr = 0, \ 259 .old_k1 = 0, \ 260 .old_iob = 0, \ 261 .ppl = NULL, 262#else 263# define INIT_THREAD_IA32 264#endif /* CONFIG_IA32_SUPPORT */ 265#ifdef CONFIG_PERFMON 266 __u64 pmcs[IA64_NUM_PMC_REGS]; 267 __u64 pmds[IA64_NUM_PMD_REGS]; 268 void *pfm_context; /* pointer to detailed PMU context */ 269 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ 270# define INIT_THREAD_PM .pmcs = {0UL, }, \ 271 .pmds = {0UL, }, \ 272 .pfm_context = NULL, \ 273 .pfm_needs_checking = 0UL, 274#else 275# define INIT_THREAD_PM 276#endif 277 __u64 dbr[IA64_NUM_DBG_REGS]; 278 __u64 ibr[IA64_NUM_DBG_REGS]; 279 struct ia64_fpreg fph[96]; /* saved/loaded on demand */ 280}; 281 282#define INIT_THREAD { \ 283 .flags = 0, \ 284 .on_ustack = 0, \ 285 .ksp = 0, \ 286 .map_base = DEFAULT_MAP_BASE, \ 287 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ 288 .task_size = DEFAULT_TASK_SIZE, \ 289 .last_fph_cpu = -1, \ 290 INIT_THREAD_IA32 \ 291 INIT_THREAD_PM \ 292 .dbr = {0, }, \ 293 .ibr = {0, }, \ 294 .fph = {{{{0}}}, } \ 295} 296 297#define start_thread(regs,new_ip,new_sp) do { \ 298 set_fs(USER_DS); \ 299 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ 300 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ 301 regs->cr_iip = new_ip; \ 302 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ 303 regs->ar_rnat = 0; \ 304 regs->ar_bspstore = current->thread.rbs_bot; \ 305 regs->ar_fpsr = FPSR_DEFAULT; \ 306 regs->loadrs = 0; \ 307 regs->r8 = current->mm->dumpable; /* set "don't zap registers" flag */ \ 308 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ 309 if (unlikely(!current->mm->dumpable)) { \ 310 /* \ 311 * Zap scratch regs to avoid leaking bits between processes with different \ 312 * uid/privileges. \ 313 */ \ 314 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ 315 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ 316 } \ 317} while (0) 318 319/* Forward declarations, a strange C thing... */ 320struct mm_struct; 321struct task_struct; 322 323/* 324 * Free all resources held by a thread. This is called after the 325 * parent of DEAD_TASK has collected the exit status of the task via 326 * wait(). 327 */ 328#define release_thread(dead_task) 329 330/* Prepare to copy thread state - unlazy all lazy status */ 331#define prepare_to_copy(tsk) do { } while (0) 332 333/* 334 * This is the mechanism for creating a new kernel thread. 335 * 336 * NOTE 1: Only a kernel-only process (ie the swapper or direct 337 * descendants who haven't done an "execve()") should use this: it 338 * will work within a system call from a "real" process, but the 339 * process memory space will not be free'd until both the parent and 340 * the child have exited. 341 * 342 * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get 343 * into trouble in init/main.c when the child thread returns to 344 * do_basic_setup() and the timing is such that free_initmem() has 345 * been called already. 346 */ 347extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags); 348 349/* Get wait channel for task P. */ 350extern unsigned long get_wchan (struct task_struct *p); 351 352/* Return instruction pointer of blocked task TSK. */ 353#define KSTK_EIP(tsk) \ 354 ({ \ 355 struct pt_regs *_regs = task_pt_regs(tsk); \ 356 _regs->cr_iip + ia64_psr(_regs)->ri; \ 357 }) 358 359/* Return stack pointer of blocked task TSK. */ 360#define KSTK_ESP(tsk) ((tsk)->thread.ksp) 361 362extern void ia64_getreg_unknown_kr (void); 363extern void ia64_setreg_unknown_kr (void); 364 365#define ia64_get_kr(regnum) \ 366({ \ 367 unsigned long r = 0; \ 368 \ 369 switch (regnum) { \ 370 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ 371 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ 372 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ 373 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ 374 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ 375 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ 376 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ 377 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ 378 default: ia64_getreg_unknown_kr(); break; \ 379 } \ 380 r; \ 381}) 382 383#define ia64_set_kr(regnum, r) \ 384({ \ 385 switch (regnum) { \ 386 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ 387 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ 388 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ 389 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ 390 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ 391 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ 392 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ 393 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ 394 default: ia64_setreg_unknown_kr(); break; \ 395 } \ 396}) 397 398/* 399 * The following three macros can't be inline functions because we don't have struct 400 * task_struct at this point. 401 */ 402 403/* 404 * Return TRUE if task T owns the fph partition of the CPU we're running on. 405 * Must be called from code that has preemption disabled. 406 */ 407#define ia64_is_local_fpu_owner(t) \ 408({ \ 409 struct task_struct *__ia64_islfo_task = (t); \ 410 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ 411 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ 412}) 413 414/* 415 * Mark task T as owning the fph partition of the CPU we're running on. 416 * Must be called from code that has preemption disabled. 417 */ 418#define ia64_set_local_fpu_owner(t) do { \ 419 struct task_struct *__ia64_slfo_task = (t); \ 420 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ 421 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ 422} while (0) 423 424/* Mark the fph partition of task T as being invalid on all CPUs. */ 425#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) 426 427extern void __ia64_init_fpu (void); 428extern void __ia64_save_fpu (struct ia64_fpreg *fph); 429extern void __ia64_load_fpu (struct ia64_fpreg *fph); 430extern void ia64_save_debug_regs (unsigned long *save_area); 431extern void ia64_load_debug_regs (unsigned long *save_area); 432 433#ifdef CONFIG_IA32_SUPPORT 434extern void ia32_save_state (struct task_struct *task); 435extern void ia32_load_state (struct task_struct *task); 436#endif 437 438#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 439#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 440 441/* load fp 0.0 into fph */ 442static inline void 443ia64_init_fpu (void) { 444 ia64_fph_enable(); 445 __ia64_init_fpu(); 446 ia64_fph_disable(); 447} 448 449/* save f32-f127 at FPH */ 450static inline void 451ia64_save_fpu (struct ia64_fpreg *fph) { 452 ia64_fph_enable(); 453 __ia64_save_fpu(fph); 454 ia64_fph_disable(); 455} 456 457/* load f32-f127 from FPH */ 458static inline void 459ia64_load_fpu (struct ia64_fpreg *fph) { 460 ia64_fph_enable(); 461 __ia64_load_fpu(fph); 462 ia64_fph_disable(); 463} 464 465static inline __u64 466ia64_clear_ic (void) 467{ 468 __u64 psr; 469 psr = ia64_getreg(_IA64_REG_PSR); 470 ia64_stop(); 471 ia64_rsm(IA64_PSR_I | IA64_PSR_IC); 472 ia64_srlz_i(); 473 return psr; 474} 475 476/* 477 * Restore the psr. 478 */ 479static inline void 480ia64_set_psr (__u64 psr) 481{ 482 ia64_stop(); 483 ia64_setreg(_IA64_REG_PSR_L, psr); 484 ia64_srlz_d(); 485} 486 487/* 488 * Insert a translation into an instruction and/or data translation 489 * register. 490 */ 491static inline void 492ia64_itr (__u64 target_mask, __u64 tr_num, 493 __u64 vmaddr, __u64 pte, 494 __u64 log_page_size) 495{ 496 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 497 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 498 ia64_stop(); 499 if (target_mask & 0x1) 500 ia64_itri(tr_num, pte); 501 if (target_mask & 0x2) 502 ia64_itrd(tr_num, pte); 503} 504 505/* 506 * Insert a translation into the instruction and/or data translation 507 * cache. 508 */ 509static inline void 510ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, 511 __u64 log_page_size) 512{ 513 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 514 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 515 ia64_stop(); 516 /* as per EAS2.6, itc must be the last instruction in an instruction group */ 517 if (target_mask & 0x1) 518 ia64_itci(pte); 519 if (target_mask & 0x2) 520 ia64_itcd(pte); 521} 522 523/* 524 * Purge a range of addresses from instruction and/or data translation 525 * register(s). 526 */ 527static inline void 528ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) 529{ 530 if (target_mask & 0x1) 531 ia64_ptri(vmaddr, (log_size << 2)); 532 if (target_mask & 0x2) 533 ia64_ptrd(vmaddr, (log_size << 2)); 534} 535 536/* Set the interrupt vector address. The address must be suitably aligned (32KB). */ 537static inline void 538ia64_set_iva (void *ivt_addr) 539{ 540 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); 541 ia64_srlz_i(); 542} 543 544/* Set the page table address and control bits. */ 545static inline void 546ia64_set_pta (__u64 pta) 547{ 548 /* Note: srlz.i implies srlz.d */ 549 ia64_setreg(_IA64_REG_CR_PTA, pta); 550 ia64_srlz_i(); 551} 552 553static inline void 554ia64_eoi (void) 555{ 556 ia64_setreg(_IA64_REG_CR_EOI, 0); 557 ia64_srlz_d(); 558} 559 560#define cpu_relax() ia64_hint(ia64_hint_pause) 561 562static inline int 563ia64_get_irr(unsigned int vector) 564{ 565 unsigned int reg = vector / 64; 566 unsigned int bit = vector % 64; 567 u64 irr; 568 569 switch (reg) { 570 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; 571 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; 572 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; 573 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; 574 } 575 576 return test_bit(bit, &irr); 577} 578 579static inline void 580ia64_set_lrr0 (unsigned long val) 581{ 582 ia64_setreg(_IA64_REG_CR_LRR0, val); 583 ia64_srlz_d(); 584} 585 586static inline void 587ia64_set_lrr1 (unsigned long val) 588{ 589 ia64_setreg(_IA64_REG_CR_LRR1, val); 590 ia64_srlz_d(); 591} 592 593 594/* 595 * Given the address to which a spill occurred, return the unat bit 596 * number that corresponds to this address. 597 */ 598static inline __u64 599ia64_unat_pos (void *spill_addr) 600{ 601 return ((__u64) spill_addr >> 3) & 0x3f; 602} 603 604/* 605 * Set the NaT bit of an integer register which was spilled at address 606 * SPILL_ADDR. UNAT is the mask to be updated. 607 */ 608static inline void 609ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) 610{ 611 __u64 bit = ia64_unat_pos(spill_addr); 612 __u64 mask = 1UL << bit; 613 614 *unat = (*unat & ~mask) | (nat << bit); 615} 616 617/* 618 * Return saved PC of a blocked thread. 619 * Note that the only way T can block is through a call to schedule() -> switch_to(). 620 */ 621static inline unsigned long 622thread_saved_pc (struct task_struct *t) 623{ 624 struct unw_frame_info info; 625 unsigned long ip; 626 627 unw_init_from_blocked_task(&info, t); 628 if (unw_unwind(&info) < 0) 629 return 0; 630 unw_get_ip(&info, &ip); 631 return ip; 632} 633 634/* 635 * Get the current instruction/program counter value. 636 */ 637#define current_text_addr() \ 638 ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) 639 640static inline __u64 641ia64_get_ivr (void) 642{ 643 __u64 r; 644 ia64_srlz_d(); 645 r = ia64_getreg(_IA64_REG_CR_IVR); 646 ia64_srlz_d(); 647 return r; 648} 649 650static inline void 651ia64_set_dbr (__u64 regnum, __u64 value) 652{ 653 __ia64_set_dbr(regnum, value); 654#ifdef CONFIG_ITANIUM 655 ia64_srlz_d(); 656#endif 657} 658 659static inline __u64 660ia64_get_dbr (__u64 regnum) 661{ 662 __u64 retval; 663 664 retval = __ia64_get_dbr(regnum); 665#ifdef CONFIG_ITANIUM 666 ia64_srlz_d(); 667#endif 668 return retval; 669} 670 671static inline __u64 672ia64_rotr (__u64 w, __u64 n) 673{ 674 return (w >> n) | (w << (64 - n)); 675} 676 677#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) 678 679/* 680 * Take a mapped kernel address and return the equivalent address 681 * in the region 7 identity mapped virtual area. 682 */ 683static inline void * 684ia64_imva (void *addr) 685{ 686 void *result; 687 result = (void *) ia64_tpa(addr); 688 return __va(result); 689} 690 691#define ARCH_HAS_PREFETCH 692#define ARCH_HAS_PREFETCHW 693#define ARCH_HAS_SPINLOCK_PREFETCH 694#define PREFETCH_STRIDE L1_CACHE_BYTES 695 696static inline void 697prefetch (const void *x) 698{ 699 ia64_lfetch(ia64_lfhint_none, x); 700} 701 702static inline void 703prefetchw (const void *x) 704{ 705 ia64_lfetch_excl(ia64_lfhint_none, x); 706} 707 708#define spin_lock_prefetch(x) prefetchw(x) 709 710extern unsigned long boot_option_idle_override; 711 712#endif /* !__ASSEMBLY__ */ 713 714#endif /* _ASM_IA64_PROCESSOR_H */